The Genetic Background of the Immunological and Inflammatory Aspects of Progressive Supranuclear Palsy
Abstract
:1. Introduction
2. The Genetic Background of Progressive Supranuclear Palsy—A General Overview
3. Immune Molecular Pathogenesis in Progressive Supranuclear Palsy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yoshida, M. Astrocytic inclusions in progressive supranuclear palsy and corticobasal degeneration. Neuropathology 2014, 34, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Debnath, M.; Dey, S.; Sreenivas, N.; Pal, P.K.; Yadav, R. Genetic and Epigenetic Constructs of Progressive Supranuclear Palsy. Ann. Neurosci. 2022, 29, 177–188. [Google Scholar] [CrossRef]
- Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Progressive Supranuclear Palsy-Parkinsonism Predominant (PSP-P)-A Clinical Challenge at the Boundaries of PSP and Parkinson’s Disease (PD). Front. Neurol. 2020, 11, 180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alster, P.; Otto-Ślusarczyk, D.; Kutyłowski, M.; Migda, B.; Wiercińska-Drapało, A.; Jabłońska, J.; Struga, M.; Madetko-Alster, N. The associations between common neuroimaging parameters of Progressive Supranuclear Palsy in magnetic resonance imaging and non-specific inflammatory factors—Pilot study. Front. Immunol. 2024, 15, 1458713. [Google Scholar] [CrossRef]
- Chunowski, P.; Otto-Ślusarczyk, D.; Duszyńska-Wąs, K.; Drzewińska, A.; Załęski, A.; Madetko-Alster, N.; Wiercińska-Drapało, A.; Struga, M.; Alster, P. Possible Impact of Peripheral Inflammatory Factors and Interleukin-1β (IL-1β) on Cognitive Functioning in Progressive Supranuclear Palsy-Richardson Syndrome (PSP-RS) and Progressive Supranuclear Palsy-Predominant Parkinsonism (PSP-P). Int. J. Mol. Sci. 2024, 25, 13211. [Google Scholar] [CrossRef]
- Wang, J.; Forrest, S.L.; Dasari, S.; Tanaka, H.; Rogaeva, E.; Tartaglia, M.C.; Fox, S.; Lang, A.E.; Kalyaanamoorthy, S.; Kovacs, G.G. Investigation of the HLA locus in autopsy-confirmed progressive supranuclear palsy. Immunobiology 2025, 230, 152892. [Google Scholar] [CrossRef] [PubMed]
- Gaig, C.; Graus, F.; Compta, Y.; Högl, B.; Bataller, L.; Brüggemann, N.; Giordana, C.; Heidbreder, A.; Kotschet, K.; Lewerenz, J.; et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017, 88, 1736–1743. [Google Scholar] [CrossRef]
- Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Microglial Activation and Inflammation as a Factor in the Pathogenesis of Progressive Supranuclear Palsy (PSP). Front. Neurosci. 2020, 14, 893. [Google Scholar] [CrossRef]
- Fernández-Botrán, R.; Ahmed, Z.; Crespo, F.A.; Gatenbee, C.; Gonzalez, J.; Dickson, D.W.; Litvan, I. Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat. Disord. 2011, 17, 683–688. [Google Scholar] [CrossRef]
- Jackson, R.J.; Melloni, A.; Fykstra, D.P.; Serrano-Pozo, A.; Shinobu, L.; Hyman, B.T. Astrocyte tau deposition in progressive supranuclear palsy is associated with dysregulation of MAPT transcription. Acta Neuropathol. Commun. 2024, 12, 132. [Google Scholar] [CrossRef]
- Madetko-Alster, N.; Otto-Ślusarczyk, D.; Wiercińska-Drapało, A.; Koziorowski, D.; Szlufik, S.; Samborska-Ćwik, J.; Struga, M.; Friedman, A.; Alster, P. Clinical Phenotypes of Progressive Supranuclear Palsy-The Differences in Interleukin Patterns. Int. J. Mol. Sci. 2023, 24, 15135. [Google Scholar] [CrossRef]
