Endometriosis: Challenges in Clinical Molecular Diagnostics and Treatment
Abstract
:1. Introduction
Epidemiology of Endometriosis
2. Clinical Aspects of Endometriosis
2.1. Pathogenesis
2.2. Classification
2.2.1. Revised Classification by the American Society for Reproductive Medicine (r-ASRM)
- Stage I: minimal, isolated implants without adhesions;
- Stage II: mild, superficial implants of less than 5 cm or on the surface of the peritoneum and ovaries;
- Stage III: moderate, multiple implants, that are superficial or invasive, with evident tubal or peri-ovarian adhesions;
- Stage IV: severe, multiple implants both superficial and deep, ovarian endometrium with extensive firm and membranous adhesions [32].
2.2.2. ENZIAN Classification
2.3. Clinical Symptoms and Diagnostic Examination
2.4. Endometriosis Fertility Index (EFI)
3. Molecular Aspects of Endometriosis
3.1. Genetic Profile
3.2. Epigenetic Profile
3.3. Immunological and Inflammation Profile
3.4. Hormonal Profile
3.5. Angiogenic Profile
3.6. Invasive and Migratory Profile
3.7. Fibrosis Profile
4. Endometriosis Treatment
4.1. Treatment Associated with Pain
- The first line of treatment is non-steroidal anti-inflammatory drugs (NSAIDs) and non-steroidal analgesics. According to the Cochrane Gynecology and Fertility Group’s Specialized Register of Controlled Trials, all NSAIDs are confirmed to be more effective than any other non-steroidal analgesics [110]. However, isolated use of NSAIDs does not prevent recurrence; therefore, management of acute symptoms is recommended [111].
- Hormonal treatment: The use of progestogen-only or combined oral contraceptives, as well as vaginal, transdermal, or injectable contraceptives significantly reduce dysmenorrhea and dyspreunia and substantially improve patients’ quality of life [112]. Likewise, the use of a progestogen-releasing intrauterine system and subdermal implants are a viable option for patients with pain associated with endometriosis [113].
- Gonadotropin-releasing hormone (GnRH) antagonists and agonists are used as second- and third-line treatments due to their side effects [114]. However, combined therapy, using an oral contraceptive and GnRH agonist currently approved in Europe, is an appropriate alternative for pain control and possible disease progression without causing the side effects of pure GnRH agonists or antagonists [114].
- Surgery is considered if other medical treatments fail to control pain. When surgery is performed, all endometriotic foci should be excised or ablated in a single surgical procedure [115]. Current guidelines (ESHRE) recommend that each patient is assessed individually to choose the treatment option that will most improve their quality of life, whether it be clinical or surgical treatment [115].
4.2. Treatment for Endometriosis Related Infertility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rolla, E. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Research 2019, 8, 529. [Google Scholar] [CrossRef]
- Mechsner, S. Endometriosis, an Ongoing Pain-Step-by-Step Treatment. J. Clin. Med. 2022, 11, 467. [Google Scholar] [CrossRef]
- Wang, P.H.; Liu, C.H.; Yang, S.T. Endometriosis: A life-long journey to women. Taiwan. J. Obstet. Gynecol. 2024, 63, 443–445. [Google Scholar] [CrossRef]
- Armour, M.; Lawson, K.; Wood, A.; Smith, C.A.; Abbott, J. The cost of illness and economic burden of endometriosis and chronic pelvic pain in Australia: A national online survey. PLoS ONE 2019, 14, e0223316. [Google Scholar] [CrossRef]
- Soliman, A.M.; Fuldeore, M.; Snabes, M.C. Factors Associated with Time to Endometriosis Diagnosis in the United States. J. Womens Health 2017, 26, 788–797. [Google Scholar] [CrossRef]
- Staal, A.H.; van der Zanden, M.; Nap, A.W. Diagnostic Delay of Endometriosis in the Netherlands. Gynecol. Obstet. Investig. 2016, 81, 321–324. [Google Scholar] [CrossRef]
- Petraglia, F.; Vannuccini, S.; Santulli, P.; Marcellin, L.; Chapron, C. An update for endometriosis management: A position statement. J. Endometr. Uterine Disord. 2024, 6, 100062. [Google Scholar] [CrossRef]
