Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever
Abstract
:1. Introduction
1.1. Motivation
1.2. Aim
2. Host, Transmission, Risk Factors, and Evolution
2.1. Host
2.2. Transmission
2.3. Risk Factors
2.4. Evolution
3. Pathogenicity Factors
3.1. Typhoid Toxin
3.2. Antigens of S. Typhi
3.3. Flagellar Antigen—H Antigen
3.4. Somatic Antigen—O Antigen
3.5. Vi Antigen
3.6. Virulence Determinants That Facilitate Attachment
3.7. Virulence Determinants Affecting Intracellular Survival
4. Evolution of Antibiotic Resistance
Year of Publication of Study | Study Interval | Region | Batch Size | Evolution of Resistance Percentages | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AM % | AMX % | C % | CX % | NA % | CFM % | CRO % | SSS % | TE % | CIP % | STR % | IPM % | |||||
1977 | 1965–1975 | Jamaica | 84 | 4–0 | - | 0 | 0 | - | - | - | 0 | 2–0 | - | 4–100 | - | [77] |
1987 | 1973–1982 | Hong Kong | 349 | 0 | - | 0 | 0 | - | - | - | 15 | 0 | - | 50 | - | [78] |
2020 | 1972–1989 | South Africa | 3327 | 1.1 | - | 0.1 | - | 0 | - | - | - | - | - | - | - | [92] |
2000 | 1975–1998 | Tokyo | 130 | 0–13 | - | 0–12 | 0–17 | 0 | 0 | - | - | - | - | - | - | [82] |
2020 | 1990–1999 | South Africa | 3327 | 39 | - | 52 | 35 | 12 | - | - | - | - | - | - | - | [89] |
2024 | 1999–2022 | Bangladesh | 12,435 | - | 60–20 | 40–20 | 40–20 | - | - | - | - | - | 56–98 | - | - | [83] |
2006 | 1999–2004 | India | 629 | 31–67 | - | 27–17 | 30–33 | 54–88 | - | 0 | - | - | 0–1 | - | - | [84] |
2020 | 2000–2018 | Laos | 913 | 8 | - | 8 | - | - | - | - | - | - | 1.4 | - | - | [91] |
2020 | 2000–2009 | South Africa | 3327 | 25 | - | 25 | 25 | 3 | - | 0.7 | - | - | 1.2 | - | - | [89] |
2018 | 2004–2007 | Kenya | 144 | 72 | - | 72 | 70 | - | - | 6 | - | - | 69 | - | - | [85] |
2012 | 2005–2009 | India | 337 | 25 | - | 23 | 31 | 73–84 | - | 0 | - | - | 0–9 | - | - | [86] |
2022 | 2011–2020 | India | 871 | 4 | 3 | 3 | - | - | - | - | - | - | 3–95 | - | - | [87] |
2020 | 2010–2018 | South Africa | 3327 | 23. | - | 68 | 27 | 14.2 | - | 0.2 | - | - | 1.2 | - | - | [89] |
2019 | 2016 | Ethiopia | 14 | 100 | 100 | 100 | - | - | - | 64 | - | 79 | - | - | - | [93] |
2021 | 2017–2020 | India | 2032 | 3 | - | 4 | 4 | - | 0 | 0 | - | - | 98 | - | - | [88] |
2020 | 2012–2015 | Columbia | 402 | 7.5 | - | 0.7 | 1.7 | 5.7 | - | - | - | 3 | 2.2 | - | - | [95] |
2020 | 2016–2019 | Bangladesh | 4131 | 28 | - | 19 | 19 | - | - | 0 | - | - | 98 | - | - | [96] |
2020 | 2016–2019 | Nepal | 1367 | 3 | - | 2 | 3 | - | - | 0.2 | - | - | 87 | - | - | [96] |
2020 | 2016–2019 | Pakistan | 2093 | 83 | - | 82 | 82 | - | - | 66 | - | - | 95 | - | - | [96] |
2020 | 2012–2018 | Pakistan | 528 | - | 58 | 47 | 62 | 93 | 7 | 5 | - | - | 63 | 4 | [97] | |
2024 | 2017–2023 | Pakistan | 3137 | - | 100 | 56–93 | 100–50 | - | - | 75–92 | - | - | 23–67 | - | - | [98] |
2024 | 2022–2023 | Pakistan | 5735 | 97 | - | 94 | 93 | - | - | 89 | - | - | 92 | - | - | [99] |