- Alster, P.; Otto-Ślusarczyk, D.; Wiercińska-Drapało, A.; Struga, M.; Madetko-Alster, N. The potential significance of hepcidin evaluation in progressive supranuclear palsy. Brain Behav. 2024, 14, e3552. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Lukic, M.J.; Irwin, D.J.; Arzberger, T.; Respondek, G.; Lee, E.B.; Coughlin, D.; Giese, A.; Grossman, M.; Kurz, C.; et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020, 140, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Farrell, K.; Humphrey, J.; Chang, T.; Zhao, Y.; Leung, Y.Y.; Kuksa, P.P.; Patil, V.; Lee, W.P.; Kuzma, A.B.; Valladares, O.; et al. Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes. Nat. Commun. 2024, 15, 7880, Erratum in Nat. Commun. 2024, 15, 9828. https://doi.org/10.1038/s41467-024-53617-3. [Google Scholar] [CrossRef]
- Parra Bravo, C.; Giani, A.M.; Madero-Perez, J.; Zhao, Z.; Wan, Y.; Samelson, A.J.; Wong, M.Y.; Evangelisti, A.; Cordes, E.; Fan, L.; et al. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 2024, 187, 2446–2464.e22. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, S.; Van Gerpen, J.A.; Uitti, R.J.; Dickson, D.W.; Wszolek, Z.K. Familial progressive supranuclear palsy: A literature review. Neurodegener Dis. 2014, 13, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Ressler, H.W.; Humphrey, J.; Vialle, R.A.; Babrowicz, B.; Kandoi, S.; Raj, T.; Dickson, D.W.; Ertekin-Taner, N.; Crary, J.F.; Farrell, K. MAPT haplotype-associated transcriptomic changes in progressive supranuclear palsy. Acta Neuropathol. Commun. 2024, 12, 135. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, Y.; Jiao, B.; Shen, L. Genetics of Progressive Supranuclear Palsy: A Review. J. Parkinsons. Dis. 2021, 11, 93–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Li, Q.; Weng, Q.; Cui, R.; Yen, T.C.; Li, Y. A novel MAPT variant (E342K) as a cause of familial progressive supranuclear palsy. Front. Neurol. 2024, 15, 1372507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houlden, H.; Baker, M.; Morris, H.R.; MacDonald, N.; Pickering-Brown, S.; Adamson, J.; Lees, A.J.; Rossor, M.N.; Quinn, N.P.; Kertesz, A.; et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001, 56, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Respondek, G.; Grimm, M.J.; Piot, I.; Arzberger, T.; Compta, Y.; Englund, E.; Ferguson, L.W.; Gelpi, E.; Roeber, S.; Giese, A.; et al. Validation of the movement disorder society criteria for the diagnosis of 4-repeat tauopathies. Mov. Disord. 2020, 35, 171–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badihian, N.; Ali, F.; Botha, H.; Savica, R.; Machulda, M.M.; Clark, H.M.; Stierwalt, J.A.G.; Pham, N.T.T.; Baker, M.C.; Rademakers, R.; et al. The MAPT p.E342K and p.R406W mutations are associated with progressive supranuclear palsy with atypical features. Parkinsonism Relat. Disord. 2024, 119, 105962. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sexton, C.E.; Bitan, G.; Bowles, K.R.; Brys, M.; Buée, L.; Maina, M.B.; Clelland, C.D.; Cohen, A.D.; Crary, J.F.; Dage, J.L.; et al. Novel avenues of tau research. Alzheimer’s Dement. 2024, 20, 2240–2261. [Google Scholar] [CrossRef]