- Smolarz, B.; Szyllo, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef]
- Taylor, H.S.; Kotlyar, A.M.; Flores, V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021, 397, 839–852. [Google Scholar] [CrossRef]
- Harder, C.; Velho, R.V.; Brandes, I.; Sehouli, J.; Mechsner, S. Assessing the true prevalence of endometriosis: A narrative review of literature data. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2024, 167, 883–900. [Google Scholar] [CrossRef]
- Sarria-Santamera, A.; Orazumbekova, B.; Terzic, M.; Issanov, A.; Chaowen, C.; Asunsolo-Del-Barco, A. Systematic Review and Meta-Analysis of Incidence and Prevalence of Endometriosis. Healthcare 2020, 9, 29. [Google Scholar] [CrossRef]
- Eskenazi, B.; Mocarelli, P.; Warner, M.; Samuels, S.; Vercellini, P.; Olive, D.; Needham, L.L.; Patterson, D.G., Jr.; Brambilla, P.; Gavoni, N.; et al. Serum dioxin concentrations and endometriosis: A cohort study in Seveso, Italy. Environ. Health Perspect. 2002, 110, 629–634. [Google Scholar] [CrossRef]
- Gohring, J.; Drewes, M.; Kalder, M.; Kostev, K. Germany Endometriosis Pattern Changes; Prevalence and Therapy over 2010 and 2019 Years: A Retrospective Cross-Sectional Study. Int. J. Fertil. Steril. 2022, 16, 85–89. [Google Scholar] [CrossRef]
- Johnson, C.Y.; Grajewski, B.; Lawson, C.C.; Whelan, E.A.; Bertke, S.J.; Tseng, C.Y. Occupational risk factors for endometriosis in a cohort of flight attendants. Scand. J. Work. Environ. Health 2016, 42, 52–60. [Google Scholar] [CrossRef]
- Mowers, E.L.; Lim, C.S.; Skinner, B.; Mahnert, N.; Kamdar, N.; Morgan, D.M.; As-Sanie, S. Prevalence of Endometriosis During Abdominal or Laparoscopic Hysterectomy for Chronic Pelvic Pain. Obstet. Gynecol. 2016, 127, 1045–1053. [Google Scholar] [CrossRef]
- Muhaidat, N.; Saleh, S.; Fram, K.; Nabhan, M.; Almahallawi, N.; Alryalat, S.A.; Elfalah, M. Prevalence of endometriosis in women undergoing laparoscopic surgery for various gynaecological indications at a Jordanian referral centre: Gaining insight into the epidemiology of an important women’s health problem. BMC Women’s Health 2021, 21, 381. [Google Scholar] [CrossRef]
- Stewart, L.M.; Spilsbury, K.; Jordan, S.; Stewart, C.; Holman, C.D.J.; Powell, A.; Reekie, J.; Cohen, P. Risk of high-grade serous ovarian cancer associated with pelvic inflammatory disease, parity and breast cancer. Cancer Epidemiol. 2018, 55, 110–116. [Google Scholar] [CrossRef]
- Rowlands, I.J.; Abbott, J.A.; Montgomery, G.W.; Hockey, R.; Rogers, P.; Mishra, G.D. Prevalence and incidence of endometriosis in Australian women: A data linkage cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 657–665. [Google Scholar] [CrossRef]
- Barbosa, C.P.; Souza, A.M.; Bianco, B.; Christofolini, D.; Bach, F.A.; Lima, G.R. Frequency of endometriotic lesions in peritoneum samples from asymptomatic fertile women and correlation with CA125 values. Sao Paulo Med. J. Rev. Paul. Med. 2009, 127, 342–345. [Google Scholar] [CrossRef]
- Ohayi, S.; Onyishi, N.; Mbah, S. Endometriosis in an indigenous African women population. Afr. Health Sci. 2022, 22, 133–138. [Google Scholar] [CrossRef]
- Rouzi, A.A.; Sahly, N.; Kafy, S.; Sawan, D.; Abduljabbar, H. Prevalence of endometriosis at a university hospital in Jeddah, Saudi Arabia. Clin. Exp. Obstet. Gynecol. 2015, 42, 785–786. [Google Scholar] [CrossRef]
- Sampson, J.A. Heterotopic or misplaced endometrial tissue. Am. J. Obstet. Gynecol. 1925, 10, 649–664. [Google Scholar] [CrossRef]
- Molina Rodríguez, R. Epidemiology, clinic and evolution in patients with endometriosis. Rev. Obstet. Ginecol. Venez. 2024, 84, 299–306. [Google Scholar] [CrossRef]
- Vigano, P.; Parazzini, F.; Somigliana, E.; Vercellini, P. Endometriosis: Epidemiology and aetiological factors. Best Pract. Res. Clin. Obstet. Gynaecol. 2004, 18, 177–200. [Google Scholar] [CrossRef]
- Kuri, J.S.; Sánchez, S.R.S.; Miranda, E.P.M. Inmunología de la endometriosis. An. Médicos Asoc. Médica Cent. Médico ABC 2013, 58, 180–186. Available online: https://www.medigraphic.com/pdfs/abc/bc-2013/bc133f.pdf (accessed on 12 January 2025).
