Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review
Abstract
:1. Introduction
2. Materials and Methods
Literature Review
3. Previous Studies
4. Tissue Hemorrhage and Damage Induced by Bothrops Snake Venoms
5. Snake Venom Metalloproteinases
6. Potential Inhibitors of Snake Venom Metalloproteinases
7. Experimental Findings from the Lapachol Analogs on Bothrops atrox Effects
8. Conclusions
9. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AchEs | Acetylcolinesterases |
EP | Eclipta prostrata |
HAases | Hyaluronidases |
HE | Hematoxylin and Eosin |
LAAOs | L-amino Oxidases |
MMPs | Matrix Metalloproteinases |
PDEs | Phosphodiesterases |
PLA2 | Phospholipase A2 |
SVMPs | Snake Venom Metalloproteinases |
SVSPs | Snake Venom Serine Proteases |
WEL | Wedelolactone |
WHO | World Health Organization |
References
- Gutiérrez, J.M.; Theakston, R.D.G.; Warrell, D.A. Confronting the Neglected Problem of Snake Bite Envenoming: The Need for a Global Partnership. PLoS Med. 2006, 3, e150. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Snake Bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, E.S.; Sampaio, V.; Sachett, J.; De Castro, D.B.; Noronha, M.d.D.N.; Lozano, J.L.L.; Muniz, E.; De Ferreira, L.C.L.; De Lacerda, M.V.G.; Monteiro, W.M. Snakebites as a Largely Neglected Problem in the Brazilian Amazon: Highlights of the Epidemiological Trends in the State of Amazonas. Rev. Soc. Bras. Med. Trop. 2015, 48, 34–41. [Google Scholar] [CrossRef]
- Gutiérrez, M.J.; Casewell, N.R.; Laustsen, A.H. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2025, 65, 465–485. [Google Scholar] [CrossRef] [PubMed]
- Tomaz, M.A.; Patrão-Neto, F.C.; Melo, P.A. Plant Compounds with Antiophidic Activities, Their Discovery History, and Current and Proposed Applications. In Plant Toxins; Springer: Dordrecht, The Netherlands, 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C.; Fox, J.W. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins 2016, 8, 304. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins 2016, 8, 93. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- Chippaux, J.P. Incidence and Mortality Due to Snakebite in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005662. [Google Scholar] [CrossRef]
- de Farias, A.S.; Gomes Filho, M.R.; da Costa Arévalo, M.; Cristino, J.S.; Farias, F.R.; Sachett, A.; Vilhena Silva-Neto, A.; de Carvalho, F.G.; Ambrosio, S.A.; Carvalho, E.d.S.; et al. Snakebite Envenomations and Access to Treatment in Communities of Two Indigenous Areas of the Western Brazilian Amazon: A Cross-Sectional Study. PLoS Negl. Trop. Dis. 2023, 17, e0011485. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Snakebite Envenoming—A Strategy for Prevention and Control. Available online: https://www.who.int/publications/i/item/9789241515641 (accessed on 31 March 2025).
- Bittenbinder, M.A.; van Thiel, J.; Cardoso, F.C.; Casewell, N.R.; Gutiérrez, J.M.; Kool, J.; Vonk, F.J. Tissue Damaging Toxins in Snake Venoms: Mechanisms of Action, Pathophysiology and Treatment Strategies. Commun. Biol. 2024, 7, 358. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Pérez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutiérrez, J.M.; Chalkidis, H.M.; Mourão, R.H.V.; et al. Snake Population Venomics and Antivenomics of Bothrops atrox: Paedomorphism along Its Transamazonian Dispersal and Implications of Geographic Venom Variability on Snakebite Management. J. Proteom. 2011, 74, 510–527. [Google Scholar] [CrossRef]
- Harvey, A.L. Snake venom peptides. In Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Cambridge, MA, USA, 2006; pp. 355–362. [Google Scholar]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex Cocktails: The Evolutionary Novelty of Venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Calvete, J.J.; Lomonte, B. A Bright Future for Integrative Venomics. Toxicon 2015, 107, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.W.; Serrano, S.M.T. Insights into and Speculations about Snake Venom Metalloproteinase (SVMP) Synthesis, Folding and Disulfide Bond Formation and Their Contribution to Venom Complexity. FEBS J. 2008, 275, 3016–3030. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M.T. Exploring Snake Venom Proteomes: Multifaceted Analyses for Complex Toxin Mixtures. Proteomics 2008, 8, 909–920. [Google Scholar] [CrossRef]
