In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae
Abstract
:1. Introduction
2. Isolation and Purification of Microalgal Strains
3. How Are Microalgae Cultivated?
3.1. Parameters Affecting Biomass Growth
3.2. Hydrogen Potential
3.3. Temperature
3.4. Light
3.5. Algal Cultivation Techniques
4. Genetic Engineering of Microalgae for Heterologous Therapeutic Recombinant Proteins Production
4.1. Tools for Genetic Engineering of Microalgae
Host Species | Promoter | Target Genome | References |
---|---|---|---|
Endogenous promoters | |||
N. gaditana | constitutive promoters of HSP90 and EPPSII | nuclear | [85] |
N. gaditana | nitrate-inducible NR promoter | nuclear | [86] |
N. oceanica | constitutive bidirectional promoters of the NR/NT gene, of Ribi and of CP1/2 | nuclear | [87,88] |
N. oceanica | constitutive rbcL promoter | plastidic | [89] |
N. oceanica | elongation factor promoter | nuclear | [90] |
N. oceanica | tubulin promoter | nuclear | [90] |
N. oceanica | nitrate reductase promoter | nuclear | [90] |
T. pseudonanas | silicon-repressible SIT promoter | nuclear | [91] |
C. vulgaris | CvNDI promoter | nuclear | [56] |
P. purpureum | tubulin promoter | nuclear | [92] |
P. tricornutum | constitutive rbcL promoter | plastidic | [93] |
P. tricornutum | constitutive HASP1 promoter | nuclear | [94] |
P. tricornutum | nitrate-inducible NR promoter | nuclear | [95] |
C. reinhardtii | CrGPDH3 promoter | nuclear | [96] |
C. reinhardtii | light-inducible psbA promoter | plastidic | [83] |
C. reinhardtii | atpA promoter | plastidic | [73] |
C. reinhardtii | psbD promoter | plastidic | [73] |
Exogenous promoters | |||
C. vulgaris | CaMV35S promoter | nuclear | [97] |
C. vulgaris | CaMV35S promoter | nuclear | [98] |
C. ellipsoidea | ubiquitin 1 promoter | nuclear | [99] |
C. sorokiniana | CaMV35S promoter | nuclear | [100] |
P. tricornutum | ClP1 promoter of a diatom-infecting virus | nuclear | [101,102] |
C. reinhardtii | LIP promoter | nuclear | [103] |
C. reinhardtii | antifreeze protein (AFP) promoter | nuclear | [104] |
4.2. Methods of Genetic Transformation
5. Proteins Extraction Methods Form Microalgae
6. Trials and Commercialization of Biopharmaceuticals
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olasehinde, T.A.; Olaniran, A.O.; Okoh, A.I. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules 2017, 22, 480. [Google Scholar] [CrossRef] [PubMed]
- Stavridou, E.; Karapetsi, L.; Nteve, G.M.; Tsintzou, G.; Chatzikonstantinou, M.; Tsaousi, M.; Martinez, A.; Flores, P.; Merino, M.; Dobrovic, L.; et al. Landscape of microalgae omics and metabolic engineering research for strain improvement: An overview. Aquaculture 2024, 587, 740803. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef]
- Delsante, C.; Pinna, C.; Sportelli, F.; Dalmonte, T.; Stefanelli, C.; Vecchiato, C.G.; Biagi, G. Assessment of the effects of edible microalgae in a canine gut model. Animals 2022, 12, 2100. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a future food source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Banerjee, A.; Ward, V. Production of recombinant and therapeutic proteins in Microalgae. Curr. Opin. Biotechnol. 2022, 78, 102784. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef]
- Merz, C.R.; Arora, N.; Welch, M.; Lo, E.; Philippidis, G.P. Microalgal cultivation characteristics using commercially available air-cushion packaging material as a photobioreactor. Sci. Rep. 2023, 7, 3792. [Google Scholar] [CrossRef] [PubMed]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic potentials and applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Ali, E.; Mirza, S.S. A new method to isolate algal species from mixalgal culture. bioRxiv 2017. [Google Scholar] [CrossRef]
- Chen, C.C.; Liu, Y.J.; Yao, D.J. Paper-based device for separation and cultivation of single microalga. Talanta 2015, 145, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Schulze, P.S.C.; Schüler, L.M.; Santos, T.; Barreira, L.; Varela, J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res. 2018, 30, 113–120. [Google Scholar] [CrossRef]
- Davardoostmanesh, M.; Ahmadzadeh, H.; Samiee, S. Microalgae strain separation using electrophoresis. Algal Res. 2025, 85, 103843. [Google Scholar] [CrossRef]
- Sánchez, A.; Rocio Maceiras, R.; Cancela, A.; Alfonso Pérez, A. Culture aspects of Isochrysis galbana for biodiesel production. App. Energ. 2013, 101, 192–197. [Google Scholar] [CrossRef]
- Chik, M.N.; Yahya, L.; Kamarudin, K.F.; Tao, D.G.; Takriff, M.S. Isolation, purification and identification of microalgae from coal-fired power plant environment. Malaysian J. Analyt. Sci. 2017, 21, 460–469. [Google Scholar] [CrossRef]