- Becker, C.M.; Sampson, D.A.; Short, S.M.; Javaherian, K.; Folkman, J.; D’Amato, R.J. Short synthetic endostatin peptides inhibit endothelial migration in vitro and endometriosis in a mouse model. Fertil. Steril. 2006, 85, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, F.; Lin, F.; Chen, J.; Huang, Y. Lipoxin A4 inhibits the development of endometriosis in mice: The role of anti-inflammation and anti-angiogenesis. Am. J. Reprod. Immunol. 2012, 67, 491–497. [Google Scholar] [CrossRef]
- Edwards, A.K.; Nakamura, D.S.; Virani, S.; Wessels, J.M.; Tayade, C. Animal models for anti-angiogenic therapy in endometriosis. J. Reprod. Immunol. 2013, 97, 85–94. [Google Scholar] [CrossRef]
- Kim, J.J.; Taylor, H.S.; Lu, Z.; Ladhani, O.; Hastings, J.M.; Jackson, K.S.; Wu, Y.; Guo, S.W.; Fazleabas, A.T. Altered expression of HOXA10 in endometriosis: Potential role in decidualization. Mol. Hum. Reprod. 2007, 13, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, A.; Rocha, A.M.; Carvalho, F.M.; Pereira, R.M.; Taylor, H.S.; Motta, E.L.; Baracat, E.C.; Serafini, P.C. The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: A review. J. Assist. Reprod. Genet. 2010, 27, 701–710. [Google Scholar] [CrossRef]
- Lazim, N.; Elias, M.H.; Sutaji, Z.; Abdul Karim, A.K.; Abu, M.A.; Ugusman, A.; Syafruddin, S.E.; Mokhtar, M.H.; Ahmad, M.F. Expression of HOXA10 Gene in Women with Endometriosis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 12869. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.; Adamson, G.D.; Jones, K.D. Modern Management of Endometriosis; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Keckstein, J.; Saridogan, E.; Ulrich, U.A.; Sillem, M.; Oppelt, P.; Schweppe, K.W.; Krentel, H.; Janschek, E.; Exacoustos, C.; Malzoni, M.; et al. The #Enzian classification: A comprehensive non-invasive and surgical description system for endometriosis. Acta Obstet. Gynecol. Scand. 2021, 100, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.O.; Siufi Neto, J.; Andres, M.P.; Siufi, D.; de Mattos, L.A.; Abrao, M.S. Systematic evaluation of endometriosis by transvaginal ultrasound can accurately replace diagnostic laparoscopy, mainly for deep and ovarian endometriosis. Hum. Reprod. 2021, 36, 1492–1500. [Google Scholar] [CrossRef]
- Becker, C.M.; Bokor, A.; Heikinheimo, O.; Horne, A.; Jansen, F.; Kiesel, L.; King, K.; Kvaskoff, M.; Nap, A.; Petersen, K.; et al. ESHRE guideline: Endometriosis. Hum. Reprod. Open 2022, 2022, hoac009. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Endometriosis. 24 March 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis (accessed on 7 January 2025).
- Office on Women’s Health. Endometriosis. U.S. Department of Health and Human Services. 22 February 2021. Available online: https://womenshealth.gov/sites/default/files/documents/fact-sheet-endometriosis.pdf (accessed on 15 December 2024).
- Nisenblat, V.; Bossuyt, P.M.; Farquhar, C.; Johnson, N.; Hull, M.L. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2, CD009591. [Google Scholar] [CrossRef]
- Adamson, G.D.; Pasta, D.J. Endometriosis fertility index: The new, validated endometriosis staging system. Fertil. Steril. 2010, 94, 1609–1615. [Google Scholar] [CrossRef]
- Falconer, H.; D’Hooghe, T.; Fried, G. Endometriosis and genetic polymorphisms. Obstet. Gynecol. Surv. 2007, 62, 616–628. [Google Scholar] [CrossRef]
- Rahmioglu, N.; Mortlock, S.; Ghiasi, M.; Moller, P.L.; Stefansdottir, L.; Galarneau, G.; Turman, C.; Danning, R.; Law, M.H.; Sapkota, Y.; et al. The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions. Nat. Genet. 2023, 55, 423–436. [Google Scholar] [CrossRef]
- Mear, L.; Herr, M.; Fauconnier, A.; Pineau, C.; Vialard, F. Polymorphisms and endometriosis: A systematic review and meta-analyses. Hum. Reprod. Update 2020, 26, 73–102. [Google Scholar] [CrossRef]
- Matalliotakis, M.; Zervou, M.I.; Matalliotaki, C.; Rahmioglu, N.; Koumantakis, G.; Kalogiannidis, I.; Prapas, I.; Zondervan, K.; Spandidos, D.A.; Matalliotakis, I.; et al. The role of gene polymorphisms in endometriosis. Mol. Med. Rep. 2017, 16, 5881–5886. [Google Scholar] [CrossRef]
- Montgomery, G.W.; Nyholt, D.R.; Zhao, Z.Z.; Treloar, S.A.; Painter, J.N.; Missmer, S.A.; Kennedy, S.H.; Zondervan, K.T. The search for genes contributing to endometriosis risk. Hum. Reprod. Update 2008, 14, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lv, X.; Yu, H.; Xu, P.; Ma, R.; Zou, K. In search of key genes associated with endometriosis using bioinformatics approach. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 194, 119–124. [Google Scholar] [CrossRef]
- Wu, Y.; Strawn, E.; Basir, Z.; Halverson, G.; Guo, S.W. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 2006, 1, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Starzinski-Powitz, A.; Guo, S.W. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod. Sci. 2007, 14, 374–382. [Google Scholar] [CrossRef]
