Effects of Bioconverted Guava Leaf (Psidium guajava L.) Extract on Skeletal Muscle Damage by Regulation of Ubiquitin–Proteasome System and Apoptosis in Type 2 Diabetic Mice
Abstract
:1. Introduction
2. Results
2.1. Effects of FGL Treatment on Body Weight and Food Intake in T2DM Mice
2.2. UHPLC-LTQ-Orbitrap-MS/MS Chromatogram of FGL
2.3. Effects of FGL Treatment on Glycemic Regulation in T2DM Mice
2.4. Effects of FGL Treatment on Muscle Strength in T2DM Mice
2.5. Effects of FGL Treatment on Skeletal Muscle Morphology in T2DM Mice
2.6. Effects of FGL Treatment on Insulin-Signaling-Related Markers in T2DM Mice
2.7. Effects of FGL Treatment on UPS-Related Markers in T2DM Mice
2.8. Effects of FGL Treatment on Apoptosis-Related Markers in T2DM Mice
2.9. Effects of FGL Treatment on mTOR-Autophagy-Related Markers in T2DM Mice
2.10. Effects of FGL Treatment on Inflammation Related Markers in T2DM Mice
3. Discussion
4. Materials and Methods
4.1. Preparation of Extract
4.2. Lactobacillus Strains and Culture Conditions
4.3. Bioconversion of Guava Leaf Extract
4.4. UHPLC-LTQ-Orbitrap-MS/MS Analysis of FGL
4.5. Animal and Experimental Design
4.6. Grip Strength Test
4.7. Histological Analysis
4.8. Protein Extraction and Western Blot Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Atrogin-1 | Muscle atrophy F-box |
BCAA | Branched-chain amino acids |
BW | Body weight |
CON | Control group |
CSA | Cross-sectional area |
DMC | Diabetes mellitus control |
FBG | Fasting blood glucose |
FGL | Fermented guava leaf |
GL | Guava leaf (Psidium guajava L.) |
GLE | Guava leaf extract |
HICA | 2-hydroxyisovaleric acid |
HIVA | Hydroxyphenyllactic acid |
HOMA-IR | Homeostasis-model-assessment-estimated insulin resistance |
LF | Lactobacillus Firmentum |
LP | Lactobacillus plantarum |
mTOR | Mammalian target of rapamycin |
Murf-1 | Muscle ring finger-1 |
T2DM | Type 2 diabetes mellitus |
UPS | Ubiquitin–proteasome system |
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Purnamasari, D.; Tetrasiwi, E.N.; Kartiko, G.J.; Astrella, C.; Husam, K.; Laksmi, P.W. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus. Rev. Diabet. Stud. 2022, 18, 157–165. [Google Scholar] [CrossRef]
- He, J.; Watkins, S.; Kelley, D.E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 2001, 50, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, K.; Aoi, W.; Yamaguchi, A. Molecular mechanism of sarcopenia and cachexia: Recent research advances. Pflugers Arch. 2017, 469, 573–591. [Google Scholar] [CrossRef]
- Liu, H.W.; Chen, Y.J.; Chang, Y.C.; Chang, S.J. Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1. Nutrients 2017, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS ONE 2016, 11, e0156225. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H.; Zhou, Y.; Zhu, Y.; Bian, R.; Chen, Y.; Li, C.; Ma, Q.; Zheng, Q.; Zhang, Y.; et al. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells. Cell Death 2013, 4, e494. [Google Scholar] [CrossRef]
- Marzetti, E.; Leeuwenburgh, C. Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp. Gerontol. 2006, 41, 1234–1238. [Google Scholar] [CrossRef]
- Graves, D.T.; Liu, R.; Alikhani, M.; Al-Mashat, H.; Trackman, P.C. Diabetes-enhanced inflammation and apoptosis--impact on periodontal pathology. J. Dent. Res. 2006, 85, 15–21. [Google Scholar] [CrossRef]
- Van de Casteele, M.; Kefas, B.A.; Ling, Z.; Heimberg, H.; Pipeleers, D.G. Specific expression of Bax-omega in pancreatic beta-cells is down-regulated by cytokines before the onset of apoptosis. Endocrinology 2002, 143, 320–326. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods 2021, 10, 752. [Google Scholar] [CrossRef]