- Adrião, A.A.X.; dos Santos, A.O.; de Lima, E.J.S.P.; Maciel, J.B.; Paz, W.H.P.; da Silva, F.M.A.; Pucca, M.B.; Moura-da-Silva, A.M.; Monteiro, W.M.; Sartim, M.A.; et al. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front. Immunol. 2022, 13, 842576. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Kalogeropoulos, K.; Camacho, E.; Gutiérrez, J.M.; Fox, J.W. Analysis of Wound Exudates Reveals Differences in the Patterns of Tissue Damage and Inflammation Induced by the Venoms of Daboia Russelii and Bothrops Asper in Mice. Toxicon 2020, 186, 94–104. [Google Scholar] [CrossRef]
- Kang, T.S.; Georgieva, D.; Genov, N.; Murakami, M.T.; Sinha, M.; Kumar, R.P.; Kaur, P.; Kumar, S.; Dey, S.; Sharma, S.; et al. Enzymatic Toxins from Snake Venom: Structural Characterization and Mechanism of Catalysis. FEBS J. 2011, 278, 4544–4576. [Google Scholar] [CrossRef]
- Lopes-de-Souza, L.; Costal-Oliveira, F.; Rodrigues, C.R.; Stransky, S.; de Assis, T.C.S.; Liberato, C.; Vivas-Ruiz, D.; Chocas, A.Y.; Guerra-Duarte, C.; Braga, V.M.M.; et al. Bothrops atrox Venom: Biochemical Properties and Cellular Phenotypes of Three Highly Toxic Classes of Toxins. Biochim. Biophys. Acta Proteins Proteom. 2023, 1871, 140930. [Google Scholar] [CrossRef]
- Weekers, D.J.C.; Alonso, L.L.; Verstegen, A.X.; Slagboom, J.; Kool, J. Qualitative Profiling of Venom Toxins in the Venoms of Several Bothrops Species Using High-Throughput Venomics and Coagulation Bioassaying. Toxins 2024, 16, 300. [Google Scholar] [CrossRef]
- Ferreira de Oliveira, N.; Sachetto, A.T.A.; Santoro, M.L. Two-Dimensional Blue Native/SDS Polyacrylamide Gel Electrophoresis for Analysis of Brazilian Bothrops Snake Venoms. Toxins 2022, 14, 661. [Google Scholar] [CrossRef]
- Watt, G. Snakebite treatment and first aid. In The Venomous Reptiles of Latin America; Campbell, J.A., Lamar, W.W., Eds.; Cornell University Press: New York, NY, USA, 1989; pp. 6–13. [Google Scholar]
- Rosenfeld, G. Symptomatology, pathology and treatment of snake bites in South America. In Venomous Ani-600 Mals and Their Venoms, Volume II: Venomous Vertebrates; Bücherl, W., Buckley, E.E., Eds.; Academic Press: New York, NY, USA, 1971; pp. 345–384. [Google Scholar]
- Homma, M.; Tu, A.T. Morphology of Local Tissue Damage in Experimental Snake Envenomation. Br. J. Exp. Pathol. 1971, 52, 538–542. [Google Scholar]
- da Silva, N.M.V.; Arruda, E.Z.; Murakami, Y.L.B.; Moraes, R.A.M.; El-Kik, C.Z.; Tomaz, M.A.; Fernandes, F.F.A.; Oliveira, C.Z.; Soares, A.M.; Giglio, J.R.; et al. Evaluation of Three Brazilian Antivenom Ability to Antagonize Myonecrosis and Hemorrhage Induced by Bothrops Snake Venoms in a Mouse Model. Toxicon 2007, 50, 196–205. [Google Scholar] [CrossRef]
- Strauch, M.A.; Tomaz, M.A.; Monteiro-Machado, M.; Ricardo, H.D.; Cons, B.L.; Fernandes, F.F.A.; El-Kik, C.Z.; Azevedo, M.S.; Melo, P.A. Antiophidic Activity of the Extract of the Amazon Plant Humirianthera ampla and Constituents. J. Ethnopharmacol. 2013, 145, 50–58. [Google Scholar] [CrossRef]
- Warrell, D.A. Snakebites in Central and South America: Epidemiology, clinical features, and clinical management. In The Venomous Reptiles of the Western Hemisphere; Campbell, J.A., Lamar, W.W., Eds.; Cornell University Press: New York, NY, USA, 2004; Volume 2, pp. 709–761. [Google Scholar]
- Monteiro, W.M.; Contreras-Bernal, J.C.; Bisneto, P.F.; Sachett, J.; Mendonça da Silva, I.; Lacerda, M.; Guimarães da Costa, A.; Val, F.; Brasileiro, L.; Sartim, M.A.; et al. Bothrops atrox, the Most Important Snake Involved in Human Envenomings in the Amazon: How Venomics Contributes to the Knowledge of Snake Biology and Clinical Toxinology. Toxicon X 2020, 6, 100037. [Google Scholar] [CrossRef]
- Santos Barreto, G.N.L.; de Oliveira, S.S.; dos Anjos, I.V.; Chalkidis, H.d.M.; Mourão, R.H.V.; Moura-da-Silva, A.M.; Sano-Martins, I.S.; Gonçalves, L.R. de C. Experimental Bothrops atrox Envenomation: Efficacy of Antivenom Therapy and the Combination of Bothrops Antivenom with Dexamethasone. PLoS Negl. Trop. Dis. 2017, 11, e0005458. [Google Scholar] [CrossRef]