- Wu, Y.; Halverson, G.; Basir, Z.; Strawn, E.; Yan, P.; Guo, S.W. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am. J. Obstet. Gynecol. 2005, 193, 371–380. [Google Scholar] [CrossRef]
- Zidan, H.E.; Rezk, N.A.; Alnemr, A.A.; Abd El Ghany, A.M. COX-2 gene promoter DNA methylation status in eutopic and ectopic endometrium of Egyptian women with endometriosis. J. Reprod. Immunol. 2015, 112, 63–67. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Zhang, C.; Ren, F.; Li, T. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis. Eur. J. Med. Res. 2012, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Lin, Z.; Cheng, Y.H.; Huang, C.C.; Marsh, E.; Yin, P.; Milad, M.P.; Confino, E.; Reierstad, S.; Innes, J.; et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol. Reprod. 2007, 77, 681–687. [Google Scholar] [CrossRef]
- Mishra, A.; Galvankar, M.; Singh, N.; Modi, D. Spatial and temporal changes in the expression of steroid hormone receptors in mouse model of endometriosis. J. Assist. Reprod. Genet. 2020, 37, 1069–1081. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, J.; Lu, Y.; Fu, B.; Hu, W. Estrogen receptor beta promotes endometriosis progression by upregulating CD47 expression in ectopic endometrial stromal cells. J. Reprod. Immunol. 2022, 151, 103513. [Google Scholar] [CrossRef]
- Newell-Price, J.; Clark, A.J.; King, P. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. TEM 2000, 11, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Zhou, Y.F.; Zhu, S.N.; Bulun, S.E. Hypermethylation of the CpG island spanning from exon II to intron III is associated with steroidogenic factor 1 expression in stromal cells of endometriosis. Reprod. Sci. 2011, 18, 1080–1084. [Google Scholar] [CrossRef]
- Xue, Q.; Lin, Z.; Yin, P.; Milad, M.P.; Cheng, Y.H.; Confino, E.; Reierstad, S.; Bulun, S.E. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J. Clin. Endocrinol. Metab. 2007, 92, 3261–3267. [Google Scholar] [CrossRef]
- Xue, Q.; Xu, Y.; Yang, H.; Zhang, L.; Shang, J.; Zeng, C.; Yin, P.; Bulun, S.E. Methylation of a novel CpG island of intron 1 is associated with steroidogenic factor 1 expression in endometriotic stromal cells. Reprod. Sci. 2014, 21, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Panir, K.; Schjenken, J.E.; Robertson, S.A.; Hull, M.L. Non-coding RNAs in endometriosis: A narrative review. Hum. Reprod. Update 2018, 24, 497–515. [Google Scholar] [CrossRef]
- Yan, W.; Hu, H.; Tang, B. Progress in understanding the relationship between long noncoding RNA and endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2020, 5, 100067. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Taheri, M. Role of Non-coding RNAs in the Pathogenesis of Endometriosis. Front. Oncol. 2020, 10, 1370. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Karimi, M.; Rajaei, S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front. Immunol. 2023, 14, 1223828. [Google Scholar] [CrossRef] [PubMed]
- Greaves, E.; Temp, J.; Esnal-Zufiurre, A.; Mechsner, S.; Horne, A.W.; Saunders, P.T. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am. J. Pathol. 2015, 185, 2286–2297. [Google Scholar] [CrossRef]
- Kwon, M.J.; Shin, H.Y.; Cui, Y.; Kim, H.; Thi, A.H.; Choi, J.Y.; Kim, E.Y.; Hwang, D.H.; Kim, B.G. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 15934–15947. [Google Scholar] [CrossRef]
- Shamash, S.; Reichert, F.; Rotshenker, S. The cytokine network of Wallerian degeneration: Tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 3052–3060. [Google Scholar] [CrossRef]
- Mihalyi, A.; Gevaert, O.; Kyama, C.M.; Simsa, P.; Pochet, N.; De Smet, F.; De Moor, B.; Meuleman, C.; Billen, J.; Blanckaert, N.; et al. Non-invasive diagnosis of endometriosis based on a combined analysis of six plasma biomarkers. Hum. Reprod. 2010, 25, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, A.; Burney, R.O.; Dorien, F.O.; D’Hooghe, T.; Giudice, L. Update on Biomarkers for the Detection of Endometriosis. BioMed Res. Int. 2015, 2015, 130854. [Google Scholar] [CrossRef]
- Ponikwicka-Tyszko, D.; Chrusciel, M.; Stelmaszewska, J.; Bernaczyk, P.; Sztachelska, M.; Sidorkiewicz, I.; Doroszko, M.; Tomaszewski, J.; Tapanainen, J.S.; Huhtaniemi, I.; et al. Functional Expression of FSH Receptor in Endometriotic Lesions. J. Clin. Endocrinol. Metab. 2016, 101, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Dyson, M.T.; Bulun, S.E. Cutting SRC-1 down to size in endometriosis. Nat. Med. 2012, 18, 1016–1018. [Google Scholar] [CrossRef]
- Pavone, M.E.; Bulun, S.E. Aromatase inhibitors for the treatment of endometriosis. Fertil. Steril. 2012, 98, 1370–1379. [Google Scholar] [CrossRef]