- Varshney, P.; Beardalle, J.; Bhattacharyaf, S.; Wangikar, P. Isolation and biochemical characterisation of two thermophilic green algalspecies- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res. 2018, 30, 28–37. [Google Scholar] [CrossRef]
- Jonynaite, K.; Stirke, A.; Gerken, H.; Frey, W.; Gusbeth, C. Influence of growth medium on the species-specific interactions between algae and bacteria. Environ. Microbiol. Rep. 2024, 16, e13321. [Google Scholar] [CrossRef]
- Song, X.; Liu, B.-F.; Kong, F.; Song, Q.; Ren, N.-Q.; Ren, H.-Y. Lipid accumulation by a novel microalga Parachlorella kessleri R-3 with wide pH tolerance for promising biodiesel production. Algal Res. 2023, 69, 102925. [Google Scholar] [CrossRef]
- Štěrbová, K.; Manoel, J.C.; Lakatos, G.E.; Grivalský, T.; Masojídek, J. Microalgae as an aquaculture feed produced in a short light-path annular column photobioreactor. J. Appl. Phycol. 2023, 35, 603–611. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, J.; Chu, Y.; Chi, Z.; Xue, S. Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. 2020, Algal Res. 2020, 52, 102111. [Google Scholar] [CrossRef]
- Ahangar, A.K.; Yaqoubnejad, P.; Divsalar, K.; Mousavi, S.; Taghavijeloudar, M. Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. Bioresour. Technol. 2023, 387, 129577. [Google Scholar] [CrossRef] [PubMed]
- Pozzobon, V. Chlorella vulgaris cultivation under super high light intensity: An application of the flashing light effect. Algal Res. 2022, 68, 102874. [Google Scholar] [CrossRef]
- Yun, H.-S.; Kim, Y.-S.; Yoon, H.-S. Effect of different cultivation modes (photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and Biocompositions. Front. Bioeng. Biotechnol. 2021, 9, 774143. [Google Scholar] [CrossRef]
- Masojídek, J.; Lhotský, R.; Štěrbová, K.; Zittelli, G.C.; Torzillo, G. Solar bioreactors used for the industrial production of microalgae. Appl. Microbiol. Biotechnol. 2023, 107, 6439–6458. [Google Scholar] [CrossRef]
- Ajala, S.O.; Alexander, M.L. Evaluating the effects of agitation by shaking, stirring and air sparging on growth and accumulation of biochemical compounds in microalgae cells. Biofuels 2022, 13, 371–381. [Google Scholar] [CrossRef]
- Diaz-MacAdoo, D.; Mata, M.T.; Riquelme, C. Influence of irradiance and wavelength on the antioxidant activity and carotenoids accumulation in Muriellopsis sp. isolated from the Antofagasta Coastal Desert. Molecules 2022, 27, 2412. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Rui, X.; Amenorfenyo, D.K.; Pan, Y.; Huang, X.; Li, C. Effects of temperature, light and salt on the production of fucoxanthin from Conticribra weissflogii. Mar. Drugs. 2023, 21, 495. [Google Scholar] [CrossRef]
- Abiusi, F.; Trompetter, E.; Pollio, A.; Wijffels, R.H.; Janssen, M. Acid tolerant and acidophilic microalgae: An underexplored world of biotechnological opportunities. Front. Microbiol. 2022, 13, 820907. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, A.; Beardall, J.; Kromkamp, J.C.; Kopecký, J.; Masojídek, J.; van Bergeijk, S.A.; Gabai, S.; Shaham, E.; Yamshon, A. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat. Microb. Ecol. 2009, 56, 297–308. [Google Scholar] [CrossRef]
- Valdés, F.J.; Hernández, M.R.; Catalá, L.; Gomis, A.M. Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to nannochloropsis oculata microalgae culture. Bioresour. Technol. 2012, 119, 1–6. [Google Scholar] [CrossRef]
- Touloupakis, E.; Cicchi, B.; Silva-Benavides, A.M.; Torzillio, G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae Poterioochromonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1333–1341. [Google Scholar] [CrossRef]
- Chiranjeevi, P.; Venkata Mohan, S. Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renew. Energy 2016, 98, 64–71. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Ye, G.-B.; Wang, H.-J.; Li, H.-Y.; Sze Ki Lin, C.; Zheng, X.-F.; Pugazhendhi, A.; Xiang Wan, X. Utilization of lipidic food waste as low-cost nutrients for enhancing the potentiality of biofuel production from engineered diatom under temperature variations. Bioresour. Technol. 2023, 387, 129611. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Gao, B.; Hong, J.; Chen, J.; Zhang, H.; Hu, R.; Zhang, C. The growth, lipid accumulation and adaptation mechanism in response to variation of temperature and nitrogen supply in psychrotrophic filamentous microalga Xanthonema hormidioides (Xanthophyceae). Biotechnol. Biofuels 2023, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Napaumpaiporn, P.; Sirikhachornkit, A. Effects of high temperature on carotenoid accumulation and gene expression in the model green alga Chlamydomonas reinhardtii. Chiang Mai J. Sci. 2016, 43, 452–460. [Google Scholar]