2024 | 2019–2021 | Iraq | 1471 | 77–82 | - | 6–7 | 13–7 | - | 12–17 | 93–89 | - | 16–6 | 21–12 | - | 4–3 | [100] |
2021 | 2010–2021 | Etiopia | 1837 | - | - | 89 | - | 78 | - | 6 | - | - | 20 | - | - | [101] |
5. Prevention
5.1. Vaccines
5.1.1. Ty21a
5.1.2. Vi-CPS Vaccine
5.1.3. TCV Vaccine
5.1.4. Paratyphoid Vaccine
6. The Role of Sequencing in Typhoid Fever Prevention
7. Research Gaps
8. Future Directions
9. Materials and Methods
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TCV | typhoid conjugate vaccine |
Ty21a | live-attenuated oral vaccine Ty21a |
Vi-CPS | Vi capsular polysaccharide vaccine |
AM | ampicillin |
AMX | amoxicillin |
C | chloramphenicol |
CX | cotrimoxazole |
NA | nalidixic acid |
CFM | cefixime |
CRO | ceftriaxone |
SSS | sulfonamides |
TE | tetracycline |
CIP | ciprofloxacin |
STR | streptomycin |
IPM | imipenem |
WGS | whole genome sequencing |
GBD | Global Burden of Disease |
CDT | cytolethal distending toxin |
SCVs | Salmonella-containing vacuoles |
LPS | lipopolysaccharide |
NTS | non-typhoidal Salmonella |
D-GalNAcA | N-acetylgalactosaminuronic acid |
SPI-7 | Salmonella Pathogenicity Island-7 |
MDR | multidrug resistance |
AMR | antimicrobial resistance |
WASH | water, sanitation, and hygiene |
XDR | extensively drug-resistant |
WHO | World Health Organization |
SAGE | Strategic Advisory Group of Experts on Immunization |
Gavi | Global Alliance for Vaccines and Immunization |
MAPS | Multiple Antigen Presentation System |
GTGC | Global Typhoid Genomics Consortium |
T3SS | III secretion system |
References
- Saha, T.; Arisoyin, A.E.; Bollu, B.; Ashok, T.; Babu, A.; Issani, A.; Jhaveri, S.; Avanthika, C. Enteric Fever: Diagnostic Challenges and the Importance of Early Intervention. Cureus 2023, 15, e41831. [Google Scholar] [CrossRef]
- Hoffman, S.A.; Sikorski, M.J.; Levine, M.M. Chronic Salmonella Typhi carriage at sites other than the gallbladder. PLoS Negl. Trop. Dis. 2023, 17, e0011168. [Google Scholar] [CrossRef] [PubMed]
- Dougan, G.; Baker, S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 2014, 68, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Achievements in Public Health, 1900–1999: Control of Infectious Diseases. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4829a1.htm (accessed on 5 November 2024).
- GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Weekly Epidemiological Record. Relevé Épidémiologique Hebdomadaire ARCH 2018, 93th YEAR/30 MARS 2018, 93e ANNÉE, No 13. 2018, pp. 153–172. Available online: http://www.who.int/wer (accessed on 5 November 2024).
- European Centre for Disease Prevention and Control (ECDC). Typhoid and Paratyphoid Infection. In Annual Epidemiological Report for 2020; ECDC: Stockholm, Sweden, 2024. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Typhoid-paratyphoid-2020.pdf (accessed on 6 November 2024).
- Centers for Disease Control and Prevention (CDC). About Typhoid Fever and Paratyphoid Fever. Available online: https://www.cdc.gov/typhoid-fever/about/index.html (accessed on 6 November 2024).
