Measurement of Disease Comorbidity Using Semantic Profiling of Disease Genes
Abstract
:1. Introduction
2. Results
2.1. Identification of Disease Comorbidity Using a Gene-Set Enrichment Analysis
2.2. Results of Simulation Study
2.3. Performance of GS.CoMoD in the Prediction of Comorbidity
2.3.1. Comparison with Disease Comorbidity Measured Using the PPI Network
2.3.2. Comparison with Disease Comorbidity Determined Using Interactome and Functional Gene Sets
2.3.3. Logistic Regression Analysis with Combination of GS.sim Scores
2.4. Identification of Core Gene Sets
3. Discussion
4. Materials and Methods
4.1. GS.CoMoD and Other Disease Comorbidity Analyses
4.2. Identification of Core Gene Sets in Disease Comorbidity
4.3. Simulation Study
4.4. Collection of Disease Genes and Comorbidity Data
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef]
- Hidalgo, C.A.; Blumm, N.; Barabasi, A.L.; Christakis, N.A. A dynamic network approach for the study of human phenotypes. PLoS Comput. Biol. 2009, 5, e1000353. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.S.; Christakis, N.A.; Barabasi, A.L. The impact of cellular networks on disease comorbidity. Mol. Syst. Biol. 2009, 5, 262. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.L. The human disease network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [PubMed]
- Moni, M.A.; Lio, P. comoR: A software for disease comorbidity risk assessment. J. Clin. Bioinform. 2014, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Rockson, S.G.; Zhou, X.; Zhao, L.; Hosseini, D.K.; Jiang, X.; Sweatt, A.J.; Kim, D.; Tian, W.; Snyder, M.P.; Nicolls, M.R. Exploring disease interrelationships in patients with lymphatic disorders: A single center retrospective experience. Clin. Transl. Med. 2022, 12, e760. [Google Scholar] [CrossRef]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabasi, A.L. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef]
- Rubio-Perez, C.; Guney, E.; Aguilar, D.; Pinero, J.; Garcia-Garcia, J.; Iadarola, B.; Sanz, F.; Fernandez-Fuentes, N.; Furlong, L.I.; Oliva, B. Genetic and functional characterization of disease associations explains comorbidity. Sci. Rep. 2017, 7, 6207. [Google Scholar] [CrossRef]
- Maleki, F.; Ovens, K.; Hogan, D.J.; Kusalik, A.J. Gene Set Analysis: Challenges, Opportunities, and Future Research. Front. Genet. 2020, 11, 654. [Google Scholar] [CrossRef]
- Pinero, J.; Ramirez-Anguita, J.M.; Sauch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed]
- Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005, 33, D514–D517. [Google Scholar] [CrossRef]
- Tweedie, S.; Braschi, B.; Gray, K.; Jones, T.E.M.; Seal, R.L.; Yates, B.; Bruford, E.A. Genenames.org: The HGNC and VGNC resources in 2021. Nucleic Acids Res. 2021, 49, D939–D946. [Google Scholar] [CrossRef]
- Aragon, T.J.; Fay, M.P.; Wollschlaeger, D.; Omidpanah, A. Epitools: Epidemiology Tools R package, 0.5-10.1. 2020. Available online: https://cran.r-project.org/web/packages/epitools/index.html (accessed on 16 April 2025).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Bauer-Mehren, A.; Rautschka, M.; Sanz, F.; Furlong, L.I. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 2010, 26, 2924–2926. [Google Scholar] [CrossRef]
- Long, A.N.; Dagogo-Jack, S. Comorbidities of diabetes and hypertension: Mechanisms and approach to target organ protection. J Clin Hypertens. 2011, 13, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Lee, M.S. Role and mechanism of pancreatic beta-cell death in diabetes: The emerging role of autophagy. J. Diabetes Investig. 2010, 1, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, T.; Li, L.; Wang, J. Induction of apoptosis by hypertension via endoplasmic reticulum stress. Kidney Blood Press. Res. 2015, 40, 41–51. [Google Scholar] [CrossRef]
- Slaim, L.; Cohen, M.; Klap, P.; Vidailhet, M.; Perrin, A.; Brasnu, D.; Ayache, D.; Mailly, M. Oromandibular Dystonia: Demographics and Clinical Data from 240 Patients. J. Mov. Disord. 2018, 11, 78–81. [Google Scholar] [CrossRef]
- Tee, T.Y.; Khoo, C.S.; Norlinah, M.I. Prominent Oromandibular Dystonia as Levodopa-induced Dyskinesia in Idiopathic Parkinson’s Disease. Mov. Disord. Clin. Pract. 2019, 6, 330–331. [Google Scholar] [CrossRef]