- Wang, H.; Chang, T.S.; Dombroski, B.A.; Cheng, P.L.; Si, Y.Q.; Tucci, A.; Patil, V.; Valiente-Banuet, L.; Farrell, K.; Mclean, C.; et al. Association of Structural Forms of 17q21.31 with the Risk of Progressive Supranuclear Palsy and MAPT Sub-haplotypes. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shiina, A.; Ishikawa, D.; Ishizawa, K.; Kasahara, H.; Fujita, Y.; Mizuta, I.; Yoshida, T.; Ikeda, Y. Alexander disease with a novel GFAP insertion-deletion mutation mimicking progressive supranuclear palsy. Clin. Neurol. Neurosurg. 2024, 240, 108261. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Tan, A.H.; Foo, J.N.; Tan, Y.J.; Chew, E.G.; Annuar, A.A.; Closas, A.M.D.; Pajo, A.; Lim, J.L.; Tay, Y.W.; et al. Loss-of-Function Variant in the SMPD1 Gene in Progressive Supranuclear Palsy-Richardson Syndrome Patients of Chinese Ancestry. J. Mov. Disord. 2024, 17, 213–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wakita, M.; Yaguchi, H.; Otuski, M.; Tanikawa, S.; Miki, Y.; Aiba, I.; Yoshida, M.; Nomura, T.; Uwatoko, H.; Mito, Y.; et al. Pathological study of progressive supranuclear palsy the cases with mutations in Bassoon. Neuropathology 2024, 45, 140–152. [Google Scholar] [CrossRef]
- Wang, H.; Chang, T.S.; Dombroski, B.A.; Cheng, P.L.; Patil, V.; Valiente-Banuet, L.; Farrell, K.; Mclean, C.; Molina-Porcel, L.; Rajput, A.; et al. Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy. Mol. Neurodegener. 2024, 19, 61, Erratum in Mol. Neurodegener. 2024, 19, 73. https://doi.org/10.1186/s13024-024-00763-3. [Google Scholar] [CrossRef]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 63. [Google Scholar] [CrossRef]
- Jackson, R.J.; Hyman, B.T.; Serrano-Pozo, A. Multifaceted roles of APOE in Alzheimer disease. Nat. Rev. Neurol. 2024, 20, 457–474. [Google Scholar] [CrossRef]
- Mothes, T.; Konstantinidis, E.; Eltom, K.; Dakhel, A.; Rostami, J.; Erlandsson, A. Tau processing and tau-mediated inflammation differ in human APOEε2 and APOEε4 astrocytes. iScience 2024, 27, 111163. [Google Scholar] [CrossRef] [PubMed]
- López González, I.; Garcia-Esparcia, P.; Llorens, F.; Ferrer, I. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. Int. J. Mol. Sci. 2016, 17, 206. [Google Scholar] [CrossRef] [PubMed]
- Rexach, J.E.; Polioudakis, D.; Yin, A.; Swarup, V.; Chang, T.S.; Nguyen, T.; Sarkar, A.; Chen, L.; Huang, J.; Lin, L.C.; et al. Tau Pathology Drives Dementia Risk-Associated Gene Networks toward Chronic Inflammatory States and Immunosuppression. Cell Rep. 2020, 33, 108398. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Wang, X.; Serie, D.J.; Strickland, S.L.; Burgess, J.D.; Koga, S.; Younkin, C.S.; Nguyen, T.T.; Malphrus, K.G.; Lincoln, S.J.; et al. Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathol. 2018, 136, 709–727. [Google Scholar] [CrossRef]
- Rexach, J.E.; Cheng, Y.; Chen, L.; Polioudakis, D.; Lin, L.C.; Mitri, V.; Elkins, A.; Han, X.; Yamakawa, M.; Yin, A.; et al. Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics. Cell 2024, 187, 5753–5774.e28. [Google Scholar] [CrossRef]
- Min, Y.; Wang, X.; İş, Ö.; Patel, T.A.; Gao, J.; Reddy, J.S.; Quicksall, Z.S.; Nguyen, T.; Lin, S.; Tutor-New, F.Q.; et al. Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nat. Commun. 2023, 14, 6801. [Google Scholar] [CrossRef]
- Conway, O.J.; Carrasquillo, M.M.; Wang, X.; Bredenberg, J.M.; Reddy, J.S.; Strickland, S.L.; Younkin, C.S.; Burgess, J.D.; Allen, M.; Lincoln, S.J.; et al. ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Mol. Neurodegener. 2018, 13, 53. [Google Scholar] [CrossRef]