- Forster, D.P.; Leder, K. Typhoid fever in travellers: Estimating the risk of acquisition by country. J. Travel. Med. 2021, 28, taab150. [Google Scholar] [CrossRef]
- Masuet-Aumatell, C.; Atouguia, J. Typhoid fever infection—Antibiotic resistance and vaccination strategies: A narrative review. Travel. Med. Infect. Dis. 2021, 40, 101946. [Google Scholar] [CrossRef]
- Khan, M.; Shamim, S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022, 10, 2006. [Google Scholar] [CrossRef]
- Baker, S.; Holt, K.E.; Clements, A.C.; Karkey, A.; Arjyal, A.; Boni, M.F.; Dongol, S.; Hammond, N.; Koirala, S.; Duy, P.T.; et al. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 2011, 1, 110008. [Google Scholar] [CrossRef]
- Ormsby, M.J.; White, H.L.; Metcalf, R.; Oliver, D.M.; Feasey, N.A.; Quilliam, R.S. Enduring pathogenicity of African strains of Salmonella on plastics and glass in simulated peri-urban environmental waste piles. J. Hazard. Mater. 2024, 461, 132439. [Google Scholar] [CrossRef]
- Nishio, T.; Nakamori, J.; Miyazaki, K. Survival of Salmonella typhi in oysters. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 1981, 172, 415–426. [Google Scholar] [PubMed]
- Nyamusore, J.; Nahimana, M.R.; Ngoc, C.T.; Olu, O.; Isiaka, A.; Ndahindwa, V.; Dassanayake, L.; Rusanganwa, A. Risk factors for transmission of Salmonella Typhi in Mahama refugee camp, Rwanda: A matched case-control study. Pan Afr. Med. J. 2018, 29, 148. [Google Scholar] [CrossRef] [PubMed]
- Uzzell, C.B.; Gray, E.; Rigby, J.; Troman, C.M.; Diness, Y.; Mkwanda, C.; Tonthola, K.; Kanjerwa, O.; Salifu, C.; Nyirenda, T.; et al. Environmental surveillance for Salmonella Typhi in rivers and wastewater from an informal sewage network in Blantyre, Malawi. PLoS Negl. Trop. Dis. 2024, 18, e0012518. [Google Scholar] [CrossRef] [PubMed]
- Brockett, S.; Wolfe, M.K.; Hamot, A.; Appiah, G.D.; Mintz, E.D.; Lantagne, D. Associations among water, sanitation, and hygiene, and food exposures and typhoid fever in case-control studies: A systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 2020, 103, 1020–1031. [Google Scholar] [CrossRef]
- de Alwis, R.; Watson, C.; Nikolay, B.; Lowry, J.H.; Thieu, N.T.V.; Van, T.T.; Ngoc, D.T.T.; Rawalai, K.; Taufa, M.; Coriakula, J.; et al. Role of Environmental Factors in Shaping Spatial Distribution of Salmonella enterica Serovar Typhi, Fiji. Emerg. Infect. Dis. 2018, 24, 284–293. [Google Scholar] [CrossRef]
- Giri, S.; Mohan, V.R.; Srinivasan, M.; Kumar, N.; Kumar, V.; Dhanapal, P.; Venkatesan, J.; Gunasekaran, A.; Abraham, D.; John, J.; et al. Case-Control Study of Household and Environmental Transmission of Typhoid Fever in India. J. Infect. Dis. 2021, 224, S584–S592. [Google Scholar] [CrossRef] [PubMed]
- Khaki, J.J.; Meiring, J.E.; Thindwa, D.; Henrion, M.Y.R.; Jere, T.M.; Msuku, T. The STRATAA Consortium, Robert S. Heyderman, Melita A. Gordon & Emanuele Giorgi. Modelling Salmonella Typhi in high-density urban Blantyre neighbourhood, Malawi, using point pattern methods. Sci. Rep. 2024, 14, 17164. [Google Scholar] [CrossRef]
- Keddy, K.H.; Sooka, A.; Smith, A.M.; Musekiwa, A.; Tau, N.P.; Klugman, K.P.; Angulo, F.J.; GERMS-SA. Typhoid Fever in South Africa in an Endemic HIV Setting. PLoS ONE 2016, 11, e0164939. [Google Scholar] [CrossRef]
- Barton, A.; Hill, J.; Bibi, S.; Chen, L.; Jones, C.; Jones, E.; Camara, S.; Shrestha, S.; Jin, C.; Gibani, M.M.; et al. Genetic Susceptibility to Enteric Fever in Experimentally Challenged Human Volunteers. Infect. Immun. 2022, 90, e00389-21. [Google Scholar] [CrossRef]
- Crump, J.A. Progress in Typhoid Fever Epidemiology. Clin. Infect. Dis. 2019, 68, S4–S9. [Google Scholar] [CrossRef]
