Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia
Abstract
:1. Introduction
2. Results
2.1. Mitochondrial Mass
2.2. Mitochondrial Complex I (NADH:ubiquinone oxidoreductase)
2.3. Mitochondrial Complex II (Succinate dehydrogenase, SDH)
2.4. Mitochondrial Complex III (Ubiquinol-cytochrome c reductase)
2.5. Mitochondrial Complex IV (Cytochrome c oxidase, COX)
2.6. Mitochondrial Complex V (ATP synthase)
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Immunohistochemistry
4.3. Western Blot
4.4. OXPHOS Enzyme Activity
4.5. mtDNA Copy Number
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, O.R.; Fowden, A.L. Placental metabolism: Substrate requirements and the response to stress. Reprod. Domest. Anim. 2016, 51, 25–35. [Google Scholar] [CrossRef]
- Marin, R.; Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Sobrevia, L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165961. [Google Scholar] [CrossRef]
- Knofler, M.; Haider, S.; Saleh, L.; Pollheimer, J.; Gamage, T.; James, J. Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell Mol. Life Sci. 2019, 76, 3479–3496. [Google Scholar] [CrossRef] [PubMed]
- Noris, M.; Perico, N.; Remuzzi, G. Mechanisms of disease: Pre-eclampsia. Nat. Clin. Pract. Nephrol. 2005, 1, 98–114, quiz 120. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Q.; Zhang, L. Mitochondrial Dysfunction in the Pathogenesis of Preeclampsia. Curr. Hypertens. Rep. 2022, 24, 157–172. [Google Scholar] [CrossRef]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Vangrieken, P.; Al-Nasiry, S.; Bast, A.; Leermakers, P.A.; Tulen, C.B.M.; Schiffers, P.M.H.; van Schooten, F.J.; Remels, A.H.V. Placental Mitochondrial Abnormalities in Preeclampsia. Reprod. Sci. 2021, 28, 2186–2199. [Google Scholar] [CrossRef]
- Yung, H.W.; Colleoni, F.; Dommett, E.; Cindrova-Davies, T.; Kingdom, J.; Murray, A.J.; Burton, G.J. Noncanonical mitochondrial unfolded protein response impairs placental oxidative phosphorylation in early-onset preeclampsia. Proc. Natl. Acad. Sci. USA 2019, 116, 18109–18118. [Google Scholar] [CrossRef]
- Aye, I.; Aiken, C.E.; Charnock-Jones, D.S.; Smith, G.C.S. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S928–S944. [Google Scholar] [CrossRef]
- Hay, W.W., Jr. Energy and substrate requirements of the placenta and fetus. Proc. Nutr. Soc. 1991, 50, 321–336. [Google Scholar] [CrossRef]
- Santoro, D.; Di Bella, G.; Toscano, A.; Musumeci, O.; Buemi, M.; Piccoli, G.B. Mitochondrial Disease (MELAS Syndrome) Discovered at the Start of Pregnancy in a Patient with Advanced CKD: A Clinical and Ethical Challenge. J. Clin. Med. 2019, 8, 303. [Google Scholar] [CrossRef]
- Tang, J.X.; Thompson, K.; Taylor, R.W.; Olahova, M. Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int. J. Mol. Sci. 2020, 21, 3820. [Google Scholar] [CrossRef] [PubMed]
- Annesi, L.; Tossetta, G.; Borghi, C.; Piani, F. The Role of Xanthine Oxidase in Pregnancy Complications: A Systematic Review. Antioxidants 2024, 13, 1234. [Google Scholar] [CrossRef] [PubMed]