- Nascimento da Costa, T.; Mota-da-Silva, A.; Colombini, M.; Moura-da-Silva, A.M.; Medeiros de Souza, R.; Monteiro, W.M.; Bernarde, P.S. Relationship between Snake Size and Clinical, Epidemiological and Laboratory Aspects of Bothrops atrox Snakebites in the Western Brazilian Amazon. Toxicon 2020, 186, 160–167. [Google Scholar] [CrossRef]
- Oliveira, S.S.; Alves, E.C.; Santos, A.S.; Nascimento, E.F.; Pereira, J.P.T.; Silva, I.M.; Sachett, J.A.G.; Sarraff, L.K.S.; Freitas-De-Sousa, L.A.; Colombini, M.; et al. Bleeding Disorders in Bothrops atrox Envenomations in the Brazilian Amazon: Participation of Hemostatic Factors and the Impact of Tissue Factor. Toxins 2020, 12, 554. [Google Scholar] [CrossRef]
- Hatakeyama, D.M.; Tasima, L.J.; Bravo-Tobar, C.A.; Serino-Silva, C.; Tashima, A.K.; Rodrigues, C.F.B.; da Silva Aguiar, W.; da Costa Galizio, N.; de Lima, E.O.V.; Kavazoi, V.K.; et al. Venom Complexity of Bothrops atrox (Common Lancehead) Siblings. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20200018. [Google Scholar] [CrossRef]
- Rodrigues, T.d.S.N.; Mota-da-Silva, A.; Gomes da Costa, J.; de Souza Dutra, J.; de Oliveira Gomes, M.; Gurgel do Amaral, G.L.; Ortega, G.P.; Lima da Silva, J.; Monteiro, W.M.; Bernarde, P.S. Morbidity Survey of the History of Snakebites in Different Communities in the Alto Juruá, Western Brazilian Amazon. Toxicon 2023, 224, 107033. [Google Scholar] [CrossRef]
- Gonçalves-Machado, L.; Pla, D.; Sanz, L.; Jorge, R.J.B.; Leitão-De-Araújo, M.; Alves, M.L.M.; Alvares, D.J.; De Miranda, J.; Nowatzki, J.; de Morais-Zani, K.; et al. Combined Venomics, Venom Gland Transcriptomics, Bioactivities, and Antivenomics of Two Bothrops jararaca Populations from Geographic Isolated Regions within the Brazilian Atlantic Rainforest. J. Proteom. 2016, 135, 73–89. [Google Scholar] [CrossRef]
- Mors, W.B.; do Nascimento, M.C.; Parente, J.; da Silva, M.H.; Melo, P.A.; Suarez-Kurtz, G. Neutralization of Lethal and Myotoxic Activities of South American Rattlesnake Venom by Extracts and Constituents of the Plant Eclipta prostrata (Asteraceae). Toxicon 1989, 27, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Mors, W.B.; Célia Do Nascimento, M.; Ruppelt Pereira, B.M.; Alvares Pereira, N. Plant Natural Products Active against Snake Bite—The Molecular Approach. Phytochemistry 2000, 55, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, P.; Howes, M.J.R. Medicinal Plants Used to Treat Snakebite in Central America: Review and Assessment of Scientific Evidence. J. Ethnopharmacol. 2017, 199, 240–256. [Google Scholar] [CrossRef]
- Saravia-Otten, P.; Hernández, R.; Marroquín, N.; Pereañez, J.A.; Preciado, L.M.; Vásquez, A.; García, G.; Nave, F.; Rochac, L.; Genovez, V.; et al. Inhibition of Enzymatic Activities of Bothrops asper. Snake Venom and Docking Analysis of Compounds from Plants Used in Central America to Treat Snakebite Envenoming. J. Ethnopharmacol. 2022, 283, 114710. [Google Scholar] [CrossRef]
- Pereira, N.A.; Pereira, B.M.; do Nascimento, M.C.; Parente, J.P.; Mors, W.B. Pharmacological screening of plants recommended by folk medicine as snake venom antidotes; IV. Protection against Jararaca venom by isolated constituents. Planta Med. 1994, 60, 99–100. [Google Scholar] [CrossRef]
- De Moura, V.M.; Freitas De Sousa, L.A.; Cristina Dos-Santos, M.; Almeida Raposo, J.D.; Evangelista Lima, A.; De Oliveira, R.B.; Da Silva, M.N.; Veras Mourão, R.H. Plants Used to Treat Snakebites in Santarém, Western Pará, Brazil: An Assessment of Their Effectiveness in Inhibiting Hemorrhagic Activity Induced by Bothrops jararaca Venom. J. Ethnopharmacol. 2015, 161, 224–232. [Google Scholar] [CrossRef]
- Panda, S.; Kumari, L. Anti-Ophidian Properties of Herbal Medicinal Plants: Could it be a Remedy for Snake Bite Envenomation? Curr. Drug Discov. Technol. 2019, 16, 319–329. [Google Scholar] [CrossRef]
- Dharmadasa, R.M.; Akalanka, G.C.; Muthukumarana, P.R.M.; Wijesekara, R.G.S. Ethnopharmacological Survey on Medicinal Plants Used in Snakebite Treatments in Western and Sabaragamuwa Provinces in Sri Lanka. J. Ethnopharmacol. 2016, 179, 110–127. [Google Scholar] [CrossRef]
