Intravenous Immunoglobulin (IVIG) for Patients with Severe Neurotoxicity Associated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef]
- Maus, M.V.; Alexander, S.; Bishop, M.R.; Brudno, J.N.; Callahan, C.; Davila, M.L.; Diamonte, C.; Dietrich, J.; Fitzgerald, J.C.; Frigault, M.J.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 2020, 8, e001511. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.-A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef]
- Taraseviciute, A.; Tkachev, V.; Ponce, R.; Turtle, C.J.; Snyder, J.M.; Liggitt, H.D.; Myerson, D.; Gonzalez-Cuyar, L.; Baldessari, A.; English, C.; et al. Chimeric Antigen Receptor T Cell–Mediated Neurotoxicity in Nonhuman Primates. Cancer Discov. 2018, 8, 750–763. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef]
- Kinsella, J.A.; Irani, S.R.; Hollingsworth, R.; O’Shaughnessy, D.; Kane, P.; Foster, M.; Schott, J.M.; Lunn, M.P. Use of intravenous immunoglobulin for the treatment of autoimmune encephalitis: Audit of the NHS experience. JRSM Open 2018, 9, 2054270418793021. [Google Scholar] [CrossRef]
- Dalakas, M.C. Mechanistic effects of IVIg in neuroinflammatory diseases: Conclusions based on clinicopathologic correlations. J. Clin. Immunol. 2014, 34 (Suppl. S1), S120–S126. [Google Scholar] [CrossRef]
- Créange, A.; Gregson, N.; Hughes, R. Intravenous immunoglobulin modulates lymphocyte CD54 and monocyte FcγRII expression in patients with chronic inflammatory neuropathies. J. Neuroimmunol. 2003, 135, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Tjon, A.S.W.; van Gent, R.; Jaadar, H.; van Hagen, P.M.; Mancham, S.; van der Laan, L.J.W.; Boekhorst, P.A.W.T.; Metselaar, H.J.; Kwekkeboom, J. Intravenous Immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J. Immunol. 2014, 192, 5625–5634. [Google Scholar] [CrossRef]
- Othy, S.; Hegde, P.; Topçu, S.; Sharma, M.; Maddur, M.S.; Lacroix-Desmazes, S.; Bayry, J.; Kaveri, S.V. Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1–mammalian target of rapamycin axis. J. Immunol. 2013, 190, 4535–4541. [Google Scholar] [CrossRef] [PubMed]
- Baerenwaldt, A.; Biburger, M.; Nimmerjahn, F. Mechanisms of action of intravenous immunoglobulins. Expert Rev. Clin. Immunol. 2010, 6, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Soto, Á.; Simón-Fuentes, M.; Casas-Engel, M.d.L.; Cuevas, V.D.; López-Bravo, M.; Domínguez-Andrés, J.; Saz-Leal, P.; Sancho, D.; Ardavín, C.; Ochoa-Grullón, J.; et al. IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. J. Immunol. 2018, 201, 41–52. [Google Scholar] [CrossRef]
- St-Amour, I.; Paré, I.; Alata, W.; Coulombe, K.; Ringuette-Goulet, C.; Drouin-Ouellet, J.; Vandal, M.; Soulet, D.; Bazin, R.; Calon, F. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier. J. Cereb. Blood Flow Metab. 2013, 33, 1983–1992. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef]
- Ye, L.; Huang, Y.; Zhao, L.; Li, Y.; Sun, L.; Zhou, Y.; Qian, G.; Zheng, J.C. IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: A potential role for neuronal glutaminase. J. Neurochem. 2013, 125, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Issekutz, A.C.; Rowter, D.; Macmillan, H.F. Intravenous immunoglobulin G (IVIG) inhibits IL-1- and TNF-alpha-dependent, but not chemotactic-factor-stimulated, neutrophil transendothelial migration. Clin. Immunol. 2011, 141, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Faramand, R.; Jain, M.; Staedtke, V.; Kotani, H.; Bai, R.; Reid, K.; Lee, S.B.; Spitler, K.; Wang, X.; Cao, B.; et al. Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Clin. Cancer Res. 2020, 26, 4823–4831. [Google Scholar] [CrossRef]