- Glazer, L.C.; Maguire, A.; Blumenkranz, M.S.; Trese, M.T.; Green, W.R. Improved surgical treatment of familial exudative vitreoretinopathy in children. Am. J. Ophthalmol. 1995, 120, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Holland, O.J.; Cuffe, J.S.M.; Dekker Nitert, M.; Callaway, L.; Kwan Cheung, K.A.; Radenkovic, F.; Perkins, A.V. Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery. Cell Death Dis. 2018, 9, 1150. [Google Scholar] [CrossRef]
- Vishnyakova, P.A.; Volodina, M.A.; Tarasova, N.V.; Marey, M.V.; Tsvirkun, D.V.; Vavina, O.V.; Khodzhaeva, Z.S.; Kan, N.E.; Menon, R.; Vysokikh, M.Y.; et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci. Rep. 2016, 6, 32410. [Google Scholar] [CrossRef]
- Vaka, R.; Deer, E.; Cunningham, M.; McMaster, K.M.; Wallace, K.; Cornelius, D.C.; Amaral, L.M.; LaMarca, B. Characterization of Mitochondrial Bioenergetics in Preeclampsia. J. Clin. Med. 2021, 10, 5063. [Google Scholar] [CrossRef]
- Vercellino, I.; Sazanov, L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022, 23, 141–161. [Google Scholar] [CrossRef]
- Mayr, J.A.; Haack, T.B.; Freisinger, P.; Karall, D.; Makowski, C.; Koch, J.; Feichtinger, R.G.; Zimmermann, F.A.; Rolinski, B.; Ahting, U.; et al. Spectrum of combined respiratory chain defects. J. Inherit. Metab. Dis. 2015, 38, 629–640. [Google Scholar] [CrossRef]
- Morant-Ferrando, B.; Jimenez-Blasco, D.; Alonso-Batan, P.; Agulla, J.; Lapresa, R.; Garcia-Rodriguez, D.; Yunta-Sanchez, S.; Lopez-Fabuel, I.; Fernandez, E.; Carmeliet, P.; et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat. Metab. 2023, 5, 1290–1302. [Google Scholar] [CrossRef]
- Wang, Y.; Mohsen, A.W.; Mihalik, S.J.; Goetzman, E.S.; Vockley, J. Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J. Biol. Chem. 2010, 285, 29834–29841. [Google Scholar] [CrossRef] [PubMed]
- Jahan, F.; Vasam, G.; Cariaco, Y.; Nik-Akhtar, A.; Green, A.; Menzies, K.J.; Bainbridge, S.A. NAD+ depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci. Alliance 2024, 7, e202302505. [Google Scholar] [CrossRef]
- Li, F.; Fushima, T.; Oyanagi, G.; Townley-Tilson, H.W.; Sato, E.; Nakada, H.; Oe, Y.; Hagaman, J.R.; Wilder, J.; Li, M.; et al. Nicotinamide benefits both mothers and pups in two contrasting mouse models of preeclampsia. Proc. Natl. Acad. Sci. USA 2016, 113, 13450–13455. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Pickel, K.; Nanda, M.; Gajic, M.; Cervar-Zivkovic, M. Preeclampsia and the Antiphospholipid Syndrome. Biomedicines 2023, 11, 2298. [Google Scholar] [CrossRef]
- Larosa, M.; Le Guern, V.; Morel, N.; Belhocine, M.; Ruffatti, A.; Silva, N.M.; Paule, R.; Mouthon, L.; Dreyfus, M.; Piette, J.C.; et al. Evaluation of the severe preeclampsia classification criterion for antiphospholipid syndrome in a study of 40 patients. Arthritis Res. Ther. 2021, 23, 134. [Google Scholar] [CrossRef]