- Fernandes, F.F.A.; Tomaz, M.A.; El-Kik, C.Z.; Monteiro-Machado, M.; Strauch, M.A.; Cons, B.L.; Tavares-Henriques, M.S.; Cintra, A.C.O.; Facundo, V.A.; Melo, P.A. Counteraction of Bothrops Snake Venoms by Combretum Leprosum Root Extract and Arjunolic Acid. J. Ethnopharmacol. 2014, 155, 552–562. [Google Scholar] [CrossRef]
- Nascimento, L.S.; Nogueira-Souza, P.D.; Rocha-Junior, J.R.S.; Monteiro-Machado, M.; Strauch, M.A.; Prado, S.A.L.; Melo, P.A.; Veiga-Junior, V.F. Phytochemical Composition, Antisnake Venom and Antibacterial Activities of Ethanolic Extract of Aegiphila integrifolia (Jacq) Moldenke Leaves. Toxicon 2021, 198, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, D.; Devkota, H.P. Eclipta prostrata (L.) l. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021, 11, 1738. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Osibogun, I.M. Flowering Plants Used against Snakebite. J. Ethnopharmacol. 1993, 39, 1–29. [Google Scholar] [CrossRef]
- Mors, W.B. Plants against snake-bites. Mem. Inst. Oswaldo Cruz. 1991, 86, 193. [Google Scholar] [CrossRef]
- Da Silva, A.J.M.; Buarque, C.D.; Brito, F.V.; Aurelian, L.; Macedo, L.F.; Malkas, L.H.; Hickey, R.J.; Lopes, D.V.S.; Noël, F.; Murakami, Y.L.B.; et al. Synthesis and Preliminary Pharmacological Evaluation of New (±) 1,4-Naphthoquinones Structurally Related to Lapachol. Bioorg. Med. Chem. 2002, 10, 2731–2738. [Google Scholar] [CrossRef]
- Da Silva, A.J.M.; Coelho, A.L.; Simas, A.B.C.; Moraes, R.A.M.; Pinheiro, D.A.; Fernandes, F.F.A.; Arruda, E.Z.; Costa, P.R.R.; Melo, P.A. Synthesis and Pharmacological Evaluation of Prenylated and Benzylated Pterocarpans against Snake Venom. Bioorg Med. Chem. Lett. 2004, 14, 431–435. [Google Scholar] [CrossRef]
- Melo, P.A.; Pinheiro, D.A.; Ricardo, H.D.; Fernandes, F.F.A.; Tomaz, M.A.; El-Kik, C.Z.; Strauch, M.A.; da Fonseca, T.F.; Sifuentes, D.N.; Calil-Elias, S.; et al. Ability of a Synthetic Coumestan to Antagonize Bothrops Snake Venom Activities. Toxicon 2010, 55, 488–496. [Google Scholar] [CrossRef]
- Strauch, M.A.; Tomaz, M.A.; Monteiro-Machado, M.; Cons, B.L.; Patrão-Neto, F.C.; Da Mota Teixeira-Cruz, J.; Da Silva Tavares-Henriques, M.; Nogueira-Souza, P.D.; Gomes, S.L.S.; Costa, P.R.R.; et al. Lapachol and Synthetic Derivatives: In vitro and in vivo Activities against Bothrops Snake Venoms. PLoS ONE 2019, 14, e0211229. [Google Scholar] [CrossRef]
- Melo, P.A.; Do Nascimento, M.C.; Mors, W.B.; Suarez-Kurtz, G. Inhibition of the Myotoxic and Hemorrhagic Activities of Crotalid Venoms by Eclipta prostrata (Asteraceae) Extracts and Constituents. Toxicon 1994, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.A.; Suarez-Kurtz, G. Release of Creatine Kinase from Skeletal Muscles by Bothrops Venoms: Heparin Potentiation of Inhibition by Antivenin. Braz. J. Med. Biol. Res. 1988, 21, 545–548. [Google Scholar]
- Melo, P.A.; Suarez-Kurtz, G. Release of Sarcoplasmic Enzymes from Skeletal Muscle by Bothrops jararacussu Venom: Antagonism by Heparin and by the Serum of South American Marsupials. Toxicon 1988, 26, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.A.; Homsi-Brandeburgo, M.I.; Giglio, J.R.; Suarez-Kurtz, G. Antagonism of the Myotoxic Effects of Bothrops jararacussu Venom and Bothropstoxin by Polyanions. Toxicon 1993, 31, 285–291. [Google Scholar] [CrossRef]
- Patrão-Neto, F.C.; Tomaz, M.A.; Strauch, M.A.; Monteiro-Machado, M.; Rocha-Junior, J.R.D.S.; Borges, P.A.; Calil-Elias, S.; Melo, P.A. Dexamethasone Antagonizes the in vivo Myotoxic and Inflammatory Effects of Bothrops Venoms. Toxicon 2013, 69, 55–64. [Google Scholar] [CrossRef]
- Monteiro-Machado, M.; Tomaz, M.A.; Fonseca, R.J.C.; Strauch, M.A.; Cons, B.L.; Borges, P.A.; Patrão-Neto, F.C.; Tavares-Henriques, M.S.; Teixeira-Cruz, J.M.; Calil-Elias, S.; et al. Occurrence of Sulfated Fucose Branches in Fucosylated Chondroitin Sulfate Are Essential for the Polysaccharide Effect Preventing Muscle Damage Induced by Toxins and Crude Venom from Bothrops jararacussu Snake. Toxicon 2015, 98, 20–33. [Google Scholar] [CrossRef]