- Wehrli, M.; Gallagher, K.; Chen, Y.-B.; Leick, M.B.; McAfee, S.L.; El-Jawahri, A.R.; DeFilipp, Z.; Horick, N.; O’Donnell, P.; Spitzer, T.; et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J. Immunother. Cancer 2022, 10, e003847. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
All (N = 19) | IVIG (N = 9) | Glucocorticoids (N = 10) | p Value | |
---|---|---|---|---|
Age: median (range) | 63 (47–75) | 61 (48–75) | 64 (52–74) | 0.19 |
<65 (%) | 68 | 78 | 60 | |
≥65 (%) | 32 | 22 | 40 | |
Male/female | 13/6 | 6/3 | 7/3 | 0.99 |
Time to severe ICANS a, median days (range) | 6 (2–15) | 6 (5–15) | 6 (2–9) | 0.43 |
ECOG b performance status | 0.03 | |||
0–1 (%) | 79 | 55 | 100 | |
2–3 (%) | 21 | 45 | 0 | |
IPI score | 0.63 | |||
1–2 (%) | 32 | 78 | 40 | |
3–4 (%) | 68 | 22 | 60 | |
Stage | 0.303 | |||
I/II (%) | 26 | 11 | 40 | |
III/IV (%) | 74 | 89 | 60 | |
% with bulky disease c | 11 | 44 | 10 | 0.14 |
CRS > 1 (%) | 68 | 78 | 60 | 0.63 |
% received Tocilizumab | 68 | 67 | 70 | 0.99 |
IVIG start after CAR-T infusion: median days (range) | 8 (6–15) | |||
Total cumulative steroid dose (mg) d: median (range) | 717 (130–2242) | 629 (168–1587) | 0.37 | |
Cumulative steroid dose after IVIG (mg) d: median (range) | 457 (70–1732) | |||
Total cumulative steroid days: median (range) | 11.2 (4–26) | 13.5 (6–33) | 0.49 | |
Cumulative steroid days after IVIG: median (range) | 7.77 (2–21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtari, S.; Asquith, J.M.; Kareem, S.S.; Bachmeier, C.A.; Pina, Y.; Faramand, R.G.; Kim, Y.; Peguero, E.N.; Sahebjam, S.; Jaffer, M.H.; et al. Intravenous Immunoglobulin (IVIG) for Patients with Severe Neurotoxicity Associated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. Int. J. Mol. Sci. 2025, 26, 3904. https://doi.org/10.3390/ijms26083904
Mokhtari S, Asquith JM, Kareem SS, Bachmeier CA, Pina Y, Faramand RG, Kim Y, Peguero EN, Sahebjam S, Jaffer MH, et al. Intravenous Immunoglobulin (IVIG) for Patients with Severe Neurotoxicity Associated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. International Journal of Molecular Sciences. 2025; 26(8):3904. https://doi.org/10.3390/ijms26083904
Chicago/Turabian StyleMokhtari, Sepideh, Justin M. Asquith, Syeda Saba Kareem, Christina A. Bachmeier, Yolanda Pina, Rawan G. Faramand, Youngchul Kim, Edwin N. Peguero, Solmaz Sahebjam, Mohammad H. Jaffer, and et al. 2025. "Intravenous Immunoglobulin (IVIG) for Patients with Severe Neurotoxicity Associated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy" International Journal of Molecular Sciences 26, no. 8: 3904. https://doi.org/10.3390/ijms26083904
APA StyleMokhtari, S., Asquith, J. M., Kareem, S. S., Bachmeier, C. A., Pina, Y., Faramand, R. G., Kim, Y., Peguero, E. N., Sahebjam, S., Jaffer, M. H., Iacono, D. P., Jain, M. D., Vogelbaum, M. A., Davila, M. L., Forsyth, P. A., Locke, F. L., & Lazaryan, A. (2025). Intravenous Immunoglobulin (IVIG) for Patients with Severe Neurotoxicity Associated with Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. International Journal of Molecular Sciences, 26(8), 3904. https://doi.org/10.3390/ijms26083904