- Laschke, M.W.; Menger, M.D. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum. Reprod. Update 2018, 24, 207–224. [Google Scholar] [CrossRef]
- Becker, C.M.; Rohwer, N.; Funakoshi, T.; Cramer, T.; Bernhardt, W.; Birsner, A.; Folkman, J.; D’Amato, R.J. 2-methoxyestradiol inhibits hypoxia-inducible factor-1alpha and suppresses growth of lesions in a mouse model of endometriosis. Am. J. Pathol. 2008, 172, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.S.; Han, S.J. Endometriosis-Associated Angiogenesis and Anti-angiogenic Therapy for Endometriosis. Front. Glob. Women’s Health 2022, 3, 856316. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xiong, W.; Zhang, L.; Xiong, Y.; Li, N.; He, H.; Du, Y.; Liu, Y. Hypoxia-inducible factor-1alpha promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction 2017, 153, 809–820. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, Y.; Wang, Y.; Wu, R. Hypoxia activates the unfolded protein response signaling network: An adaptive mechanism for endometriosis. Front. Endocrinol. 2022, 13, 945578. [Google Scholar] [CrossRef]
- Yang, Y.M.; Yang, W.X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017, 8, 41679–41689. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Vigano, P. Endometriosis. Nat. Rev. Dis. Primers 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Tsuzuki-Nakao, T.; Kida, N.; Matsuo, Y.; Maruyama, T.; Okada, H.; Hirota, K. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines 2023, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Fasciani, A.; D’Ambrogio, G.; Bocci, G.; Monti, M.; Genazzani, A.R.; Artini, P.G. High concentrations of the vascular endothelial growth factor and interleukin-8 in ovarian endometriomata. Mol. Hum. Reprod. 2000, 6, 50–54. [Google Scholar] [CrossRef]
- Hsiao, K.Y.; Chang, N.; Lin, S.C.; Li, Y.H.; Wu, M.H. Inhibition of dual specificity phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis. Hum. Reprod. 2014, 29, 2747–2755. [Google Scholar] [CrossRef] [PubMed]
- Vissers, G.; Giacomozzi, M.; Verdurmen, W.; Peek, R.; Nap, A. The role of fibrosis in endometriosis: A systematic review. Hum. Reprod. Update 2024, 30, 706–750. [Google Scholar] [CrossRef]
- Garcia Garcia, J.M.; Vannuzzi, V.; Donati, C.; Bernacchioni, C.; Bruni, P.; Petraglia, F. Endometriosis: Cellular and Molecular Mechanisms Leading to Fibrosis. Reprod. Sci. 2023, 30, 1453–1461. [Google Scholar] [CrossRef]
- Dai, F.F.; Bao, A.Y.; Luo, B.; Zeng, Z.H.; Pu, X.L.; Wang, Y.Q.; Zhang, L.; Xian, S.; Yuan, M.Q.; Yang, D.Y.; et al. Identification of differentially expressed genes and signaling pathways involved in endometriosis by integrated bioinformatics analysis. Exp. Ther. Med. 2020, 19, 264–272. [Google Scholar] [CrossRef]
- Lin, K.; Pan, Z.; He, R.; Wang, H.; Zhou, K.; Mu, L. Identification of Differentially Expressed Genes and Signaling Pathways Related to Ovarian Endometriosis by Integrated Bioinformatics Analysis. Preprint 2020. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, M.; Lian, L.; Cui, X.; Ng, T.W.; Zhu, M. Integrated bioinformatics analysis uncovers characteristic genes and molecular subtyping system for endometriosis. Front. Pharmacol. 2022, 13, 932526. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Nakaoka, H.; Yoshihara, K.; Ishiguro, T.; Tamura, R.; Mori, Y.; Yamawaki, K.; Adachi, S.; Takahashi, T.; Kase, H.; et al. Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. Cell Rep. 2018, 24, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Nakaoka, H.; Yoshihara, K.; Ishiguro, T.; Adachi, S.; Kase, H.; Motoyama, T.; Inoue, I.; Enomoto, T. Different mutation profiles between epithelium and stroma in endometriosis and normal endometrium. Hum. Reprod. 2019, 34, 1899–1905. [Google Scholar] [CrossRef]
- Lac, V.; Nazeran, T.M.; Tessier-Cloutier, B.; Aguirre-Hernandez, R.; Albert, A.; Lum, A.; Khattra, J.; Praetorius, T.; Mason, M.; Chiu, D.; et al. Oncogenic mutations in histologically normal endometrium: The new normal? J. Pathol. 2019, 249, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Barjaste, N.; Shahhoseini, M.; Afsharian, P.; Sharifi-Zarchi, A.; Masoudi-Nejad, A. Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. J. Assist. Reprod. Genet. 2019, 36, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Santanam, N.; Ray Wright, K.; Brunty, S. Methods for Treatment and Diagnosis of Endometriosis. U.S. Patent 11906529B1, 29 April 2019. Available online: https://worldwide.espacenet.com/patent/search/family/089908264/publication/US11906529B1?q=pn%3DUS11906529B1 (accessed on 16 January 2025).
- Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef]
- Taylor, H. Micrornas as Biomarkers for Endometriosis. Patent No. EP3506912B1, 30 August 2017. Available online: https://worldwide.espacenet.com/patent/search/family/061301726/publication/EP3506912B1?q=pn%3DEP3506912B1 (accessed on 22 December 2024).