- da Silva, A.J.M.; Melo, P.A.; Silva, N.M.; Brito, F.V.; Buarque, C.D.; de Souza, D.V.; Rodrigues, V.P.; Poças, E.S.; Noël, F.; Albuquerque, E.X.; et al. Synthesis and preliminary pharmacological evaluation of coumestans with different patterns of oxygenation. Bioorg. Med. Chem. Lett. 2001, 11, 283–286. [Google Scholar] [CrossRef]
- Melo, P.A.; Ownby, C.L. Ability of Wedelolactone, Heparin, and Para-Bromophenacyl Bromide to Antagonize the Myotoxic Effects of Two Crotaline Venoms and Their PLA2 Myotoxins. Toxicon 1999, 37, 199–215. [Google Scholar] [CrossRef]
- Bickoff, E.M.; Spencer, R.R.; Knuckles, E.; Lundin, R.E. 3′-Methoxycoumestrol from Alfalfa: Isolation and Char-707 acterization. J. Agric. Food Chem. 1966, 14, 444–446. [Google Scholar] [CrossRef]
- Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: An Overview. Arkivoc 2007, 2007, 145–171. [Google Scholar] [CrossRef]
- Gómez Castellanos, J.R.; Prieto, J.M.; Heinrich, M. Red Lapacho (Tabebuia impetiginosa)-A Global Ethnopharmacological Commodity? J. Ethnopharmacol. 2009, 121, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.V.; De Castro, S.L. The Trypanocidal Activity of Naphthoquinones: A Review. Molecules 2009, 14, 4570–4590. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Hu, J.; Wang, P.; Li, X.; Zhang, X. A Comprehensive Review on β-Lapachone: Mechanisms, Structural Modifications, and Therapeutic Potentials. Eur. J. Med. Chem. 2021, 210, 112962. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Akash, S.; Shohag, S.; Ahmed, L.; Supti, F.A.; Rauf, A.; Aljohani, A.S.M.; Al Abdulmonem, W.; Khalil, A.A.; et al. Naphthoquinones and Derivatives as Potential Anticancer Agents: An Updated Review. Chem. Biol. Interact. 2022, 368, 110198. [Google Scholar] [CrossRef] [PubMed]
- Buarque, C.D.; Militão, G.C.G.; Lima, D.J.B.; Costa-Lotufo, L.V.; Pessoa, C.; De Moraes, M.O.; Cunha-Junior, E.F.; Torres-Santos, E.C.; Netto, C.D.; Costa, P.R.R. Pterocarpanquinones, Aza-Pterocarpanquinone and Derivatives: Synthesis, Antineoplasic Activity on Human Malignant Cell Lines and Antileishmanial Activity on Leishmania amazonensis. Bioorg. Med. Chem. 2011, 19, 6885–6891. [Google Scholar] [CrossRef] [PubMed]
- Epifano, F.; Genovese, S.; Fiorito, S.; Mathieu, V.; Kiss, R. Lapachol and Its Congeners as Anticancer Agents: A Review. Phytochem. Rev. 2014, 13, 37–49. [Google Scholar] [CrossRef]
- Silva de Oliveira, S.; Campos Alves, E.; dos Santos Santos, A.; Freitas Nascimento, E.; Tavares Pereira, J.P.; Mendonça da Silva, I.; Sachett, J.; dos Santos Ibiapina, H.N.; Santos Sarraf, L.K.; Contreras Bernal, J.C.; et al. Bothrops Snakebites in the Amazon: Recovery from Hemostatic Disorders after Brazilian Antivenom Therapy. Clin. Toxicol. 2020, 58, 266–274. [Google Scholar] [CrossRef]
- Freitas-de-Sousa, L.A.; Colombini, M.; Souza, V.C.; Silva, J.P.C.; Mota-da-Silva, A.; Almeida, M.R.N.; Machado, R.A.; Fonseca, W.L.; Sartim, M.A.; Sachett, J.; et al. Venom Composition of Neglected Bothropoid Snakes from the Amazon Rainforest: Ecological and Toxinological implications. Toxins 2024, 16, 83. [Google Scholar] [CrossRef]
- Larréché, S.; Bousquet, A.; Chevillard, L.; Gahoual, R.; Jourdi, G.; Dupart, A.L.; Bachelot-Loza, C.; Gaussem, P.; Siguret, V.; Chippaux, J.P.; et al. Bothrops atrox and Bothrops lanceolatus Venoms in vitro Investigation: Composition, Procoagulant Effects, Co-Factor Dependency, and Correction Using Antivenoms. Toxins 2023, 15, 614. [Google Scholar] [CrossRef]
- Oliveira, A.K.; Paes Leme, A.F.; Asega, A.F.; Camargo, A.C.M.; Fox, J.W.; Serrano, S.M.T. New Insights into the Structural Elements Involved in the Skin Haemorrhage Induced by Snake Venom Metalloproteinases. Thromb. Haemost. 2010, 104, 485–497. [Google Scholar] [CrossRef]
- Larréché, S.; Chippaux, J.P.; Chevillard, L.; Mathé, S.; Résière, D.; Siguret, V.; Mégarbane, B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int. J. Mol. Sci. 2021, 22, 9643. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage Induced by Snake Venom Metalloproteinases: Biochemical and Biophysical Mechanisms Involved in Microvessel Damage. Toxicon 2005, 45, 997–1011. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Hay, C.R.; Theakston, R.D.; Zuzel, M. Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon 1996, 34, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Ownby, C.L. Skeletal Muscle Degeneration Induced by Venom Phospholipases A 2: Insights into the Mechanisms of Local and Systemic Myotoxicity. Toxicon 2003, 42, 915–931. [Google Scholar] [CrossRef]