- Lee, N.K.; Paik, H.D. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds. J. Microbiol. Biotechnol 2017, 27, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.G.; Kim, S.H.; Kim, S.H.; Hong, S.M.; Lee, H.; Lim, Y.; Kim, S.-Y.; Lee, C.-H. Metabolomic Comparison of Guava (Psidium guajava L.) Leaf Extracts Fermented by Limosilactobacillus fermentum and Lactiplantibacillus plantarum and Their Antioxidant and Antiglycation Activities. Nutrients 2024, 16, 841. [Google Scholar] [CrossRef] [PubMed]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of Fermentation on the Nutritional Quality of the Selected Vegetables and Legumes and Their Health Effects. Life 2023, 13, 655. [Google Scholar] [CrossRef]
- Jung, J.; Jang, H.J.; Eom, S.J.; Choi, N.S.; Lee, N.K.; Paik, H.D. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: Ginsenoside conversion and antioxidant effects. J. Ginseng Res. 2019, 43, 20–26. [Google Scholar] [CrossRef]
- Ghen, G.; Liu, Y.; Zeng, J.; Tian, X.; Bei, Q.; Wu, Z. Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis. J. Cereal Sci. 2020, 93, 102940. [Google Scholar] [CrossRef]
- Meng, F.B.; Lei, Y.T.; Li, Q.Z.; Li, Y.C.; Deng, Y.; Liu, D.Y. Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. LWT 2022, 171, 114104. [Google Scholar] [CrossRef]
- Shakya, S.; Danshiitsoodol, N.; Noda, M.; Sugiyama, M. Role of Phenolic Acid Metabolism in Enhancing Bioactivity of Mentha Extract Fermented with Plant-Derived Lactobacillus plantarum SN13T. Probiotics Antimicrob. Proteins 2024, 16, 1052–1064. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, H.; Kim, S.Y.; Lee, C.H.; Lim, Y. Effects of metabolites derived from guava (Psidium guajava L.) leaf extract fermented by Limosilactobacillus fermentum on hepatic energy metabolism via SIRT1-PGC1α signaling in diabetic mice. Nutrients 2025, 17, 7. [Google Scholar] [CrossRef]
- Wang, G.; Si, Q.; Yang, S.; Jiao, T.; Zhu, H.; Tian, P.; Wang, L.; Li, X.; Gong, L.; Zhao, J.; et al. Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners. Food Funct. 2020, 11, 5898–5914. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, J.; Hao, W.; Zhang, J.; Li, H.; Yang, C.; Yang, J.; Chen, X.; Wang, H. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators Inflamm. 2021, 2021, 5110276. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Q.; Zheng, Q.X.; Jiang, X.M.; Chen, X.Q.; Zhang, X.Y.; Wu, J.L. Probiotic Supplements Improve Blood Glucose and Insulin Resistance/Sensitivity among Healthy and GDM Pregnant Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement. Alternat. Med. 2021, 2021, 9830200. [Google Scholar] [CrossRef]
- Pakmehr, A.; Ejtahed, H.S.; Shirzad, N.; Hemmatabadi, M.; Farhat, S.; Larijani, B. Preventive effect of probiotics supplementation on occurrence of gestational diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Front. Med. 2022, 9, 1031915. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef]
- Youn, H.S.; Kim, J.H.; Lee, J.S.; Yoon, Y.Y.; Choi, S.J.; Lee, J.Y.; Kim, W.; Hwang, K.W. Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect. Immun. 2021, 89, e0061520. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, D.; Park, G.S.; Ko, S.H.; Park, J.; Lee, Y.K.; Kang, J. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota. Food Funct. 2021, 12, 6363–6373. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, L.J.; Taveroff, A.; Robitaille, L.; Mamer, O.A.; Reimer, M.L. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans. J. Nutr. 1993, 123, 1513–1521. [Google Scholar] [CrossRef]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Sumi, K.; Sakuda, M.; Munakata, K.; Nakamura, K.; Ashida, K. α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube. Nutrients 2021, 13, 2391. [Google Scholar] [CrossRef]
- Zheng, X.X.; Xu, Y.L.; Li, S.H.; Hui, R.; Wu, Y.J.; Huang, X.H. Effects of green tea catechins with or without caffeine on glycemic control in adults: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2013, 97, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Oyedemi, S.O.; Nwaogu, G.; Chukwuma, C.I.; Adeyemi, O.T.; Matsabisa, M.G.; Swain, S.S.; Aiyegoro, O.A. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. J. Food Biochem. 2020, 44, e13127. [Google Scholar] [CrossRef] [PubMed]