- Liu, S.; Xin, W.; Tang, X.; Qiu, J.; Zhang, Y.; Hua, K. LncRNA H19 Overexpression in Endometriosis and its Utility as a Novel Biomarker for Predicting Recurrence. Reprod. Sci. 2020, 27, 1687–1697. [Google Scholar] [CrossRef]
- Ramírez-Ordóñez, O.; Olvera-Valencia, M.; De la Jara-Díaz, J.F.; Osorio-Caballero, M.; Flores-Herrera, H. Expression profile of four miRNAs in the serum of patients with endometriosis development. Ginecol. Obstet. México 2021, 89, 194–203. [Google Scholar] [CrossRef]
- Shuang, T.; Wang, Y.; Zhao, L.; Zhang, K.; Yin, P.; Guo, L.; Jing, W.; Feng, X.; Li, Q. Extremely high serum CA19-9 level along with elevated D-dimer in assisting detection of ruptured ovarian endometriosis. Ann. Med. 2022, 54, 1444–1451. [Google Scholar] [CrossRef]
- Kovalak, E.E.; Karacan, T.; Zengi, O.; Karabay Akgul, O.; Ozyurek, S.E.; Guraslan, H. Evaluation of new biomarkers in stage III and IV endometriosis. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2023, 39, 2217290. [Google Scholar] [CrossRef]
- Rokhgireh, S.; Mehdizadeh Kashi, A.; Chaichian, S.; Delbandi, A.A.; Allahqoli, L.; Ahmadi-Pishkuhi, M.; Khodaverdi, S.; Alkatout, I. The Diagnostic Accuracy of Combined Enolase/Cr, CA125, and CA19-9 in the Detection of Endometriosis. BioMed Res. Int. 2020, 2020, 5208279. [Google Scholar] [CrossRef]
- Jansa, V.; Pusic Novak, M.; Ban Frangez, H.; Rizner, T.L. TGFBI as a candidate biomarker for non-invasive diagnosis of early-stage endometriosis. Hum. Reprod. 2023, 38, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Micu, R.; Gaia-Oltean, A.M.I.; Budisan, L.; Braicu, C.; Irimie, A.; Berindan-Neagoe, I. The added value of CA125, HE4, and CA72-4 as markers for ovarian endometriosis diagnosis. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2023, 64, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wei, J.L.; Leng, T.; Gao, F.; Hou, S.Y. The diagnostic value of the combination of hemoglobin, CA199, CA125, and HE4 in endometriosis. J. Clin. Lab. Anal. 2021, 35, e23947. [Google Scholar] [CrossRef]
- Zheng, R.; Du, X.; Lei, Y. Correlations between endometriosis, lipid profile, and estrogen levels. Medicine 2023, 102, e34348. [Google Scholar] [CrossRef]
- Barbe, A.M.; Berbets, A.M.; Davydenko, I.S.; Koval, H.D.; Yuzko, V.O.; Yuzko, O.M. Expression and Significance of Matrix Metalloproteinase-2 and Matrix Metalloproteinas-9 in Endometriosis. J. Med. Life 2020, 13, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, Y.; Chen, M.; Mao, X.; Dong, B.; Sun, P. A novel non-invasive molecular biomarker in ovarian endometriosis: Estrogen-related receptor alpha. Arch. Gynecol. Obstet. 2020, 302, 405–414. [Google Scholar] [CrossRef]
- Sansone, A.M.; Hisrich, B.V.; Young, R.B.; Abel, W.F.; Bowens, Z.; Blair, B.B.; Funkhouser, A.T.; Schammel, D.P.; Green, L.J.; Lessey, B.A.; et al. Evaluation of BCL6 and SIRT1 as Non-Invasive Diagnostic Markers of Endometriosis. Curr. Issues Mol. Biol. 2021, 43, 1350–1360. [Google Scholar] [CrossRef]
- Pluchino, N.; Mamillapalli, R.; Wenger, J.M.; Ramyead, L.; Drakopoulos, P.; Tille, J.C.; Taylor, H.S. Estrogen receptor-alpha immunoreactivity predicts symptom severity and pain recurrence in deep endometriosis. Fertil. Steril. 2020, 113, 1224–1231 e1221. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, H.; Han, Y.; Li, T.; Liu, K.; Wang, B. Novel missense variant of CIITA contributing to endometriosis. Reprod. Biomed. Online 2022, 45, 544–551. [Google Scholar] [CrossRef]
- Gomes, F.M.; Bianco, B.; Teles, J.S.; Christofolini, D.M.; de Souza, A.M.; Guedes, A.D.; Barbosa, C.P. PTPN22 C1858T polymorphism in women with endometriosis. Am. J. Reprod. Immunol. 2010, 63, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Vodolazkaia, A.; Yesilyurt, B.T.; Kyama, C.M.; Bokor, A.; Schols, D.; Huskens, D.; Meuleman, C.; Peeraer, K.; Tomassetti, C.; Bossuyt, X.; et al. Vascular endothelial growth factor pathway in endometriosis: Genetic variants and plasma biomarkers. Fertil. Steril. 2016, 105, 988–996. [Google Scholar] [CrossRef]