- Bustamante, J.G.; Goyal, A.; Rout, P.; Singhal, M. Antiphospholipid Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- McKenzie, M.; Lazarou, M.; Thorburn, D.R.; Ryan, M.T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J. Mol. Biol. 2006, 361, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Jussupow, A.; Di Luca, A.; Kaila, V.R.I. How cardiolipin modulates the dynamics of respiratory complex I. Sci. Adv. 2019, 5, eaav1850. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Ding, X.; Wang, Y.; Han, Y. Effects of serum from patients with early-onset pre-eclampsia, HELLP syndrome, and antiphospholipid syndrome on fatty acid oxidation in trophoblast cells. Arch. Gynecol. Obstet. 2015, 292, 559–567. [Google Scholar] [CrossRef]
- Zhou, X.; Han, T.L.; Chen, H.; Baker, P.N.; Qi, H.; Zhang, H. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp. Cell Res. 2017, 359, 195–204. [Google Scholar] [CrossRef]
- Bartha, J.L.; Visiedo, F.; Fernandez-Deudero, A.; Bugatto, F.; Perdomo, G. Decreased mitochondrial fatty acid oxidation in placentas from women with preeclampsia. Placenta 2012, 33, 132–134. [Google Scholar] [CrossRef]
- Ricci, J.E.; Munoz-Pinedo, C.; Fitzgerald, P.; Bailly-Maitre, B.; Perkins, G.A.; Yadava, N.; Scheffler, I.E.; Ellisman, M.H.; Green, D.R. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004, 117, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Martinvalet, D.; Dykxhoorn, D.M.; Ferrini, R.; Lieberman, J. Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 2008, 133, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J. Granzyme A activates another way to die. Immunol. Rev. 2010, 235, 93–104. [Google Scholar] [CrossRef]
- Zhou, Z.; He, H.; Wang, K.; Shi, X.; Wang, Y.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y.; et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020, 368, eaaz7548. [Google Scholar] [CrossRef]
- de Groot, C.J.; van der Mast, B.J.; Visser, W.; De Kuiper, P.; Weimar, W.; Van Besouw, N.M. Preeclampsia is associated with increased cytotoxic T-cell capacity to paternal antigens. Am. J. Obstet. Gynecol. 2010, 203, 496.e1–496.e6. [Google Scholar] [CrossRef] [PubMed]
- Teran, E.; Hernandez, I.; Tana, L.; Teran, S.; Galaviz-Hernandez, C.; Sosa-Macias, M.; Molina, G.; Calle, A. Mitochondria and Coenzyme Q10 in the Pathogenesis of Preeclampsia. Front. Physiol. 2018, 9, 1561. [Google Scholar] [CrossRef]
- Teran, E.; Hernandez, I.; Nieto, B.; Tavara, R.; Ocampo, J.E.; Calle, A. Coenzyme Q10 supplementation during pregnancy reduces the risk of pre-eclampsia. Int. J. Gynaecol. Obstet. 2009, 105, 43–45. [Google Scholar] [CrossRef]
- Weinberg, S.E.; Singer, B.D.; Steinert, E.M.; Martinez, C.A.; Mehta, M.M.; Martinez-Reyes, I.; Gao, P.; Helmin, K.A.; Abdala-Valencia, H.; Sena, L.A.; et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 2019, 565, 495–499. [Google Scholar] [CrossRef]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef]
- Onuora, S. Mitochondrial fumarate implicated in inflammation. Nat. Rev. Rheumatol. 2023, 19, 257. [Google Scholar] [CrossRef]
- Harber, K.J.; de Goede, K.E.; Verberk, S.G.S.; Meinster, E.; de Vries, H.E.; van Weeghel, M.; de Winther, M.P.J.; Van den Bossche, J. Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites 2020, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef]
- Huang, H.; Li, G.; He, Y.; Chen, J.; Yan, J.; Zhang, Q.; Li, L.; Cai, X. Cellular succinate metabolism and signaling in inflammation: Implications for therapeutic intervention. Front. Immunol. 2024, 15, 1404441. [Google Scholar] [CrossRef]