- Strickland, S.L.; Morel, H.; Prusinski, C.; Allen, M.; Patel, T.A.; Carrasquillo, M.M.; Conway, O.J.; Lincoln, S.J.; Reddy, J.S.; Nguyen, T.; et al. Association of ABI3 and PLCG2 missense variants with disease risk and neuropathology in Lewy body disease and progressive supranuclear palsy. Acta Neuropathol. Commun. 2020, 8, 172. [Google Scholar] [CrossRef]
- Van Der Lee, S.J.; Conway, O.J.; Jansen, I.; Carrasquillo, M.M.; Kleineidam, L.; van den Akker, E.; Hernández, I.; Van Eijk, K.R.; Stringa, N.; Chen, J.A.; et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 2019, 138, 237–250, Erratum in Acta Neuropathol. 2020, 139, 959–962. https://doi.org/10.1007/s00401-019-02107-8. [Google Scholar] [CrossRef]
- Rayaprolu, S.; Mullen, B.; Baker, M.; Lynch, T.; Finger, E.; Seeley, W.W.; Hatanpaa, K.J.; Lomen-Hoerth, C.; Kertesz, A.; Bigio, E.H.; et al. TREM2 in neurodegeneration: Evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol. Neurodegener. 2013, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ruiz de Gordoa, J.; Erro, M.E.; Vicuña-Urriza, J.; Zelaya, M.V.; Tellechea, P.; Acha, B.; Zueco, S.; Urdánoz-Casado, A.; Roldán, M.; Blanco-Luquin, I.; et al. Microglia-Related Gene Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) Is Upregulated in the Substantia Nigra of Progressive Supranuclear Palsy. Mov. Disord. 2020, 35, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Bemiller, S.M.; McCray, T.J.; Allan, K.; Formica, S.V.; Xu, G.; Wilson, G.; Kokiko-Cochran, O.N.; Crish, S.D.; Lasagna-Reeves, C.A.; Ransohoff, R.M.; et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 2017, 12, 74. [Google Scholar] [CrossRef]
- Leńska-Mieciek, M.; Madetko-Alster, N.; Alster, P.; Królicki, L.; Fiszer, U.; Koziorowski, D. Inflammation in multiple system atrophy. Front. Immunol. 2023, 14, 1214677. [Google Scholar] [CrossRef]
- Ayer, A.H.; Wojta, K.; Ramos, E.M.; Dokuru, D.; Chen, J.A.; Karydas, A.M.; Papatriantafyllou, J.D.; Agiomyrgiannakis, D.; Kamtsadeli, V.; Tsinia, N.; et al. Frequency of the TREM2 R47H Variant in Various Neurodegenerative Disorders. Alzheimer Dis. Assoc. Disord. 2019, 33, 327–330. [Google Scholar] [CrossRef]
- Cousins, O.; Schubert, J.J.; Chandra, A.; Veronese, M.; Valkimadi, P.; Creese, B.; Khan, Z.; Arathimos, R.; Hampshire, A.; Rosenzweig, I.; et al. Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: A multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge. J. Neuroinflammation 2023, 20, 272. [Google Scholar] [CrossRef] [PubMed]
- Cady, J.; Koval, E.D.; Benitez, B.A.; Zaidman, C.; Jockel-Balsarotti, J.; Allred, P.; Baloh, R.H.; Ravits, J.; Simpson, E.; Appel, S.H.; et al. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 2014, 71, 449–453. [Google Scholar] [CrossRef]
- Ortega-Cubero, S.; Lorenzo-Betancor, O.; Lorenzo, E.; Agúndez, J.A.; Jiménez-Jiménez, F.J.; Ross, O.A.; Wurster, I.; Mielke, C.; Lin, J.J.; Coria, F.; et al. TREM2 R47H variant and risk of essential tremor: A cross-sectional international multicenter study. Parkinsonism Relat. Disord. 2015, 21, 306–309. [Google Scholar] [CrossRef]
- Ruiz, A.; Dols-Icardo, O.; Bullido, M.J.; Pastor, P.; Rodríguez-Rodríguez, E.; de Munain, A.L.; de Pancorbo, M.M.; Pérez-Tur, J.; Álvarez, V.; Antonell, A.; et al. Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol. Aging 2014, 35, e1–e444. [Google Scholar] [CrossRef]