- Parveen, A.; Bhatnagar, P.; Gautam, P.; Bisht, B.; Nanda, M.; Kumar, S.; Vlaskin, M.S.; Kumar, V. Enhancing the bio-prospective of microalgae by different light systems and photoperiods. Photochem. Photobiol. Sci. 2023, 22, 2687–2698. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef]
- Katam, K.; Ananthula, R.; Anumala, S.; Sriariyanun, M.; Debraj Bhattacharyya, D. The impact of light intensity and wavelength on the performance of algal-bacterial culture treating domestic wastewater. E3S Web Conf. 2022, 355, 02003. [Google Scholar] [CrossRef]
- Castillo, T.; Ramos, D.; García-Beltrán, T.; Brito-Bazan, M.; Galindo, E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem. Eng. J. 2021, 176, 108183. [Google Scholar] [CrossRef]
- Akram, M.; Khan, M.A.; Ahmed, N.; Bhatti, R.; Pervaiz, R.; Malik, K.; Tahir, S.; Abbas, R.; Ashraf, F.; Ali, Q. Cloning and expression of an anti-cancerous cytokine: Human IL-29 gene in Chlamydomonas reinhardtii. AMB Express 2023, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Barolo, L.; Abbriano, R.; Commault, A.; George, J.; Kahlke, T.; Fabris, M.; Padula, M.; Lopez, A.; Ralph, P.; Pernice, M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020, 9, 633. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Paz-Maldonado, L.M.T.; Ruth Elena Soria-Guerra, R.E. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Rep. 2012, 31, 479–494. [Google Scholar] [CrossRef]
- Bolaños-Martínez, O.C.; Mahendran, G.; Rosales-Mendoza, S.; Vimolmangkang, S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar. Drugs 2022, 20, 434. [Google Scholar] [CrossRef]
- Jayakrishnan, A.; Wan Rosli, W.R.; Tahir, A.R.M.; Razak, F.S.A.; Kee, P.E.; Ng, H.S.; Chew, Y.-L.; Lee, S.-K.; Ramasamy, M.; Tan, C.S.; et al. Evolving Paradigms of Recombinant Protein Production in Pharmaceutical Industry: A Rigorous Review. Sci 2024, 6, 9. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.; Wang, W.; Li, J.-X.; Wang, T.-Y. From Cell Clones to Recombinant Protein Product Heterogeneity in Chinese Hamster Ovary Cell Systems. Int. J. Mol. Sci. 2025, 26, 1324. [Google Scholar] [CrossRef] [PubMed]
- Schütz, A.; Bernhard, F.; Berrow, N.; Buyel, J.F.; Ferreira-da-Silva, F.; Haustraete, J.; van den Heuvel, J.; Hoffmann, J.E.; de Marco, A.; Peleg, Y.; et al. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc. 2023, 15, 102572. [Google Scholar] [CrossRef]
- Sethi, L.; Kumari, K.; Dey, N. Engineering of Plants for Efficient Production of Therapeutics. Mol. Biotechnol. 2021, 63, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Hempel, F.; Maurer, M.; Brockmann, B.; Mayer, C.; Biedenkopf, N.; Kelterbaum, A.; Becker, S.; Maier, U.G. From hybridomas to a robust microalgal-based production platform: Molecular design of a diatom secreting monoclonal antibodies directed against the Marburg virus nucleoprotein. Microb. Cell Fact. 2017, 16, 131. [Google Scholar] [CrossRef]
- El-Ayouty, Y.; El-Manawy, I.; Nasih, S.; Hamdy, E.; Kebeish, R. Engineering Chlamydomonas reinhardtii for expression of functionally active human interferon- α. Mol. Biotechnol. 2019, 61, 134–144. [Google Scholar] [CrossRef]
- Pang, X.; Tong, Y.; Xue, W.; Yang, Y.; Chen, X.; Liu, J.; Chen, D. Expression and characterization of recombinant human lactoferrin in edible alga Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 2019, 83, 851–859. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Tan, J.; Zhu, L.; Mou, Y.; Zhang, D.; Gao, J. Using response surface methodology optimize culture conditions for human lactoferrin production in desert Chlorella. Protein Expr. Purif. 2019, 155, 130–135. [Google Scholar] [CrossRef]
- Hernández-Ramírez, J.; Wong-Arce, A.; González-Ortega, O.; Rosales-Mendoza, S. Expression in algae of a chimeric protein carrying several epitopes from tumor associated antigens. Int. J. Biol. Macromol. 2020, 147, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Jarquín-Cordero, M.; Chávez, M.N.; Centeno-Cerdas, C.; Bohne, A.V.; Hopfner, U.; Machens, H.G.; Egaña, J.T.; Nickelsen, J. Towards a biotechnological platform for the production of human pro-angiogenic growth factors in the green alga Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 2020, 104, 725–739. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, J.; Jeon, J.; Kumar, M.; Lee, J.; Jeong, W.J.; Kim, S.R. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci. Rep. 2020, 10, 12713. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Cui, Y.; Wang, Y.; Gao, Z.; Liu, T.; Meng, C.; Qin, S. Chloroplast genetic engineering of a unicellular green alga Haematococcus pluvialis with expression of an antimicrobial peptide. Mar. Biotechnol. 2020, 22, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Berndt, A.J.; Smalley, T.N.; Ren, B.; Simkovsky, R.; Badary, A.; Sproles, A.E.; Fields, F.J.; Torres-Tiji, Y.; Heredia, V.; Mayfield, S.P. Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS ONE 2021, 16, e0257089. [Google Scholar] [CrossRef]