- Laukka, T.; Mariani, C.J.; Ihantola, T.; Cao, J.Z.; Hokkanen, J.; Kaelin, W.G., Jr.; Godley, L.A.; Koivunen, P. Fumarate and Succinate Regulate Expression of Hypoxia-inducible Genes via TET Enzymes. J. Biol. Chem. 2016, 291, 4256–4265. [Google Scholar] [CrossRef]
- Lesnefsky, E.J.; Chen, Q.; Hoppel, C.L. Mitochondrial Metabolism in Aging Heart. Circ. Res. 2016, 118, 1593–1611. [Google Scholar] [CrossRef] [PubMed]
- Soro-Arnaiz, I.; Li, Q.O.Y.; Torres-Capelli, M.; Melendez-Rodriguez, F.; Veiga, S.; Veys, K.; Sebastian, D.; Elorza, A.; Tello, D.; Hernansanz-Agustin, P.; et al. Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Rep. 2016, 16, 2991–3002. [Google Scholar] [CrossRef]
- Bao, S.; Yin, T.; Liu, S. Ovarian aging: Energy metabolism of oocytes. J. Ovarian Res. 2024, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Xiang, W. The impact of mitochondrial dysfunction on ovarian aging. J. Transl. Med. 2025, 23, 211. [Google Scholar] [CrossRef]
- Wasserzug-Pash, P.; Rothman, R.; Reich, E.; Zecharyahu, L.; Schonberger, O.; Weiss, Y.; Srebnik, N.; Cohen-Hadad, Y.; Weintraub, A.; Ben-Ami, I.; et al. Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 2022, 21, e13568. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.; Shen, X.; Lee, Y.; Song, X.; Shu, C.; Wu, L.H.; Pakkiri, L.S.; Lim, P.L.; Zhang, X.; et al. Rejuvenation of aged oocyte through exposure to young follicular microenvironment. Nat. Aging 2024, 4, 1194–1210. [Google Scholar] [CrossRef]
- Feichtinger, R.G.; Zimmermann, F.; Mayr, J.A.; Neureiter, D.; Hauser-Kronberger, C.; Schilling, F.H.; Jones, N.; Sperl, W.; Kofler, B. Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer 2010, 10, 149. [Google Scholar] [CrossRef]
- Aminzadeh-Gohari, S.; Weber, D.D.; Catalano, L.; Feichtinger, R.G.; Kofler, B.; Lang, R. Targeting Mitochondria in Melanoma. Biomolecules 2020, 10, 1395. [Google Scholar] [CrossRef] [PubMed]
- Morscher, R.J.; Aminzadeh-Gohari, S.; Feichtinger, R.G.; Mayr, J.A.; Lang, R.; Neureiter, D.; Sperl, W.; Kofler, B. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS ONE 2015, 10, e0129802. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, R.G.; Neureiter, D.; Kemmerling, R.; Mayr, J.A.; Kiesslich, T.; Kofler, B. Low VDAC1 Expression Is Associated with an Aggressive Phenotype and Reduced Overall Patient Survival in Cholangiocellular Carcinoma. Cells 2019, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Zech, M.; Kopajtich, R.; Steinbrucker, K.; Bris, C.; Gueguen, N.; Feichtinger, R.G.; Achleitner, M.T.; Duzkale, N.; Perivier, M.; Koch, J.; et al. Variants in Mitochondrial ATP Synthase Cause Variable Neurologic Phenotypes. Ann. Neurol. 2022, 91, 225–237. [Google Scholar] [CrossRef]
- van der Ven, A.T.; Cabrera-Orefice, A.; Wente, I.; Feichtinger, R.G.; Tsiakas, K.; Weiss, D.; Bierhals, T.; Scholle, L.; Prokisch, H.; Kopajtich, R.; et al. Expanding the phenotypic and biochemical spectrum of NDUFAF3-related mitochondrial disease. Mol. Genet. Metab. 2023, 140, 107675. [Google Scholar] [CrossRef]