- Smeti, P.; Pavli, A.; Katerelos, P.; Maltezou, H.C. Typhoid vaccination for interna-tional travelers from Greece visiting developing countries. J. Travel. Med. 2014, 21, 99–103. [Google Scholar] [CrossRef]
- Steinberg, E.B.; Bishop, R.; Haber, P.; Dempsey, A.F.; Hoekstra, R.M.; Nelson, J.M.; Ackers, M.; Calugar, A.; Mintz, E.D. Typhoid fever in travelers: Who should be targeted for prevention? Clin. Infect. Dis. 2004, 39, 186–191. [Google Scholar] [CrossRef]
- Waterman, S.R.; Small, P.L. Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl. Environ. Microbiol. 1998, 64, 3882–3886. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ordonez, A.; Begley, M.; Prieto, M.; Messens, W.; Lopez, M.; Bernardo, A.; Hill, C. Salmonella spp. survival strategies with in the host gastrointestinal tract. Microbiology 2011, 157, 3268–3281. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Sarwar, Y.; Ali, A.; Jamil, A.; Haque, A.; Haque, A. Effect of biofilm formation on the excretion of Salmonella enterica serovar Typhi in feces. Int. J. Infect. Dis. 2011, 15, e747–e752. [Google Scholar] [CrossRef]
- Chaicumpa, W.; Ruangkunaporn, Y.; Burr, D.; Chongsa-Nguan, M.; Echeverria, P. Diagnosis of typhoid fever by detection of Salmonella typhi antigen in urine. J. Clin. Microbiol. 1992, 30, 2513–2515. [Google Scholar] [CrossRef]
- Griffin, A.J.; Li, L.X.; Voedisch, S.; Pabst, O.; McSorley, S.J. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect. Immun. 2011, 79, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Mechanisms for the Invasion and Dissemination of Salmonella. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 2655801. [Google Scholar] [CrossRef]
- Crawford, R.W.; Rosales-Reyes, R.; Ramírez-Aguilar Mde, L.; Chapa-Azuela, O.; Alpuche-Aranda, C.; Gunn, J.S. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad. Sci. USA 2010, 107, 4353–4358. [Google Scholar] [CrossRef]
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Chatterjee, R.; Chowdhury, A.R.; Mukherjee, D.; Chakravortty, D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS Omega 2023, 8, 25674–25697. [Google Scholar] [CrossRef]
- Chang, S.J.; Hsu, Y.T.; Chen, Y.; Lin, Y.Y.; Lara-Tejero, M.; Galan, J.E. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. eLife 2022, 11, e78561. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Suri, C.R.; Rishi, P. Contribution of typhoid toxin in the pathogenesis of Salmonella Typhi. Microb. Pathog. 2022, 164, 105444. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.C.; Galán, J.E. Decoding a Salmonella Typhi Regulatory Network that Controls Typhoid Toxin Expression within Human Cells. Cell Host Microbe 2018, 23, 65–76.e6. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.; Lee, S.; Yang, Y.A.; Song, J. The Role of Typhoid Toxin in Salmonella Typhi Virulence. Yale J. Biol. Med. 2017, 90, 283–290. [Google Scholar]
- Galán, J.E. Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi. Proc. Natl. Acad. Sci. USA 2016, 113, 6338–6344. [Google Scholar] [CrossRef]
- Song, J.; Gao, X.; Galán, J.E. Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature 2013, 499, 350–354. [Google Scholar] [CrossRef]
- Haghjoo, E.; Galán, J.E. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 4614–4619. [Google Scholar] [CrossRef]
- Spanò, S.; Ugalde, J.E.; Galán, J.E. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 2008, 3, 30–38. [Google Scholar] [CrossRef]
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [CrossRef]
- Liu, B.; Knirel, Y.A.; Feng, L.; Perepelov, A.V.; Senchenkova, S.N.; Reeves, P.R.; Wang, L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 2014, 38, 56–89. [Google Scholar] [CrossRef]