- Malla, A.; Rosales-Mendoza, S.; Phoolcharoen, W.; Sornkanok Vimolmangkang, S. Efficient transient expression of recombinant proteins using DNA viral vectors in freshwater microalgal species. Front. Plant Sci. 2021, 12, 650820. [Google Scholar] [CrossRef]
- Slattery, S.S.; Giguere, D.J.; Stuckless, E.E.; Shrestha, A.; Briere, L.A.K.; Galabraight, A.; Reaume, S.; Boyko, X.; Say, H.H.; Browne, T.S.; et al. Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics. Sci. Rep. 2022, 12, 7010. [Google Scholar] [CrossRef]
- Saveria, T.; Parthiban, C.; Seilie, M.A.; Brady, C.; Martinez, A.; Manocha, R.; Afreen, E.; Zhao, H.; Krzeszowski, A.; Ferrara, J.; et al. Needle-free, spirulina-produced Plasmodium falciparum circumsporozoite vaccination provides sterile protection against pre-erythrocytic malaria in mice. Vaccines 2022, 7, 113. [Google Scholar] [CrossRef]
- Çakmak, R.; Uzuner, U. Functional production, extracellular expression, and antitumor activity of mouse alpha-Klotho in model microalga Chlamydomonas reinhardtii. Res. Sq. 2023, 21, 1. [Google Scholar] [CrossRef]
- Ramos-Vega, A.; Monreal-Escalante, E.; Rosales-Mendoza, S.; Bañuelos-Hernández, B.; Dumonteil, E.; Angulo, C. Trypanosoma cruzi Tc24 antigen expressed and orally delivered by Schizochytrium sp. microalga is immunogenic in mice. Mol. Biotechnol. 2023, 66, 1376–1388. [Google Scholar] [CrossRef]
- Sun, S.-N.; Lindsay, L.; Fan, L.L.; Diao, A.; Fan, Z.-C. Chlamydomonas reinhardtii-derived triple BmKbpp distorts membrane integrity for inhibiting bacterial growth. Proc. Biochem. 2024, 137, 10–19. [Google Scholar] [CrossRef]
- Hammel, A.; Cucos, L.-M.; Caras, I.; Ionescu, I.; Tucureanu, C.; Tofan, V.; Costache, A.; Onu, A.; Hoepfner, L.; Hippler, M.; et al. The red alga Porphyridium as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Proc. Natl. Acad. Sci. USA 2024, 121, e2400145121. [Google Scholar] [CrossRef] [PubMed]
- Ghribi, M.; Nouemssi, S.B.; Meddeb-Mouelhi, F.; Desgagné-Penix, I. Genome Editing by CRISPR-Cas: A Game Change in the Genetic Manipulation of Chlamydomonas. Life 2020, 10, 295. [Google Scholar] [CrossRef]
- Gupta, A.; Kang, K.; Pathania, R.; Saxton, L.; Saucedo, B.; Malik, A.; Torres-Tiji, Y.; Diaz, C.J.; Dutra Molino, J.V.; Mayfield, S.P. Harnessing genetic engineering to drive economic bioproduct production in algae. Front. Bioeng. Biotechnol. 2024, 12, 1350722. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Shekh, A.; Jakhu, S.; Sharma, Y.; Kapoor, R.; Sharma, T.R. Bioengineering of microalgae: Recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 2020, 8, 914. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.J.; Gallaher, S.D.; Shu, S.; Salomé, P.A.; Jenkins, J.W.; Blaby-Haas, C.E.; Purvine, S.O.; O’Donnell, S.; Barry, K.; Grimwood, J.; et al. The Chlamydomonas genome project, version 6: Reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. Plant Cell 2023, 35, 644–672. [Google Scholar] [CrossRef]
- Vieler, A.; Wu, G.; Tsai, C.H.; Bullard, B.; Cornish, A.J.; Harvey, C.; Reca, I.B.; Thornburg, C.; Achawanantakun, R.; Buehl, C.J.; et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2012, 8, e1003064. [Google Scholar] [CrossRef]
- Chen, C.; Ward, V.C.A. Recombinant protein expression and its biotechnological applications in Chlorella spp. SynBio 2024, 2, 223–239. [Google Scholar] [CrossRef]
- Doron, L.; Segal, N.; Shapira, M. Transgene Expression in Microalgae—From Tools to Applications. Front. Plant Sci. 2016, 7, 505. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.D.; Oliveira, C.F.M.d.; Molino, J.V.D.; Ferreira-Camargo, L.S.; Matsudo, M.C.; Carvalho, J.C.M.d. Production of Recombinant Biopharmaceuticals in Chlamydomonas reinhardtii. Int. J. Plant Biol. 2023, 14, 39–52. [Google Scholar] [CrossRef]
- Grama, S.B.; Liu, Z.; Li, J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar. Drugs 2022, 20, 285. [Google Scholar] [CrossRef]