- Ippagunta, S.M.; Kharitonenkov, A.; Adams, A.C.; Hillgartner, F.B. Cholic Acid Supplementation of a High-Fat Obesogenic Diet Suppresses Hepatic Triacylglycerol Accumulation in Mice via a Fibroblast Growth Factor 21-Dependent Mechanism. J. Nutr. 2018, 148, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.H.; Kim, S.H.; Lee, C.H. Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota. J. Microbiol. Biotechnol. 2024, 34, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Plomgaard, P.; Bouzakri, K.; Krogh-Madsen, R.; Mittendorfer, B.; Zierath, J.R.; Pedersen, B.K. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005, 54, 2939–2945. [Google Scholar] [CrossRef]
- Patsouris, D.; Cao, J.J.; Vial, G.; Bravard, A.; Lefai, E.; Durand, A.; Durand, C.; Chauvin, M.A.; Laugerette, F.; Debard, C.; et al. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans. PLoS ONE 2014, 9, e110653. [Google Scholar] [CrossRef]
- Huang, K.; Wang, C.; Mei, B.; Li, J.; Ren, T.; Zhan, H.; Zhang, Y.; Zhang, B.; Lv, X.; Zhang, Q.; et al. Bile acids attenuate hepatic inflammation during ischemia/reperfusion injury. JHEP Rep. 2024, 6, 101101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calzadilla, N.; Comiskey, S.M.; Dudeja, P.K.; Saksena, S.; Gill, R.K.; Alrefai, W.A. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front. Immunol. 2022, 13, 1021924. [Google Scholar] [CrossRef]
- Bowen, T.S.; Adams, V.; Werner, S.; Fischer, T.; Vinke, P.; Brogger, M.N.; Mangner, N.; Linke, A.; Sehr, P.; Lewis, J.; et al. Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J. Cachexia Sarcopenia Muscle 2017, 8, 939–953. [Google Scholar] [CrossRef]
- Lang, C.H.; Pruznak, A.; Navaratnarajah, M.; Rankine, K.A.; Deiter, G.; Magne, H.; Offord, E.A.; Breuillé, D. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E416–E428. [Google Scholar] [CrossRef]
- Xie, G.; Jin, H.; Mikhail, H.; Pavel, V.; Yang, G.; Ji, B.; Lu, B.; Li, Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed. Pharmacother. 2023, 165, 115147. [Google Scholar] [CrossRef]
- Xia, Q.; Huang, X.; Huang, J.; Zheng, Y.; March, M.E.; Li, J.; Wei, Y. The Role of Autophagy in Skeletal Muscle Diseases. Front. Physiol. 2021, 12, 638983. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Koya, D. Autophagy in metabolic disease and ageing. Nat. Rev. Endocrinol. 2021, 17, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Liang, J.; Wu, L.; Zhang, H.; Lv, J.; Chen, N. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control. Front. Physiol. 2020, 11, 583478. [Google Scholar] [CrossRef]
- Lee, H.; Eo, Y.; Kim, S.Y.; Lim, Y. Guava leaf extract attenuated muscle proteolysis in dexamethasone induced muscle atrophic mice via ubiquitin proteasome system, mTOR-autophagy, and apoptosis pathway. Nutr. Res. 2004, 27, 97–107. [Google Scholar] [CrossRef]
- Pei, J.; Deng, J.; Ye, Z.; Wang, J.; Gou, H.; Liu, W.; Zhao, M.; Liao, M.; Yi, L.; Chen, J. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy 2016, 12, 1738–1758. [Google Scholar] [CrossRef] [PubMed]
- Cheema, N.; Herbst, A.; McKenzie, D.; Aiken, J.M. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell 2015, 14, 1085–1093. [Google Scholar] [CrossRef]
- Shi, Y. Caspase activation, inhibition, and reactivation: A mechanistic view. Protein Sci. 2004, 13, 1979–1987. [Google Scholar] [CrossRef]
- Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Liu, X.; Liu, S.; Sun, C. Effect of the duration of high-fat diet and the dosage of streptozotocin on establishing experimental animal model of type 2 diabetes mellitus. Wei Sheng Yan Jiu 2011, 40, 99–102. [Google Scholar] [CrossRef]
- Takeshita, H.; Yamamoto, K.; Nozato, S.; Inagaki, T.; Tsuchimochi, H.; Shirai, M.; Yamamoto, R.; Imaizumi, Y.; Hongyo, K.; Yokoyama, S.; et al. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci. Rep. 2017, 7, 42323. [Google Scholar] [CrossRef]