- Lill, C.M.; Rengmark, A.; Pihlstrøm, L.; Fogh, I.; Shatunov, A.; Sleiman, P.M.; Wang, L.S.; Liu, T.; Lassen, C.F.; Meissner, E.; et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimer’s Dement. 2015, 11, 1407–1416. [Google Scholar] [CrossRef]
- McQuade, A.; Blurton-Jones, M. Microglia in Alzheimer’s Disease: Exploring How Genetics and Phenotype Influence Risk. J. Mol. Biol. 2019, 431, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Briel, N.; Ruf, V.C.; Pratsch, K.; Roeber, S.; Widmann, J.; Mielke, J.; Dorostkar, M.M.; Windl, O.; Arzberger, T.; Herms, J.; et al. Single-nucleus chromatin accessibility profiling highlights distinct astrocyte signatures in progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2022, 144, 615–635. [Google Scholar] [CrossRef]
- Yokoyama, J.S.; Karch, C.M.; Fan, C.C.; Bonham, L.W.; Kouri, N.; Ross, O.A.; Rademakers, R.; Kim, J.; Wang, Y.; Höglinger, G.U.; et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol. 2017, 133, 825–837. [Google Scholar] [CrossRef]
- Didonna, A. Tau at the interface between neurodegeneration and neuroinflammation. Genes Immun. 2020, 21, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Bonham, L.W.; Karch, C.M.; Fan, C.C.; Tan, C.; Geier, E.G.; Wang, Y.; Wen, N.; Broce, I.J.; Li, Y.; Barkovich, M.J.; et al. CXCR4 involvement in neurodegenerative diseases. Transl. Psychiatry 2018, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Planche, V.; Mansencal, B.; Manjon, J.V.; Meissner, W.G.; Tourdias, T.; Coupé, P. Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan. Brain Commun. 2024, 6, fcae055. [Google Scholar] [CrossRef]
- Sarallah, R.; Jahani, S.; Soltani Khaboushan, A.; Moaveni, A.K.; Amiri, M.; Majidi Zolbin, M. The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases. Brain Behav. Immun. Health 2024, 43, 100932. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Melhem, N.M.; Dickson, D.W.; Sleiman, P.M.; Wang, L.S.; Klei, L.; Rademakers, R.; de Silva, R.; Litvan, I.; Riley, D.E.; et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 2011, 43, 699–705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Pathogenesis of PSP | |
---|---|
Comparison to other genetic factors |
|
Clinical implications |
|
Other features |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alster, P.; Madetko-Alster, N. The Genetic Background of the Immunological and Inflammatory Aspects of Progressive Supranuclear Palsy. Int. J. Mol. Sci. 2025, 26, 3927. https://doi.org/10.3390/ijms26093927
Alster P, Madetko-Alster N. The Genetic Background of the Immunological and Inflammatory Aspects of Progressive Supranuclear Palsy. International Journal of Molecular Sciences. 2025; 26(9):3927. https://doi.org/10.3390/ijms26093927
Chicago/Turabian StyleAlster, Piotr, and Natalia Madetko-Alster. 2025. "The Genetic Background of the Immunological and Inflammatory Aspects of Progressive Supranuclear Palsy" International Journal of Molecular Sciences 26, no. 9: 3927. https://doi.org/10.3390/ijms26093927
APA StyleAlster, P., & Madetko-Alster, N. (2025). The Genetic Background of the Immunological and Inflammatory Aspects of Progressive Supranuclear Palsy. International Journal of Molecular Sciences, 26(9), 3927. https://doi.org/10.3390/ijms26093927