- Jester, B.W.; Zhao, H.; Gewe, M.; Adame, T.; Perruzza, L.; Bolick, D.T.; Agosti, J.; Khuong, N.; Kuestner, R.; Gamble, C.; et al. Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat. Biotechnol. 2022, 40, 956–964. [Google Scholar] [CrossRef]
- Celi, C.; Fino, D.; Savorani, F. Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies. Bioresour. Technol. Rep. 2022, 19, 101122. [Google Scholar] [CrossRef]
- Araujo, R.; Peteiro, C. Algae as Food and Food Supplements in Europe; EUR 30779 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-40548-1. [Google Scholar] [CrossRef]
- Bañuelos-Hernández, B.; Beltrán-López, J.I.; Rosales-Mendoza, S. Production of Biopharmaceuticals in Microalgae. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 281–298. [Google Scholar]
- Hempel, F.; Maier, U.G. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb. Cell Fact. 2012, 11, 126. [Google Scholar] [CrossRef]
- Rajput, B.K.; Ikram, S.F.; Tripathi, B.N. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. Protoplasma 2024, 261, 1105–1125. [Google Scholar] [CrossRef]
- Cutolo, E.A.; Mandalà, G.; Dall’Osto, L.; Bassi, R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022, 10, 743. [Google Scholar] [CrossRef]
- Wannathong, T.; Waterhouse, J.C.; Young, R.E.; Economou, C.K.; Purton, S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 2016, 12, 5467–5477. [Google Scholar] [CrossRef] [PubMed]
- Ramarajan, M.; Fabris, M.; Abbriano, R.M.; Pernice, M.; Ralph, P.J. Novel endogenous promoters for genetic engineering of the marine microalga Nannochloropsis gaditana CCMP526. Algal. Res. 2019, 44, 101708. [Google Scholar] [CrossRef]
- Jackson, H.O.; Berepiki, A.; Baylay, A.J.; Terry, M.J.; Moore, C.M.; Bibby, T.S. An inducible expression system in the alga Nannochloropsis gaditana controlled by the nitrate reductase promoter. J. Appl. Phycol. 2018, 31, 269–279. [Google Scholar] [CrossRef]
- Poliner, E.; Farré, E.M.; Benning, C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Rep. 2018, 37, 1383–1399. [Google Scholar] [CrossRef]
- Poliner, E.; Takeuchi, T.; Du, Z.Y.; Benning, C.; Farré, E.M. Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synth. Biol. 2018, 7, 962–968. [Google Scholar] [CrossRef]
- Gan, Q.; Jiang, J.; Han, X.; Wang, S.; Lu, Y. Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Front. Plant. Sci. 2018, 9, 439. [Google Scholar] [CrossRef]
- de Grahl, I.; Suman Rout, S.; Jodi Maple-Grødem, J.; Reumann, S. Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica. App. Microbiol. Biotechnol. 2020, 104, 8747–8760. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.; Crum, L.T.; Corbeil, L.B.; Hildebrand, M. Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl. Microbiol. Biotechnol. 2017, 101, 5313–5324. [Google Scholar] [CrossRef]
- Hammel, A.; Neupert, J.; Bock, R. Optimized transgene expression in the red alga Porphyridium purpureum and efficient recombinant protein secretion into the culture medium. Plant Mol. Biol. 2024, 114, 18. [Google Scholar] [CrossRef]
- Xie, W.H.; Zhu, C.C.; Zhang, N.S.; Li, D.W.; Yang, W.D.; Liu, J.S.; Sathishkumar, R.; Hong- Li, H.-Y. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar. Biotechnol. 2014, 16, 538–546. [Google Scholar] [CrossRef]
- Erdene-Ochir, E.; Shin, B.K.; Kwon, B.; Jung, C.; Pan, C.H. Identification and characterization of the novel endogenous promoter HASP1 and its signal peptide from Phaeodactylum tricornutum. Sci. Rep. 2019, 9, 9941. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Ewe, D.; Rio Bartulos, C.; Kroth, P.G.; Gruber, A. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum. Peer J. 2016, 4, e2344. [Google Scholar] [CrossRef]
- Beltran-Aguilar, A.G.; Peraza-Echeverria, S.; López-Ochoa, L.A.; Borges-Argáez, I.C.; Herrera-Valencia, V.A. A novel salt-inducible CrGPDH3 promoter of the microalga Chlamydomonas reinhardtii for transgene overexpression. Appl. Microbiol. Biotechnol. 2019, 103, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.F.; Tohidfar, M.; Tabatabaei, M.; Bagheri, A.; Mohsenpor, M.; Mohtashami, S.K. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a Feedstock for Biodiesel Production. Mol. Biol. Rep. 2013, 40, 4421–4428. [Google Scholar] [CrossRef] [PubMed]
- Yedahalli, S.; Rehmann, L.; Bassi, A. High throughput screening of β-Glucuronidase (GUS) Reporter in transgenic microalgae transformed by Agrobacterium tumefaciens. Algal Res. 2018, 33, 328–336. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhang, Y.; Chen, X.; Zhang, P.; Ma, S. Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol. Biotechnol. 2013, 54, 211–219. [Google Scholar] [CrossRef]