- McQuiston, J.R.; Parrenas, R.; Ortiz-Rivera, M.; Gheesling, L.; Brenner, F.; Fields, P.I. Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J. Clin. Microbiol. 2004, 42, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- McQuiston, J.R.; Waters, R.J.; Dinsmore, B.A.; Mikoleit, M.L.; Fields, P.I. Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J. Clin. Microbiol. 2011, 49, 565–573. [Google Scholar] [CrossRef]
- Hiriart, Y.; Serradell, M.; Martínez, A.; Sampaolesi, S.; Maciel, D.G.; Chabalgoity, J.A.; Yim, L.; Algorta, G.; Rumbo, M. Generation and selection of anti-flagellin monoclonal antibodies useful for serotyping Salmonella enterica. Springerplus 2013, 2, 640. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, C.; Williams, D.M.; Kelly, S.D. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 2020, 295, 10593–10609. [Google Scholar] [CrossRef]
- Johnson, R.; Mylona, E.; Frankel, G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cell. Microbiol. 2018, 20, e12939. [Google Scholar] [CrossRef]
- Sharma, A.; Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl. Acad. Sci. USA 2004, 50, 17492–17497. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.J.; O’Shaughnessy, C.M.; Siggins, M.K.; Bobat, S.; Kingsley, R.A.; Goulding, D.A.; Crump, J.A.; Reyburn, H.; Micoli, F.; Dougan, G.; et al. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen. PLoS ONE 2016, 11, e0145945. [Google Scholar] [CrossRef]
- Wetter, M.; Goulding, D.; Pickard, D.; Kowarik, M.; Waechter, C.J.; Dougan, G.; Wacker, M. Molecular characterization of the viaB locus encoding the biosynthetic machinery for Vi capsule formation in Salmonella Typhi. PLoS ONE 2012, 7, e45609. [Google Scholar] [CrossRef]
- Hiyoshi, H.; Tiffany, C.R.; Bronner, D.N.; Bäumler, A.J. Typhoidal Salmonella serovars: Ecological opportunity and theevolution of a new pathovar. FEMS Microbiol. Rev. 2018, 42, 527–541. [Google Scholar] [CrossRef]
- Lee, G.Y.; Song, J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat. Commun. 2024, 15, 5258. [Google Scholar] [CrossRef]
- Hiyoshi, H.; Wangdi, T.; Lock, G.; Saechao, C.; Raffatellu, M.; Cobb, B.A.; Bäumler, A.J. Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell. Rep. 2018, 22, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Jahan, F.; Chinni, S.V.; Samuggam, S.; Reddy, L.V.; Solayappan, M.; Su Yin, L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int. J. Mol. Sci. 2022, 23, 6462. [Google Scholar] [CrossRef]
- Ibarra, J.A.; Steele-Mortimer, O. Salmonella—The ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell. Microbiol. 2009, 11, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.; Yin, L.; Latif, M.B.; Chen, J.; Wang, K.; Geng, Y.; Huang, X.; Abaidullah, M.; Guo, H.; Ouyang, P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb. Pathog. 2019, 137, 103748. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, K.; Saulnier-Bellemare, J.; Daigle, F. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi. Front. Cell. Infect. Microbiol. 2018, 8, 26. [Google Scholar] [CrossRef]
- Kolenda, R.; Ugorski, M.; Grzymajlo, K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front. Microbiol. 2019, 10, 1017. [Google Scholar] [CrossRef]
- Winter, S.E.; Winter, M.G.; Poon, V.; Keestra, A.M.; Sterzenbach, T.; Faber, F.; Costa, L.F.; Cassou, F.; Costa, E.A.; Alves, G.E.; et al. Salmonella enterica Serovar Typhi conceals the invasion-associated type three secretion system from the innate immune system by gene regulation. PLoS Pathog. 2014, 10, e1004207. [Google Scholar] [CrossRef]
- Chong, A.; Starr, T.; Finn, C.E.; Steele-Mortimer, O. A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells. Mol. Microbiol. 2019, 112, 1270–1283. [Google Scholar] [CrossRef]