- Castro, A.C.; Escalante, T.; Rucavado, A.; Gutiérrez, J.M. Basement Membrane Degradation and Inflammation Play a Role in the Pulmonary Hemorrhage Induced by a P-III Snake Venom Metalloproteinase. Toxicon 2021, 197, 12–23. [Google Scholar] [CrossRef]
- Costa, E.P.; Clissa, P.B.; Teixeira, C.F.P.; Moura-da-Silva, A.M. Importance of Metalloproteinases and Macrophages in Viper Snake Envenomation-Induced Local Inflammation. Inflammation 2002, 26, 13–17. [Google Scholar] [CrossRef]
- Camacho, E.; Sanz, L.; Escalante, T.; Pérez, A.; Villalta, F.; Lomonte, B.; Neves-Ferreira, A.G.C.; Feoli, A.; Calvete, J.J.; Gutiérrez, J.M.; et al. Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif. Toxins 2016, 8, 292. [Google Scholar] [CrossRef]
- Silveira, K.S.O.; Boechem, N.T.; Do Nascimento, S.M.; Murakami, Y.L.B.; Barboza, A.P.B.; Melo, P.A.; Castro, P.; De Moraes, V.L.G.; Rocco, P.R.M.; Zin, W.A. Pulmonary Mechanics and Lung Histology in Acute Lung Injury Induced by Bothrops Jararaca Venom. Respir. Physiol. Neurobiol. 2004, 139, 167–177. [Google Scholar] [CrossRef]
- Moreira, V.; Dos-Santos, M.C.; Nascimento, N.G.; da Silva, H.B.; Fernandes, C.M.; D’Império Lima, M.R.; Teixeira, C. Local Inflammatory Events Induced by Bothrops atrox Snake Venom and the Release of Distinct Classes of Inflammatory Mediators. Toxicon 2012, 60, 12–20. [Google Scholar] [CrossRef]
- Rucavado, A.; Nicolau, C.A.; Escalante, T.; Kim, J.; Herrera, C.; Gutiérrez, J.M.; Fox, J.W. Viperid Envenomation wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins 2016, 8, 349. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A Review and Database of Snake Venom Proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Saturnino-Oliveira, J.; Tomaz, M.A.; Fonseca, T.F.; Gaban, G.A.; Monteiro-Machado, M.; Strauch, M.A.; Cons, B.L.; Calil-Elias, S.; Martinez, A.M.B.; Melo, P.A. Pulsed Ultrasound Therapy Accelerates the Recovery of Skeletal Muscle Damage Induced by Bothrops jararacussu Venom. Braz. J. Med. Biol. Res. 2012, 45, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Osaka, A. Purification and some properties of two hemorrhagic principles (HR2a and HR2b) in the venom of Trimeresurus flavoviridis; complete separation of the principles from proteolytic activity. Biochim. Biophys. Acta. 1970, 207, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Silva, E.; Beraldof, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released 764 from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 1949, 156, 261–273. [Google Scholar] [CrossRef]
- Bjarnason, J.B.; Foxt, J.W. Hemorrhagic metalloproteinases from snake venoms. Pharmacol. Ther. 1994, 62, 325–372. [Google Scholar] [CrossRef]
- Kini, R.M.; Evans, H.J. Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 1992, 30, 265–293. [Google Scholar] [CrossRef]
- Mandelbaum, F.R.; Reichel, A.P.; Assakura, M.T. Isolation and Characterization of a Proteolytic Enzyme from the Venom of the Snake Bothrops jararaca (Jararaca). Toxicon 1982, 20, 955–972. [Google Scholar] [CrossRef]
- Muniz, J.R.C.; Ambrosio, A.L.B.; Selistre-de-Araujo, H.S.; Cominetti, M.R.; Moura-da-Silva, A.M.; Oliva, G.; Garratt, R.C.; Souza, D.H.F. The Three-Dimensional Structure of Bothropasin, the Main Hemorrhagic Factor from Bothrops jararaca Venom: Insights for a New Classification of Snake Venom Metalloprotease Subgroups. Toxicon 2008, 52, 807–816. [Google Scholar] [CrossRef]
- Assakura, M.T.; Silva, C.A.; Mentele, R.; Camargo, A.C.M.; Serrano, S.M.T. Molecular Cloning and Expression of Structural Domains of Bothropasin, a P-III Metalloproteinase from the Venom of Bothrops jararaca. Toxicon 2003, 41, 217–227. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M.T. Structural Considerations of the Snake Venom Metalloproteinases, Key Members of the M12 Reprolysin Family of Metalloproteinases. Toxicon 2005, 45, 969–985. [Google Scholar] [CrossRef]