- Sharma, P.K.; Goud, V.V.; Yamamoto, Y.; Sahoo, L. Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech 2021, 11, 196. [Google Scholar] [CrossRef]
- Kadono, T.; Miyagawa-Yamaguchi, A.; Kira, N.; Tomaru, Y.; Okami, T.; Yoshimatsu, T.; Hou, L.; Ohama, T.; Fukunaga, K.; Okauchi, M.; et al. Characterization of marine diatominfecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci. Rep. 2015, 5, 18708. [Google Scholar] [CrossRef]
- Pudney, A.; Gandini, C.; Economou, C.K.; Smith, R.; Goddard, P.; Napier, J.A.; Spicer, A.; Sayanova, O. Multifunctionalizing the marine diatom Phaeodactylum tricornutum for sustainable co-production of omega-3 long chain polyunsaturated fatty acids and recombinant phytase. Sci. Rep. 2019, 9, 11444. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y.; Lee, J.H.; Jin, E. Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 2013, 238, 1147–1156. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Kim, S.; Jin, E. Heterologous gene expression system using the cold-inducible CnAFP Promoter in Chlamydomonas reinhardtii. J. Microbiol. Biotechnol. 2020, 30, 1777–1784. [Google Scholar] [CrossRef]
- Dehghani, J.; Adibkia, K.; Movafeghi, A.; Barzegari, A.; Pourseif, M.M.; Kakelar, H.M.; Golchin, A.; Omidi, Y. Stable transformation of Spirulina (Arthrospira) platensis: A promising microalga for production of edible vaccines. Appl. Microbiol. Biotechnol. 2018, 102, 9267–9278. [Google Scholar] [CrossRef] [PubMed]
- Oey, M.; Ross, I.L.; Hankamer, B. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS ONE 2014, 9, e86841. [Google Scholar] [CrossRef]
- Crozet, P.; Navarro, F.J.; Willmund, F.; Mehrshahi, P.; Bakowski, K.; Lauersen, K.J.; Pérez-Pérez, M.E.; Auroy, P.; Gorchs Rovira, A.; Sauret-Gueto, S.; et al. Birth of a photosynthetic chassis: A MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 2018, 7, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Noel, E.A.; Weeks, D.P.; Van Etten, J.L. Pursuit of chlorovirus genetic transformation andCRISPR/Cas9-mediated gene editing. PLoS ONE 2021, 16, e0252696. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Anwar, M.; Mei, R.; Xinyi, L.; Zhao, D.; Jiang, Y.; Zhuang, J.; Liu, C.; Wang, C.; Hu, Z. Establishment and optimization of PEG-mediated protoplast transformation in the microalga Haematococcus pluvialis. J. Appl. Phycol. 2022, 34, 1595–1605. [Google Scholar] [CrossRef]
- Quach, T.N.; Sato, S.J.; Behrens, M.R.; Black, P.N.; DiRusso, C.C.; Cerutti, H.D.; Tom Elmo Clemente, T.E. A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii. Vitr. Cell. Dev. Biol.-Plant 2023, 59, 671–683. [Google Scholar] [CrossRef]
- Rout, S.; de Grahl, I.; Yu, X.; Sigrun Reumann, S. Production of a viral surface protein in Nannochloropsis oceanica for fish vaccination against infectious pancreatic necrosis virus. App. Microbiol. Biotechnol. 2022, 106, 6535–6549. [Google Scholar] [CrossRef]
- Naeem, S.; Shahid, N.; Khan, M.A.; Azam, S.; Bhutta, M.S.; Latif, A.; Yasmeen, A.; Ullah, T.R.S.; Rao, A.Q.; Malik, K. Engineering of Chlamydomonas reinhardtii chloroplast for mucosal immunotherapeutic against Newcastle disease virus. J. Appl. Phycol. 2023, 35, 2907–2918. [Google Scholar] [CrossRef]
- Muñoz, C.F.; de Jaeger, L.; Sturme, M.H.J.; Lip, K.Y.F.; Olijslager, J.W.J.; Springer, J.; Wolbert, E.J.H.; Martens, D.E.; Gerrit Eggink, G.; Weusthuis, R.A.; et al. Improved DNA/protein delivery in microalgae—A simple and reliable method for the prediction of optimal electroporation settings. Algal Res. 2018, 33, 448–455. [Google Scholar] [CrossRef]
- Poweda-Huertes, D.; Patwari, P.; Gunther, J.; Fabris, M. Novel transformation strategies improve efficiency up to 10-fold in stramenopile algae. Algal Res. 2023, 74, 103165. [Google Scholar] [CrossRef]
- Naser, I.; Yusuke Yabu, Y.; Yoshiaki Maeda, Y.; Tsuyoshi Tanaka, T. Highly efficient genetic transformation methods for the marine oleaginous diatom Fistulifera solaris. Mar. Biotechnol. 2023, 25, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, E.E.; Brown, L.M. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr. Genet. 1991, 19, 317–321. [Google Scholar] [CrossRef]
- Newkirk, G.M.; Jeon, S.J.; Kim, H.-I.; Sivaraj, S.; De Allende, P.; Castillo, C.; Jinkerson, E.R.E.; Giraldo, J.P. DNA delivery by high aspect ratio nanomaterials to algal chloroplasts. Environ. Sci. Nano 2023, 10, 2890. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, M.; Kim, K.Y.; Kim, H.S.; Oh, B.; Son, J.; Park, J.; Choi, Y.-E. Uptake of spherical nucleic acid (SNA) in Ochromonas danica: A new potential biotechnological tool. Algal Res. 2024, 78, 103385. [Google Scholar] [CrossRef]