- Kaur, J.; Jain, S.K. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol. Res. 2012, 167, 199–210. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, M.; Kan, Z.; Zhang, G.; Li, Y.; Zhou, L.; Wang, C. Identification of Novel Type Three Secretion System (T3SS) Inhibitors by Computational Methods and Anti-Salmonella Evaluations. Front. Pharmacol. 2021, 12, 764191. [Google Scholar] [CrossRef]
- Hamblin, M.; Schade, R.; Narasimhan, R.; Monack, D.M. Salmonella enterica serovar Typhi uses two type 3 secretion systems to replicate in human macrophages and colonize humanized mice. mBio 2023, 14, e0113723. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Puente, J.L.; Calva, E. Salmonella virulence plasmid: Pathogenesis and ecology. Pathog. Dis. 2017, 75, ftx070. [Google Scholar] [CrossRef] [PubMed]
- Santander, J.; Curtiss, R., 3rd. Salmonella enterica Serovars Typhi and Paratyphi A are avirulent in newborn and infant mice even when expressing virulence plasmid genes of Salmonella Typhimurium. J. Infect. Dev. Ctries 2010, 4, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni, P.P.; Patil, A.R.; And Ghosh, J.S. Proteolytic And Lipolytic Properties Of Endotoxins (Enterotoxins) Produced By Salmonella Typhi NCIM 5255, Salmonella Typhimurium NCIM 2501 And Shigella Flexneri NCIM 5265. Int. Food Res. J. 2017, 24, 2685–2688. [Google Scholar]
- Colquhoun, J.; Weetch, R.S. Resistance to chloramphenicol developing during treatment of typhoid fever. Lancet 1950, 2, 621–623. [Google Scholar] [CrossRef]
- Ayuti, S.R.; Khairullah, A.R.; Al-Arif, M.A.; Lamid, M.; Warsito, S.H.; Moses, I.B.; Hermawan, I.P.; Silaen, O.S.M.; Lokapirnasari, W.P.; Aryaloka, S.; et al. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet. J. 2024, 14, 1313–1329. [Google Scholar] [CrossRef]
- Murti, B.R.; RajyalakshmI, K.; Bhaskaran, C.S. Resistance of Salmonella typhi to chloramphenicol. I. A preliminary report. J. Clin. Pathol. 1962, 15, 544–551. [Google Scholar] [CrossRef]
- Parry, C.M.; Hien, T.T.; Dougan, G.; White, N.J.; Farrar, J.J. Typhoid fever. N. Engl. J. Med. 2002, 347, 1770–1782. [Google Scholar] [CrossRef]
- Dyson, Z.A.; Klemm, E.J.; Palmer, S.; Dougan, G. Antibiotic Resistance and Typhoid. Clin. Infect. Dis. 2019, 68, S165–S170. [Google Scholar] [CrossRef]
- Zakir, M.; Khan, M.; Umar, M.I.; Murtaza, G.; Ashraf, M.; Shamim, S. Emerging Trends of Multidrug-Resistant (MDR) and Extensively Drug-Resistant (XDR) Salmonella Typhi in a Tertiary Care Hospital of Lahore, Pakistan. Microorganisms 2021, 9, 2484. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). Counterfeit Medicine, Counterfeit Medicine May Be Harmful. Available online: https://www.fda.gov/drugs/buying-using-medicine-safely/counterfeit-medicine (accessed on 12 April 2025).
- GRAM Typhoid Collaborators. Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: A modelling study. Lancet Glob. Health 2024, 12, e406–e418. [Google Scholar] [CrossRef] [PubMed]
- French, G.L.; King, S.D.; Louis, P.S. Salmonella serotypes, Salmonella typhi phagetypes, and anti-microbial resistance at the University Hospital of the West Indies, Jamaica. J. Hyg. 1977, 79, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Chau, P.Y.; Rowe, B. Salmonella serotypes and incidence of multiply-resistant Salmonellae isolated from diarrhoeal patients in Hong Kong from 1973–1982. Epidemiol. Infect. 1987, 99, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Dimache, G.; Dimache, V.; Croitoru, M.; Palade, R.; Surdeanu, M.; Coşman, M. Sensibilitatea la antibiotice şi chimioterapice a unor tulpini de Salomonella typhi izolate în România în perioada 1974–1976 [Sensitivity to antibiotics and chemotherapeutic agents in some strains of Salmonella typhi isolated in Romania during the period 1974–1976]. Rev. Ig. Bacteriol. Virusol. Parazitol. Epidemiol. Pneumoftiziol. Bacteriol. Virusol. Parazitol. Epidemiol. 1979, 24, 23–32. [Google Scholar]