- Vidali, S.; Feichtinger, R.G.; Emberger, M.; Brunner, S.M.; Gaisbauer, S.; Blatt, T.; Smiles, W.J.; Kreutzer, C.; Weise, J.M.; Kofler, B. Ageing is associated with a reduction in markers of mitochondrial energy metabolism in the human epidermis. Exp. Dermatol. 2023, 32, 900–905. [Google Scholar] [CrossRef]
- Zimmermann, F.A.; Mayr, J.A.; Neureiter, D.; Feichtinger, R.; Alinger, B.; Jones, N.D.; Eder, W.; Sperl, W.; Kofler, B. Lack of complex I is associated with oncocytic thyroid tumours. Br. J. Cancer 2009, 100, 1434–1437. [Google Scholar] [CrossRef]
- Huber, S.; Fitzner, T.; Feichtinger, R.G.; Hochmann, S.; Kraus, T.; Sotlar, K.; Kofler, B.; Varga, M. Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma. Cells 2023, 12, 1678. [Google Scholar] [CrossRef]
- Feichtinger, R.G.; Weis, S.; Mayr, J.A.; Zimmermann, F.; Geilberger, R.; Sperl, W.; Kofler, B. Alterations of oxidative phosphorylation complexes in astrocytomas. Glia 2014, 62, 514–525. [Google Scholar] [CrossRef]
- Berger, A.; Mayr, J.A.; Meierhofer, D.; Fotschl, U.; Bittner, R.; Budka, H.; Grethen, C.; Huemer, M.; Kofler, B.; Sperl, W. Severe depletion of mitochondrial DNA in spinal muscular atrophy. Acta Neuropathol. 2003, 105, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Clima, R.; Busch, J.; Rabien, A.; Kilic, E.; Villegas, S.L.; Timmermann, B.; Attimonelli, M.; Jung, K.; Meierhofer, D. Decreased Mitochondrial DNA Content Drives OXPHOS Dysregulation in Chromophobe Renal Cell Carcinoma. Cancer Res. 2020, 80, 3830–3840. [Google Scholar] [CrossRef] [PubMed]
- Acham-Roschitz, B.; Plecko, B.; Lindbichler, F.; Bittner, R.; Mache, C.J.; Sperl, W.; Mayr, J.A. A novel mutation of the RRM2B gene in an infant with early fatal encephalomyopathy, central hypomyelination, and tubulopathy. Mol. Genet. Metab. 2009, 98, 300–304. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Group | Age at Birth | BMI | Pregnancy Duration | Number of Pregnancies | Number of Births | Birth Weight |
---|---|---|---|---|---|---|---|
CTRL 1 | CTRL | 30 | 31.6 | 38 + 6 | 1 | 1 | 3510 |
CTRL 2 | CTRL | 37 | 24.9 | 39 + 2 | 2 | 2 | 3850 |
CTRL 3 | CTRL | 26 | 34 | 39 | 2 | 2 | 3890 |
CTRL 4 | CTRL | 39 | 25 | 39 | 3 | 2 | 3320 |
CTRL 5 | CTRL | 34 | 29.4 | 38 | 3 | 3 | 3210 |
CTRL 6 | CTRL | 23 | 29.7 | 39 + 5 | 2 | 1 | 3760 |
CTRL 7 | CTRL | 32 | 27 | 39 | 2 | 2 | 3090 |
CTRL 8 | CTRL | 30 | 27,3 | 38 + 5 | 3 | 3 | 3460 |
CTRL 9 | CTRL | 31 | 27.9 | 38 + 4 | 1 | 1 | 3300 |
CTRL 10 | CTRL | 35 | 26.1 | 39 | 4 | 2 | 3680 |
CTRL 11 | CTRL | 39 | 31.6 | 39 | 1 | 1 | 3260 |
CTRL 12 | CTRL | 30 | 26.1 | 39 | 2 | 2 | 3320 |
CTRL 13 | CTRL | 33 | 26,3 | 38 + 6 | 3 | 3 | 4040 |
mean ± SD | - | 32.23 ± 4.71 | 28.22 ± 2.83 | 38 + 6.5 ± 0.39 | - | - | 3515 ± 300 |
eoPE 1 | eoPE | 35 | 26.1 | 26 | 1 | 1 | 633 |
eoPE 2 | eoPE | 28 | 35 | 32 + 6 | 2 | 2 | 2008 |
eoPE 3 | eoPE | 30 | 40.4 | 30 + 3 | 1 | 1 | 1177 |
eoPE 4 | eoPE | 41 | NA | 32 | 1 | 1 | 1018 |
eoPE 5 | eoPE | 37 | 21.6 | 30 + 6 | 6 | 3 | 699 |
eoPE 6 | eoPE | 24 | 22.4 | 32 + 5 | 1 | 1 | 1300 |
eoPE 7 | eoPE | 22 | 27.2 | 27 + 1 | 1 | 1 | 850 |
eoPE 8 | eoPE | 36 | 52.9 | 33 + 5 | 5 | 3 | 1970 |