- Wendt, K.E.; Pakrasi, H.B. Genomics approaches to deciphering natural transformation in Cyanobacteria. Front. Microbiol. 2019, 10, 1259. [Google Scholar] [CrossRef]
- Wang, C.; Lan, C. Effects of shear stress on microalgae—A review. Biotechnol. Adv. 2018, 36, 986–1002. [Google Scholar] [CrossRef]
- Safi, C.; Charton, M.; Pignolet, O.; Silvestre, F.; Vaca-Garcia, C.; Pontalier, P.Y. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 2013, 25, 523–529. [Google Scholar] [CrossRef]
- Spain, O.; Funk, C. Detailed characterization of the cell wall structure and composition of Nordic green microalgae. J. Agric. Food Chem. 2022, 70, 9711–9721. [Google Scholar] [CrossRef]
- Carullo, D.; Pataro, G.; Donsì, F.; Ferrari, G. Pulsed electric fields-assisted extraction of valuable compounds from Arthrospira platensis: Effect of pulse polarity and, mild heating. Front. Bioeng. Biotechnol. 2020, 8, 551272. [Google Scholar] [CrossRef]
- Anjos, L.; Estêvão, J.; Infante, C.; Mantecón, L.; Power, L.D. Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX 2022, 9, 101637. [Google Scholar] [CrossRef]
- Cutshaw, A.; Frost, H.; Uludag-Demirer, S.; Liu, Y.; Liao, W. Protein extraction, precipitation, and recovery from Chlorella sorokiniana using mechanochemical methods. Energies 2023, 16, 4809. [Google Scholar] [CrossRef]
- Karabulut, G.; Purkiewicz, A.; Goksen, G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr. Rev. Food. Sci. Food Saf. 2024, 23, e13372. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Zaid, H.F.M.; Chu, D.-T.; Tao, Y.; Show, P.L. Microalgal protein extraction from Chlorella vulgaris FSP-E using triphasic partitioning technique with sonication. Front. Bioeng. Biotechnol. 2019, 7, 396. [Google Scholar] [CrossRef]
- Gifuni, I.; Lavenant, L.; Pruvost, J.; Masse, A. Recovery of microalgal protein by three-steps membrane filtration: Advancements and feasibility. Algal Res. 2020, 51, 102082. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit. Rev. Food Sci. Nutr. 2020, 60, 2961–2989. [Google Scholar] [CrossRef] [PubMed]
- Margenat, A.; Fabregat, C. Microwave-assisted extraction combined with enzymatic pre-treatment for Chlorella vulgaris protein solubilisation. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Sela, K.; Budhijanto, W.; Budiman, A. Protein extraction from Spirulina platensis by using ultrasound assisted extraction: Effect of solvent types and extraction time. Key Eng. Mater. 2021, 872, 33–37. [Google Scholar] [CrossRef]
- Hildebrand, G.; Poojary, M.M.; O’Donnell, C.; Lund, M.N.; Garcia-Vaquero, M.; Tiwari, B.K. Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. J. Appl. Phycol. 2020, 32, 1709–1718. [Google Scholar] [CrossRef]
- Motlagh, S.R.; Elgharbawy, A.A.; Khezri, R.; Harun, R.; Omar, R. Ionic liquid-based microwave-assisted extraction of protein from Nannochloropsis sp. biomass. Biomass Conv. Bioref. 2023, 13, 8327–8338. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Kulkarni, S.; Woodard, S.L.; Nikolov, Z.L. Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products. J. Appl. Phycol. 2020, 32, 1697–1707. [Google Scholar] [CrossRef]
- Rajendran, D.S.; Chidambaram, A.; Kumar, P.S.; Venkataraman, S.; Muthusamy, S.; Vo, D.-V.N.; Rangasamy, G.; Vaithyanathan, V.K.; Vaidyanathan, V.K. Three-phase partitioning for the separation of proteins, enzymes, biopolymers, oils and pigments: A review. Environ. Chem. Lett. 2023, 21, 911–934. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Salve, M.K.; LeBlanc, J.G.; Arya, S.S. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 2016, 3, 16. [Google Scholar] [CrossRef]
- Show, P.L.; Chew, K.W.; Khoo, K.S.; Tawai, A. Effective solvents for proteins recovery from microalgae. E3S Web Conf. 2022, 355, 02009. [Google Scholar] [CrossRef]
- Silvanir; Lai, S.Y.; Asmawi, A.A.; Chew, K.W.; Ngan, C.L. Application of high shear-assisted liquid biphasic system for protein extraction from Chlorella sp. Bioresour. Technol. 2024, 393, 130094. [Google Scholar] [CrossRef] [PubMed]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Camacho, F.; Macedo, A.; Malcata, F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef]
- Jiji, M.G.; Ninan, M.A.; Thomas, V.P.; Thomas, B.T. Edible microalgae: Potential candidate for developing edible vaccines. Vegetos 2024, 37, 788–793. [Google Scholar] [CrossRef]
- Hu, J.; Wang, D.; Chen, H.; Wang, Q. Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int. J. Mol. Sci. 2023, 24, 1898. [Google Scholar] [CrossRef]
- Available online: https://www.intellectualmarketinsights.com (accessed on 5 January 2025).