- Perini, J.A.; Cardoso, J.V.; Berardo, P.T.; Vianna-Jorge, R.; Nasciutti, L.E.; Bellodi-Privato, M.; Machado, D.E.; Abrao, M.S. Role of vascular endothelial growth factor polymorphisms (-2578C>A, -460 T>C, -1154G>A, +405G>C and +936C>T) in endometriosis: A case-control study with Brazilians. BMC Women’s Health 2014, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Steinthorsdottir, V.; Thorleifsson, G.; Aradottir, K.; Feenstra, B.; Sigurdsson, A.; Stefansdottir, L.; Kristinsdottir, A.M.; Zink, F.; Halldorsson, G.H.; Munk Nielsen, N.; et al. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nat. Commun. 2016, 7, 12350. [Google Scholar] [CrossRef]
- Brown, J.; Crawford, T.J.; Allen, C.; Hopewell, S.; Prentice, A. Nonsteroidal anti-inflammatory drugs for pain in women with endometriosis. Cochrane Database Syst. Rev. 2017, 1, CD004753. [Google Scholar] [CrossRef]
- Brown, J.; Crawford, T.J.; Datta, S.; Prentice, A. Oral contraceptives for pain associated with endometriosis. Cochrane Database Syst. Rev. 2018, 5, CD001019. [Google Scholar] [CrossRef]
- Grandi, G.; Barra, F.; Ferrero, S.; Sileo, F.G.; Bertucci, E.; Napolitano, A.; Facchinetti, F. Hormonal contraception in women with endometriosis: A systematic review. Eur. J. Contracept. Reprod. Health Care Off. J. Eur. Soc. Contracept. 2019, 24, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Margatho, D.; Carvalho, N.M.; Bahamondes, L. Endometriosis-associated pain scores and biomarkers in users of the etonogestrel-releasing subdermal implant or the 52-mg levonorgestrel-releasing intrauterine system for up to 24 months. Eur. J. Contracept. Reprod. Health Care Off. J. Eur. Soc. Contracept. 2020, 25, 133–140. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M. Endometriosis and Medical Therapy: From Progestogens to Progesterone Resistance to GnRH Antagonists: A Review. J. Clin. Med. 2021, 10, 1085. [Google Scholar] [CrossRef]
- Pundir, J.; Omanwa, K.; Kovoor, E.; Pundir, V.; Lancaster, G.; Barton-Smith, P. Laparoscopic Excision Versus Ablation for Endometriosis-associated Pain: An Updated Systematic Review and Meta-analysis. J. Minim. Invasive Gynecol. 2017, 24, 747–756. [Google Scholar] [CrossRef]
- Kaponis, A.; Chatzopoulos, G.; Paschopoulos, M.; Georgiou, I.; Paraskevaidis, V.; Zikopoulos, K.; Tsiveriotis, K.; Taniguchi, F.; Adonakis, G.; Harada, T. Ultralong administration of gonadotropin-releasing hormone agonists before in vitro fertilization improves fertilization rate but not clinical pregnancy rate in women with mild endometriosis: A prospective, randomized, controlled trial. Fertil. Steril. 2020, 113, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Candiani, M.; Ottolina, J.; Schimberni, M.; Tandoi, I.; Bartiromo, L.; Ferrari, S. Recurrence Rate after “One-Step” CO(2) Fiber Laser Vaporization versus Cystectomy for Ovarian Endometrioma: A 3-Year Follow-up Study. J. Minim. Invasive Gynecol. 2020, 27, 901–908. [Google Scholar] [CrossRef] [PubMed]
Biomolecule | Biomarker | Sample Type | Detection Method | Reference |
---|---|---|---|---|
DNA | Somatic mutations in PIK3CA, KRAS, FBXW7, PPP2R1A, PIK3R1, and ARID1A were frequent in endometriosis, and the mutation status of ARID1A leads to loss of its function and is a key event in the malignant transformation of endometriosis. | Tissue (laser microdissection) | Whole exome and targeted gene sequencing | [85,86,87] |
DNA | Hypermethylation of several CpG sites in the genes SLC10A6, MACROD1, EMX2, and PRDM16, as well as hypomethylation in the genes bZNF423, PPFIA1, ATP101A1, and PI3KCG, were related to the development and pathogenesis of endometriosis. | Endometrial tissue: ectopic and eutopic | Infinium Human Methylation 450 K BeadChip assays | [88] |
RNA | Detection of JARID2 activity (through EZH2 expression and H3K27 trimethylation) and high miR-155 expression are diagnostic biomarkers of endometriosis. | Peritoneal fluid, blood, plasma, serum, or endometrial tissue | MALDI-TOF, ELISA, Luminex, FACs, Western blot, dot blot, immunoprecipitation, immunohistochemistry | [89] |
RNA | Patients with endometriosis have been reported to have the following microRNA expression levels: ↑miR-125b-5p, ↑miR-150-5p, ↑miR-342-3p, ↑miR-451a, ↓miR-3613-5p, and ↓let-7b. | Serum | qRT-PCR | [90] |