eoPE 9 | eoPE | 30 | 23.9 | 29 + 1 | 2 | 1 | 950 |
eoPE 10 | eoPE | 32 | 23.6 | 23 + 4 | 1 | 1 | 355 |
mean ± SD | - | 31.5 ± 5.93 | 30.34 ± 10.52 | 29 + 5.9 ± 3.34 | - | - | 1096 ± 542.9 |
loPE 1 | loPE | 29 | 40.1 | 39 | 1 | 1 | 2690 |
loPE 2 | loPE | 34 | NA | 38 + 1 | 1 | 1 | 2870 |
loPE 3 | loPE | 34 | NA | 40 + 5 | 1 | 1 | 3540 |
loPE 4 | loPE | 28 | 32.3 | 39 | 1 | 1 | 3530 |
loPE 5 | loPE | 31 | 45.2 | 34 | 1 | 1 | 1164 |
loPE 6 | loPE | 35 | 32 | 34 | 1 | 1 | 1620 |
loPE 7 | loPE | 47 | 32 | 36 + 5 | 1 | 1 | 1820 |
loPE 8 | loPE | 25 | 30.4 | 34 | 2 | 2 | 1150 |
mean ± SD | - | 32.88 ± 6.66 | 35.33 ± 5.93 | 34 + 6.6 ± 2.68 | - | - | 2298 ± 988 |
Correlation | Method | r-Value | p-Value | n |
---|---|---|---|---|
Controls | ||||
Complex II vs pregnancy duration | IHC | 0.638 | 0.035 | 11 |
WB/VDAC1 | 0.009 | 0.982 | 9 | |
Enzyme activity/CS | 0.212 | 0.509 | 12 | |
eoPE | ||||
Complex IV vs age at birth | IHC | 0.542 | 0.166 | 8 |
WB/VDAC1 | 0.327 | 0.356 | 10 | |
Enzyme activity/CS | −0.695 | 0.026 | 10 | |
loPE | ||||
Complex I vs pregnancy duration | IHC | −0.326 | 0.430 | 8 |
WB/VDAC1 | 0.854 | 0.007 | 8 | |
Enzyme activity/CS | −0.556 | 0.153 | 8 | |
Complex I vs birth weight | IHC | −0.336 | 0.416 | 8 |
WB/VDAC1 | 0.876 | 0.004 | 8 | |
Enzyme activity/CS | −0.615 | 0.104 | 8 | |
Complex II vs pregnancy duration | IHC | 0.023 | 0.958 | 8 |
WB/VDAC1 | 0.757 | 0.030 | 8 | |
Enzyme activity/CS | 0.179 | 0.671 | 8 | |
Complex II vs birth weight | IHC | −0.076 | 0.858 | 8 |
WB/VDAC1 | 0.766 | 0.027 | 8 | |
Enzyme activity/CS | 0.022 | 0.959 | 8 | |
Complex III vs birth weight | IHC | −0.776 | 0.024 | 8 |
WB/VDAC1 | 0.384 | 0.347 | 8 | |
Enzyme activity/CS | −0.351 | 0.394 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehenauer, T.; Jaksch-Bogensperger, H.; Huber, S.; Weghuber, D.; Fischer, T.; Mayr, J.A.; Kofler, B.; Neumayer, B.; Gharehbaghi, D.; Duggan-Peer, M.; et al. Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia. Int. J. Mol. Sci. 2025, 26, 3951. https://doi.org/10.3390/ijms26093951
Lehenauer T, Jaksch-Bogensperger H, Huber S, Weghuber D, Fischer T, Mayr JA, Kofler B, Neumayer B, Gharehbaghi D, Duggan-Peer M, et al. Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia. International Journal of Molecular Sciences. 2025; 26(9):3951. https://doi.org/10.3390/ijms26093951
Chicago/Turabian StyleLehenauer, Theresa, Heidi Jaksch-Bogensperger, Sara Huber, Daniel Weghuber, Thorsten Fischer, Johannes A. Mayr, Barbara Kofler, Bettina Neumayer, Daniel Gharehbaghi, Michaela Duggan-Peer, and et al. 2025. "Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia" International Journal of Molecular Sciences 26, no. 9: 3951. https://doi.org/10.3390/ijms26093951
APA StyleLehenauer, T., Jaksch-Bogensperger, H., Huber, S., Weghuber, D., Fischer, T., Mayr, J. A., Kofler, B., Neumayer, B., Gharehbaghi, D., Duggan-Peer, M., Brandstetter, M., Fazelnia, C., & Feichtinger, R. G. (2025). Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia. International Journal of Molecular Sciences, 26(9), 3951. https://doi.org/10.3390/ijms26093951