- Jareonsin, S.; Pumas, C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front. Bioeng. Biotechnol. 2021, 9, 628597. [Google Scholar] [CrossRef]
- Barbosa, M.J.; Janssen, M.; Südfeld, C.; D’Adamo, S.; Wijffels, R.H. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 2023, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- StartUs Insights Discovery Platform. Available online: https://www.startus-insights.com/ (accessed on 5 January 2025).
- Available online: www.lumen.bio (accessed on 4 February 2025).
- Available online: https://clinicaltrials.gov (accessed on 4 February 2025).
Species | Localization | Product | Treatment | Tests | Results | Refs. |
---|---|---|---|---|---|---|
P. tricornutum | nucleus | monoclonal IgG antibodies against the nucleoprotein of the Marburg virus | Antivirus | Western blot, ELISA test | Microalgae-produced antibodies with functionality comparable to hybridoma-produced antibodies | [50] |
Chlamydomonas reinhardtii | nucleus | Human interferon-α | Immunity | In vitro and in vivo antitumor and antiviral assay properties Cytotoxicity and cell apoptosis assays) | Suppression of tumor growth (in Hep-G2 tumor cell lines); antiviral activity against vesicular stomatitis virus (VSV). | [51] |
C. reinhardtii | nucleus | Human lactoferrin (hLF) | Antimicrobial | In vitro and in vivo tests | Significant antibacterial activity and little toxicity to mice | [52] |
Chlorella sp. | nucleus | Human lactoferrin (hLF) | Antimicrobial | inverted fluorescence microscope | accumulation of human lactoferrin | [53] |
Schizochytrium sp. | nucleus | Brest cancer tumor epitopes (BCB) | Breast cancer | In vivo tests on mice/serological test | Immunogenic activity algae-made BCB | [54] |
C. reinhardtii | nucleus | Vascular endothelial growth factor (VEGF 165) | Pro-angiogenic growth factors in wound healing approaches | In vitro angiogenesis assays | Efficient production of recombinant protein | [55] |
C. vulgaris | nucleus | Human granulocyte-colony stimulating factor (hG-CSF) | Stimulation of bone marrow for increased cell production used during as well as after chemotherapy | Western blot detection | Efficient production of recombinant protein | [56] |
Haematococcus pluvialis | chloroplast | Antimicrobial peptide (AMP)—piscidin-4 | Antimicrobial | Western blot detection | Accumulation of recombinant antimicrobial peptide piscidin-4 | [57] |
C. reinhardtii | chloroplast and nucleus | Receptor-binding domain (RBD) of the SARS-CoV-2 spike protein | Antiviruses | Western blot detection; ACE2 receptor binding interaction assays; serological tests | Correctly folded and functional SARS-CoV-2 spike protein RBD | [58] |
C. reinhardtii Chlorella vulgaris | nucleus | SARS-CoV-2 receptor binding domain (RBD); basic fibroblast growth factor (bFGF) | Antiviruses, tissue repair | Western blot detection; Elisa test | Efficient production of recombinant proteins | [59] |
Phaeodactylum tricornutum | nucleus | Receptor-binding domain (RBD) of the SARS-CoV-2 spike protein | Antiviruses | Western blot detection and in vitro tests | Production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics | [60] |
A. platensis | nucleus | PfCSP vaccine (against malaria) | antiparasitic | ELISA test | strong, systemic anti-PfCSP immune response | [61] |
C. reinhardtii | chloroplast | Interleukin 29 (IL29) | Antitumor | Anti-proliferating bioassay using HepG2 cells. | Inhibition of HepG2 cell growth by IL29 | [42] |
C. reinhardtii | nucleus | Human protein α-Klotho (α-KL) | Treatment of various diseases (cancers, chronic kidney disease, atherosclerosis, etc.) | Antitumor activitis using Rattus norvegicus AR42J pancreatic tumor cell lines | Anticarcinogenic activity of recombinant mα-KL was confirmed | [62] |
Schizochytrium sp. | nucleus | Tc24-CO1 | Chagas disease | In vivo tests (mice immunized orally) | Immunogenic activity | [63] |
C. reinhardtii | Multifunctional peptide BmKbpp | Antimicrobial | In vitro antibacterial tests | Inhibitory effects on the growth of Gram-positive bacteria | [64] | |
Porphyridium purpureum | nucleus | HCV E2 glycoprotein | A candidate vaccine against the hepatitis C virus (HCV) | In vivo tests (mice immunized injection and orally) | Immunogenicity of the HCV antigen | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerszberg, A.; Kolek, L.; Hnatuszko-Konka, K. In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. Int. J. Mol. Sci. 2025, 26, 3890. https://doi.org/10.3390/ijms26083890
Gerszberg A, Kolek L, Hnatuszko-Konka K. In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. International Journal of Molecular Sciences. 2025; 26(8):3890. https://doi.org/10.3390/ijms26083890
Chicago/Turabian StyleGerszberg, Aneta, Ludmiła Kolek, and Katarzyna Hnatuszko-Konka. 2025. "In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae" International Journal of Molecular Sciences 26, no. 8: 3890. https://doi.org/10.3390/ijms26083890
APA StyleGerszberg, A., Kolek, L., & Hnatuszko-Konka, K. (2025). In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. International Journal of Molecular Sciences, 26(8), 3890. https://doi.org/10.3390/ijms26083890