- Mendes, M.M.; Vieira, S.A.P.B.; Gomes, M.S.R.; Paula, V.F.; Alcântara, T.M.; Homsi-Brandeburgo, M.I.; Dos Santos, J.I.; Magro, A.J.; Fontes, M.R.M.; Rodrigues, V.M. Triacontyl P-Coumarate: An Inhibitor of Snake Venom Metalloproteinases. Phytochemistry 2013, 86, 72–82. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M.T. Timeline of Key Events in Snake Venom Metalloproteinase Research. J. Proteom. 2009, 72, 200–209. [Google Scholar] [CrossRef]
- Takeda, S. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins 2016, 8, 155. [Google Scholar] [CrossRef]
- Olaoba, O.T.; Karina dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake Venom Metallopro-786 teinases (SVMPs): A Structure-Function Update. Toxicon X 2020, 7, 100052. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef]
- Takeda, S.; Takeya, H.; Iwanaga, S. Snake Venom Metalloproteinases: Structure, Function and Relevance to the Mammalian ADAM/ADAMTS Family Proteins. Biochim. Biophys. Acta Proteins Proteom. 2012, 1824, 164–176. [Google Scholar] [CrossRef]
- Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional Intracellular Matrix Metalloproteinases: Implications in Disease. FEBS J. 2021, 288, 7162–7182. [Google Scholar] [CrossRef]
- Nagase, H.; Woessner, J.F. Matrix Metalloproteinases. J. Biol. Chem. 1999, 274, 21491. [Google Scholar] [CrossRef]
- Bickler, P.E. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins 2020, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Wojtowicz-Praga, S.M.; Dickson, R.B.; Hawkins, M.J. Matrix Metalloproteinase Inhibitors. Investig. New Drugs 1997, 15, 61–75. [Google Scholar] [CrossRef]
- Herrera, C.; Escalante, T.; Rucavado, A.; Fox, J.W.; Gutiérrez, J.M. Metalloproteinases in Disease: Identification of Biomarkers of Tissue Damage through Proteomics. Expert. Rev. Proteom. 2018, 15, 967–982. [Google Scholar] [CrossRef]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, J.; Nie, W.; Armando, I.; Han, F. ADAMs Family in Kidney Physiology and Pathology. eBioMedicine 2021, 72, 103628. [Google Scholar] [CrossRef]
- Bustillo, S.; García-Denegri, M.E.; Gay, C.; Van De Velde, A.C.; Acosta, O.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Leiva, L. Phospholipase A2 Enhances the Endothelial Cell Detachment Effect of a Snake Venom Metalloproteinase in the Absence of Catalysis. Chem. Biol. Interact. 2015, 240, 30–36. [Google Scholar] [CrossRef]
- Watanabe, L.; Shannon, J.D.; Valente, R.H.; Rucavado, A.; Alape-Girón, A.; Kamiguti, A.S.; Theakston, R.D.G.; Fox, J.W.; Gutiérrez, J.M.; Arni, R.K. Amino Acid Sequence and Crystal Structure of BaP1, a Metalloproteinase from Bothrops asper Snake Venom That Exerts Multiple Tissue-damaging Activities. Protein Sci. 2003, 12, 2273–2281. [Google Scholar] [CrossRef]
- Clare, R.H.; Hall, S.R.; Patel, R.N.; Casewell, N.R. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends Pharmacol. Sci. 2021, 42, 340–353. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Gutiérrez, J.M. Effect of the Metalloproteinase Inhibitor Batimastat in the Systemic Toxicity Induced by Bothrops asper Snake Venom: Understanding the Role of Metalloproteinases in Envenomation. Toxicon 2004, 43, 417–424. [Google Scholar] [CrossRef]
- Shivashankar, S.; Sangeetha, M.K. The Natural Ligand for Metalloproteinase-A Multifaceted Drug Target. Appl. Biochem. Biotechnol. 2022, 194, 1716–1739. [Google Scholar] [CrossRef]
- Dias da Silva, W.; De Andrade, S.A.; Megale, Â.A.A.; De Souza, D.A.; Sant’Anna, O.A.; Magnoli, F.C.; Guidolin, F.R.; Godoi, K.S.; Saladini, L.Y.; Spencer, P.J.; et al. Antibodies as Snakebite Antivenoms: Past and Future. Toxins 2022, 14, 606. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Lomonte, B. Phospholipases A2: Unveiling the Secrets of a Functionally Versatile Group of 825 Snake Venom Toxins. Toxicon 2013, 62, 27–39. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Albulescu, L.O.; Clare, R.H.; Casewell, N.R.; Abd El-Aziz, T.M.; Escalante, T.; Rucavado, A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins 2021, 13, 451. [Google Scholar] [CrossRef]