- Ghasemi, A.; Eslami Ardakani, M.; Togha, M.; Yazdi, N.; Lang, A.E.; Amini, E.; Rohani, M.; Alavi, A. A Novel Homozygous Variant in the MCOLN1 Gene Associated with Severe Oromandibular Dystonia and Parkinsonism. Can. J. Neurol. Sci. 2025, 52, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.L.Y.; de Pablo-Fernandez, E.; Foltynie, T.; Noyce, A.J. The Association Between Type 2 Diabetes Mellitus and Parkinson’s Disease. J. Park. Dis. 2020, 10, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Sabari, S.S.; Balasubramani, K.; Iyer, M.; Sureshbabu, H.W.; Venkatesan, D.; Gopalakrishnan, A.V.; Narayanaswamy, A.; Senthil Kumar, N.; Vellingiri, B. Type 2 Diabetes (T2DM) and Parkinson’s Disease (PD): A Mechanistic Approach. Mol. Neurobiol. 2023, 60, 4547–4573. [Google Scholar] [CrossRef]
- Shen, T.C.; Lin, C.L.; Wei, C.C.; Chen, C.H.; Tu, C.Y.; Hsia, T.C.; Shih, C.M.; Hsu, W.H.; Sung, F.C. The risk of asthma in patients with ankylosing spondylitis: A population-based cohort study. PLoS ONE 2015, 10, e0116608. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm (2020) 2023, 4, e315. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdottir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Faria, S.; Soromenho, G. Fitting mixtures of linear regressions. J. Stat. Comput. Sim. 2010, 80, 201–225. [Google Scholar] [CrossRef]
- Grun, B.; Leisch, F. FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters. J. Stat. Softw. 2008, 28, 1–35. [Google Scholar] [CrossRef]
- Gene Ontology, C. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef]
- Kyoung, D.S.; Kim, H.S. Understanding and Utilizing Claim Data from the Korean National Health Insurance Service (NHIS) and Health Insurance Review & Assessment (HIRA) Database for Research. J. Lipid Atheroscler. 2022, 11, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Coletti, M.H.; Bleich, H.L. Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 2001, 8, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Schriml, L.M.; Munro, J.B.; Schor, M.; Olley, D.; McCracken, C.; Felix, V.; Baron, J.A.; Jackson, R.; Bello, S.M.; Bearer, C.; et al. The Human Disease Ontology 2022 update. Nucleic Acids Res. 2022, 50, D1255–D1261. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Wickham, H.; James, D.A.; Falcon, S. RSQLite: SQLite Interface for R. 2022. Available online: https://github.com/r-dbi/RSQLite (accessed on 14 March 2024).
RR Thres | JI | OC | Sab | GOBP | GOMF | Reactome | LR | |
---|---|---|---|---|---|---|---|---|
Total (n = 3828) | 1 | 0.69 | 0.67 | 0.70 | 0.72 | 0.72 | 0.70 | 0.73 |
5 | 0.71 | 0.70 | 0.74 | 0.75 | 0.72 | 0.72 | 0.75 | |
10 | 0.74 | 0.73 | 0.75 | 0.77 | 0.72 | 0.75 | 0.78 | |
No overlap (n = 2066) | 1 | 0.50 | 0.50 | 0.51 | 0.58 | 0.60 | 0.54 | 0.63 |
5 | 0.50 | 0.50 | 0.48 | 0.62 | 0.58 | 0.59 | 0.66 | |
10 | 0.50 | 0.50 | 0.60 | 0.68 | 0.49 | 0.70 | 0.73 |
RR Thres | JI | OC | Strict | Relax | GOBP | GOMF | Reactome | LR | |
---|---|---|---|---|---|---|---|---|---|
Total (n = 3570) | 1 | 0.65 | 0.65 | 0.50 | 0.54 | 0.70 | 0.66 | 0.69 | 0.71 |
5 | 0.76 | 0.75 | 0.50 | 0.52 | 0.70 | 0.73 | 0.75 | 0.77 | |
10 | 0.76 | 0.75 | 0.50 | 0.53 | 0.80 | 0.77 | 0.78 | 0.82 | |
No overlap (n = 351) | 1 | 0.50 | 0.50 | 0.50 | 0.52 | 0.66 | 0.54 | 0.60 | 0.68 |
5 | 0.50 | 0.50 | 0.50 | 0.47 | 0.61 | 0.55 | 0.59 | 0.64 | |
10 | 0.50 | 0.50 | 0.50 | 0.47 | 0.78 | 0.59 | 0.57 | 0.80 |
GOBP | T2DM_Pval | HTN_Pval |
---|---|---|
Homeostatic process | 0 | 1.16 × 10−120 |
Response to oxygen containing compound | 0 | 1.33 × 10−111 |
Response to endogenous stimulus | 7.92 × 10−294 | 3.51 × 10−86 |
Cellular response to oxygen containing compound | 5.40 × 10−271 | 9.64 × 10−77 |
Regulation of transport | 3.02 × 10−270 | 1.84 × 10−88 |
Positive regulation of signaling | 1.30 × 10−269 | 1.04 × 10−68 |
Regulation of cell population proliferation | 4.10 × 10−268 | 8.93 × 10−70 |
Programmed cell death | 1.40 × 10−246 | 1.45 × 10−50 |
Regulation of cell death | 1.10 × 10−242 | 2.44 × 10−53 |
Chemical homeostasis | 4.02 × 10−242 | 4.17 × 10−106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.B. Measurement of Disease Comorbidity Using Semantic Profiling of Disease Genes. Int. J. Mol. Sci. 2025, 26, 3906. https://doi.org/10.3390/ijms26083906
Cho SB. Measurement of Disease Comorbidity Using Semantic Profiling of Disease Genes. International Journal of Molecular Sciences. 2025; 26(8):3906. https://doi.org/10.3390/ijms26083906
Chicago/Turabian StyleCho, Seong Beom. 2025. "Measurement of Disease Comorbidity Using Semantic Profiling of Disease Genes" International Journal of Molecular Sciences 26, no. 8: 3906. https://doi.org/10.3390/ijms26083906
APA StyleCho, S. B. (2025). Measurement of Disease Comorbidity Using Semantic Profiling of Disease Genes. International Journal of Molecular Sciences, 26(8), 3906. https://doi.org/10.3390/ijms26083906