RNA | Endometriosis was diagnosed via the expression of the following microRNAs: ↑miRNA-125b-5p, ↑miR-150-5p, ↑miR-342-3p, ↑miR-145-5p, ↑miR-143-3p, ↑miR-500a-3p, or ↑miR-18a-5p. | Samples of blood, serum, or plasma. | qRT-PCR or microarray | [91] |
RNA | High expression of lncRNA H19 was associated with clinical features of endometriosis, infertility, and bilateral ovarian lesions. | Tissue | qRT-PCR | [92] |
RNA | hsa-miR-21 and hsa-miR-200b are highly expressed in patients with endometriosis. | Blood sample | qRT-PCR | [93] |
Protein | ↑CA19-9, ↑CA125, and ↑D-D. | Serum and plasma | Electrochemiluminescence immunoassay and Latex immunoturbidimetry | [94,95,96] |
Protein | ↑TGFBI | Plasma | ELISA | [97] |
Protein | ↑CA125, ↑CA72-4, ↓ HE4, ↑CA19-9, ↑E2, and ↑EMS | Serum | ELISA and chemiluminescence | [98,99,100] |
Protein | ↑MMP-2 | Endometrial tissue | Immunohistochemistry (IHC) | [101] |
Protein | ↑MMP-2 and ↑MMP-9 | Serum | ELISA | [102] |
Protein | ↓ERRα | Serum | ELISA | [103] |
Protein | ↑ER-α, ↑PR, ↑AR, and ↑Aromatase | Endometrial tissue | Immunohistochemistry (IHC) | [104] |
Biomolecule | Biomarker | Sample Type | Detection Method | Reference |
---|---|---|---|---|
DNA | Polymorphic variants in the CIITA gene may contribute to the development of endometriosis. | Pathological biopsy | Complex exome sequencing | [105] |
DNA | PTPN22 (C1858T) polymorphism may be a marker of predisposition for endometriosis. | Peripheral blood | Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP) | [106] |
DNA | rs2268613 polymorphism in the PLGF gene is associated with ↓PLGF plasma levels, and rs3025039 (C > T) polymorphism in VEGF and ↑VEGF plasma levels are associated with an increased risk of endometriosis. | Tissue | TaqMan SNP genotyping assay–Quantikine ELISA. | [107,108] |
DNA | The 4q12 locus (rs17773813), located upstream of the KDR gene that encodes receptor 2 (VEGFR2) factor for vascular endothelial growth, is correlated with the risk of developing endometriosis. | Tissue | Whole-Genome Sequencing | [109] |
RNA | Through logistic regression analysis, it was shown that ages below 40 years and overexpression of lncRNA H19 in ectopic endometrium are prognostic factors for endometriosis recurrence. | Endometrial tissues: ectopic and eutopic | qRT-PCR | [92] |
Biomolecule | Biomarker | Sample Type | Detection Method | Reference |
---|---|---|---|---|
RNA | A decrease in the level of miRNA-125b-5p and an increase in the levels of miR-150-5p and miR-3613-5p are indicative of a response to treatment for endometriosis, where treatment consists of: hormonal therapy, hormonal contraceptive, gonadotropin-releasing hormone agonist, and gonadotropin-releasing hormone antagonist. | Sample of blood, serum, or plasma. | qRT-PCR or microarray | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosendo-Chalma, P.; Díaz-Landy, E.N.; Antonio-Véjar, V.; Ortiz Tejedor, J.G.; Reytor-González, C.; Simancas-Racines, D.; Bigoni-Ordóñez, G.D. Endometriosis: Challenges in Clinical Molecular Diagnostics and Treatment. Int. J. Mol. Sci. 2025, 26, 3979. https://doi.org/10.3390/ijms26093979
Rosendo-Chalma P, Díaz-Landy EN, Antonio-Véjar V, Ortiz Tejedor JG, Reytor-González C, Simancas-Racines D, Bigoni-Ordóñez GD. Endometriosis: Challenges in Clinical Molecular Diagnostics and Treatment. International Journal of Molecular Sciences. 2025; 26(9):3979. https://doi.org/10.3390/ijms26093979
Chicago/Turabian StyleRosendo-Chalma, Pedro, Erick Nicolás Díaz-Landy, Verónica Antonio-Véjar, Jonnathan Gerardo Ortiz Tejedor, Claudia Reytor-González, Daniel Simancas-Racines, and Gabriele Davide Bigoni-Ordóñez. 2025. "Endometriosis: Challenges in Clinical Molecular Diagnostics and Treatment" International Journal of Molecular Sciences 26, no. 9: 3979. https://doi.org/10.3390/ijms26093979
APA StyleRosendo-Chalma, P., Díaz-Landy, E. N., Antonio-Véjar, V., Ortiz Tejedor, J. G., Reytor-González, C., Simancas-Racines, D., & Bigoni-Ordóñez, G. D. (2025). Endometriosis: Challenges in Clinical Molecular Diagnostics and Treatment. International Journal of Molecular Sciences, 26(9), 3979. https://doi.org/10.3390/ijms26093979