- Wang, C.; Yue, F.; Kuang, S. Muscle Histology Characterization Using H&E Staining and Muscle Fiber Type Classification Using Immunofluorescence Staining. Bio Protoc. 2017, 7, e2279. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.Y.; Lim, Y. Lespedeza bicolor extract supplementation reduced hyperglycemia-induced skeletal muscle damage by regulation of AMPK/SIRT/PGC1α-related energy metabolism in type 2 diabetic mice. Nutr. Res. 2023, 110, 1–13. [Google Scholar] [CrossRef] [PubMed]
GROUP | CON | DMC | GL | FGL |
---|---|---|---|---|
Body weight (g) | ||||
Before treatment | 30.30 ± 0.75 a | 36.14 ± 0.87 b | 35.02 ± 0.69 b | 35.39 ± 0.74 b |
After treatment | 30.71 ± 0.79 a | 43.51 ± 1.43 b | 40.21 ± 0.69 b | 41.72 ± 1.39 b |
Gain | 0.41 ± 0.31 a | 7.38 ± 0.70 c | 5.19 ± 0.42 b | 6.34 ± 0.76 bc |
Muscle weight (g/kg BW) | 0.54 ± 0.01 b | 0.40 ± 0.01 a | 0.43 ± 0.01 a | 0.42 ± 0.02 a |
Food intake (g/day) | 2.97 ± 0.03 c | 2.65 ± 0.05 b | 2.51 ± 0.09 ab | 2.47 ±0.04 a |
No. | Tentative Identification | RT (min) a | Measured Mass (m/z) | Molecular Formula | Fragment Pattern | Δ ppm | DB b | |
---|---|---|---|---|---|---|---|---|
[M−H]− | [M+H]+ | |||||||
Sugars | ||||||||
1 | Fructose/glucose | 0.64 | 179.0564 | - | C6H12O6 | (−) 59 89 161 71 131 | 1.34 | Web DB |
2 | Sucrose | 0.63 | 341.1088 | 343.123 | C12H22O11 | (−) 89 101 119 179 | 0.5 | Web DB |
Organic Acids | ||||||||
3 | Citric acid | 0.82 | 191.0197 | 193.0343 | C6H8O7 | (−) 111 87 85 129 | 0.10 | In-house DB |
4 | Hydroxyphenyllactic acid | 1.03 | 181.0509 | 183.0651 | C9H10O4 | (−) 163 135 119 72 | 1.33 | In-house DB |
5 | Phenyllactic acid | 5.08 | 165.0559 | - | C9H10O3 | (−) 147 119 72 103 | 0.97 | In-house DB |
Fatty Acids | ||||||||
6 | 2-hydroxyisovaleric acid | 0.64 | 117.0561 | - | C5H10O3 | (−) 71 99 | 3.13 | In-house DB |
7 | 2-hydroxyisocaproic acid | 3.83 | 131.0716 | - | C6H12O3 | (−) 85 69 | 1.73 | In-house DB |
8 | Cholic acid | 8.02 | 407.2805 | - | C24H40O5 | (−) 425 408 283 | 3.23 | In-house DB |
Flavonoids | ||||||||
9 | Catechin | 1.17 | 289.0721 | 291.086 | C15H14O6 | (−) 245 125 203 109 179 | 1.32 | In-house DB |
10 | Quercetin 3-O-glucuronide | 5.68 | 477.0676 | 479.0814 | C21H18O13 | (−) 301 178 151 113 | 0.17 | Web DB |
11 | Guaijaverin | 5.93 | 433.0779 | 435.0916 | C20H18O11 | (−) 300 301 178 151 271 | 0.71 | Web DB |
12 | Quercitrin | 6.06 | 447.0934 | 449.1069 | C21H20O11 | (+) 303 345 85 86 129 | 0.43 | In-house DB |
Etc. | ||||||||
13 | Pyrogallol | 0.92 | 125.0247 | - | C6H6O3 | (−) 81 97 69 107 | 2.29 | Web DB |
14 | Indolelactic acid | 5.6 | 204.0669 | 206.0809 | C11H11NO3 | (−) 158 186 116 142 | 0.99 | In-house DB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Jun, B.-G.; Kim, S.-H.; Lee, C.H.; Lim, Y. Effects of Bioconverted Guava Leaf (Psidium guajava L.) Extract on Skeletal Muscle Damage by Regulation of Ubiquitin–Proteasome System and Apoptosis in Type 2 Diabetic Mice. Int. J. Mol. Sci. 2025, 26, 3877. https://doi.org/10.3390/ijms26083877
Lee H, Jun B-G, Kim S-H, Lee CH, Lim Y. Effects of Bioconverted Guava Leaf (Psidium guajava L.) Extract on Skeletal Muscle Damage by Regulation of Ubiquitin–Proteasome System and Apoptosis in Type 2 Diabetic Mice. International Journal of Molecular Sciences. 2025; 26(8):3877. https://doi.org/10.3390/ijms26083877
Chicago/Turabian StyleLee, Heaji, Bo-Gyu Jun, Su-Hyun Kim, Choong Hwan Lee, and Yunsook Lim. 2025. "Effects of Bioconverted Guava Leaf (Psidium guajava L.) Extract on Skeletal Muscle Damage by Regulation of Ubiquitin–Proteasome System and Apoptosis in Type 2 Diabetic Mice" International Journal of Molecular Sciences 26, no. 8: 3877. https://doi.org/10.3390/ijms26083877
APA StyleLee, H., Jun, B.-G., Kim, S.-H., Lee, C. H., & Lim, Y. (2025). Effects of Bioconverted Guava Leaf (Psidium guajava L.) Extract on Skeletal Muscle Damage by Regulation of Ubiquitin–Proteasome System and Apoptosis in Type 2 Diabetic Mice. International Journal of Molecular Sciences, 26(8), 3877. https://doi.org/10.3390/ijms26083877