- Preciado, L.M.; Rey-Suárez, P.; Henao, I.C.; Pereañez, J.A. Betulinic, Oleanolic and Ursolic Acids Inhibit the Enzymatic and Biological Effects Induced by a P-I Snake Venom Metalloproteinase. Chem. Biol. Interact. 2018, 279, 219–226. [Google Scholar] [CrossRef]
- Camodeca, C.; Cuffaro, D.; Nuti, E.; Rossello, A. ADAM Metalloproteinases as Potential Drug Targets. Curr. Med. Chem. 2018, 26, 2661–2689. [Google Scholar] [CrossRef] [PubMed]
- Preciado, L.M.; Pereañez, J.A.; Comer, J. Potential of Matrix Metalloproteinase Inhibitors for the Treatment of Local Tissue Damage Induced by a Type P-I Snake Venom Metalloproteinase. Toxins 2019, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Ravi, K.; Verma, A.K.; Fatima, K.; Hasanain, M.; Singh, A.; Sarkar, J.; Luqman, S.; Chanda, D.; Negi, A.S. Synthesis of Pharmacologically Important Naphthoquinones and Anticancer Activity of 2-Benzyllawsone through DNA Topoisomerase-II Inhibition. Bioorg. Med. Chem. 2017, 25, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qu, Y.; Niu, B. Design, Synthesis and Biological Evaluation of Lapachol Derivatives Possessing Indole Scaffolds as Topoisomerase I Inhibitors. Bioorg. Med. Chem. 2016, 24, 5781–5786. [Google Scholar] [CrossRef]
- Murakami, M.T.; Arruda, E.Z.; Melo, P.A.; Martinez, A.B.; Calil-Eliás, S.; Tomaz, M.A.; Lomonte, B.; Gutiérrez, J.M.; Arni, R.K. Inhibition of Myotoxic Activity of Bothrops asper Myotoxin II by the Anti-Trypanosomal Drug Suramin. J. Mol. Biol. 2005, 350, 416–426. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Fleming, H.; Noone, D.; Preston, R.J.S. Unraveling Coagulation Factor–Mediated Cellular Sig-859 naling. J. Thromb. Haemost. 2023, 21, 3342–3353. [Google Scholar] [CrossRef]
- Markland, F.S.; Swenson, S. Snake Venom Metalloproteinases. Toxicon 2013, 62, 3–18. [Google Scholar] [CrossRef]
- Bruton, L.L.; Knollmann, B.C. Drug Discovery: From Medicinal Plants to Computer-Aided Drugs Design. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 14th ed.; McGraw Hill: New York, NY, USA, 2023; pp. 3–22. [Google Scholar]
Keywords | PubMed | ScienceDirect | Web of Science |
---|---|---|---|
Plants and snakebites | 485 | 1880 | 393 |
Plants and snake venom | 549 | 4167 | 544 |
Snakebites | 6093 | 4082 | 3531 |
Bothrops envenomation | 2231 | 1879 | 643 |
Bothrops and metalloproteinases | 460 | 1182 | 521 |
Folk medicine and snakebites | 386 | 584 | 61 |
Metalloproteinases | 147,270 | 105,463 | 52,299 |
Snake venom metalloproteinases | 1550 | 2360 | 1022 |
Lapachol | 258 | 820 | 550 |
Lapachol and metalloproteinases | 3 | 24 | 2 |
Lapachol and folk medicine | 12 | 50 | 10 |
Metalloproteinases inhibitors | 48,839 | 89,688 | 29,055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, P.A.; Nogueira-Souza, P.D.; Romanelli, M.A.; Strauch, M.A.; Cesar, M.d.O.; Monteiro-Machado, M.; Patrão-Neto, F.C.; Gonsalez, S.R.; Siqueira, N.G.; Schaeffer, E.; et al. Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review. Int. J. Mol. Sci. 2025, 26, 3950. https://doi.org/10.3390/ijms26093950
Melo PA, Nogueira-Souza PD, Romanelli MA, Strauch MA, Cesar MdO, Monteiro-Machado M, Patrão-Neto FC, Gonsalez SR, Siqueira NG, Schaeffer E, et al. Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review. International Journal of Molecular Sciences. 2025; 26(9):3950. https://doi.org/10.3390/ijms26093950
Chicago/Turabian StyleMelo, Paulo A., Pâmella Dourila Nogueira-Souza, Mayara Amorim Romanelli, Marcelo A. Strauch, Marcelo de Oliveira Cesar, Marcos Monteiro-Machado, Fernando Chagas Patrão-Neto, Sabrina R. Gonsalez, Nilton Ghiotti Siqueira, Edgar Schaeffer, and et al. 2025. "Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review" International Journal of Molecular Sciences 26, no. 9: 3950. https://doi.org/10.3390/ijms26093950
APA StyleMelo, P. A., Nogueira-Souza, P. D., Romanelli, M. A., Strauch, M. A., Cesar, M. d. O., Monteiro-Machado, M., Patrão-Neto, F. C., Gonsalez, S. R., Siqueira, N. G., Schaeffer, E., Costa, P. R. R., & da Silva, A. J. M. (2025). Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review. International Journal of Molecular Sciences, 26(9), 3950. https://doi.org/10.3390/ijms26093950