- Buiuc, D.; Bercovici, C.; Iosub, C.; Straton, C. Evoluţia sensibilităţii la cloramfenicol a tulpinilor de Salmonella typhi izolate în ultimii 20 de ani din Moldova [Evolution of the sensitivity to cloramphenicol of Salmonela typhi strains isolated in the last 20 years in Moldova (Romania)]. Rev. Med. Chir. Soc. Med. Nat. Iasi 1982, 86, 99–104. [Google Scholar]
- Goldstein, F.W.; Murray, B.E. Sulfonamide and trimethoprim resistance in Salmonella typhi. J. Clin. Microbiol. 1987, 25, 1344–1346. [Google Scholar] [CrossRef]
- Hoshino, Y.; Masuda, G.; Negishi, M.; Ajisawa, A.; Imamura, A.; Hachimori, K.; Takayama, N.; Yamaguchi, T.; Kimura, M. Clinical and bacteriological profiles of patients with typhoid fever treate dduring 1975–1998 in the Tokyo Metropolitan Komagome Hospital. Microbiol. Immunol. 2000, 44, 577–583. [Google Scholar] [CrossRef]
- Tanmoy, A.M.; Hooda, Y.; Sajib, M.S.I.; Rahman, H.; Sarkar, A.; Das, D.; Islam, N.; Kanon, N.; Rahman, M.A.; Garrett, D.O.; et al. Trends in antimicrobial resistance amongst Salmonella Typhi in Bangladesh: A 24-year retrospective observational study (1999–2022). PLoS Negl. Trop. Dis. 2024, 18, e0012558. [Google Scholar] [CrossRef]
- Mohanty, S.; Renuka, K.; Sood, S.; DAS, B.K.; Kapil, A. Antibiogram pattern and seasonality of Salmonella serotypes in a North Indian tertiary care hospital. Epidemiol. Infect. 2006, 134, 961–966. [Google Scholar] [CrossRef]
- Mutai, W.C.; Muigai, A.W.T.; Waiyaki, P.; Kariuki, S. Multi-drug resistant Salmonella enterica serovar Typhi isolateswith reduced susceptibility to ciprofloxacin in Kenya. BMC Microbiol. 2018, 18, 187. [Google Scholar] [CrossRef]
- Menezes, G.A.; Harish, B.N.; Khan, M.A.; Goessens, W.H.; Hays, J.P. Antimicrobial resistance trends in blood culture positive Salmonella Typhi isolates from Pondicherry, India, 2005–2009. Clin. Microbiol. Infect. 2012, 18, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, A.; Dey, D.; Putlibai, S.; Ramaiah, S.; Anbarasu, A.; Balasubramanian, S. Epidemiology of Multidrug Resistance among Salmonella enterica serovars typhi and paratyphi A at a Tertiary Pediatric Hospital in India Over a Decade; In-silico Approachto Elucidate the Molecular Mechanism of Quinolone Resistance. Int. J. Infect. Dis. 2022, 119, 146–149. [Google Scholar] [CrossRef]
- Veeraraghavan, B.; Pragasam, A.K.; Ray, P.; Kapil, A.; Nagaraj, S.; Perumal, S.P.B.; Saigal, K.; Thomas, M.; Gupta, M.; Rongsen-Chandola, T.; et al. Evaluation of Antimicrobial Susceptibility Profile in Salmonella Typhi and Salmonella Paratyphi A: Presenting the Current Scenario in India and Strategy for Future Management. Infect. Dis. 2021, 224, S502–S516. [Google Scholar] [CrossRef]
- Mengo, D.M.; Kariuki, S.; Muigai, A.; Revathi, G. Trends in Salmonella enteric serovar Typhi in Nairobi, Kenya from 2004 to 2006. J. Infect. Dev. Ctries 2010, 4, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Al-Emran, H.M.; Eibach, D.; Krumkamp, R.; Ali, M.; Baker, S.; Biggs, H.M.; Bjerregaard-Andersen, M.; Breiman, R.F.; Clemens, J.D.; Crump, J.A.; et al. A Multicountry Molecular Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa. Clin. Infect. Dis. 2016, 62, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.; Rattanavong, S.; Phommasone, K.; Chansamouth, V.; Davong, V.; Keoluangkhot, V.; Hongsakhone, S.; Bounsavath, N.; Mayxay, M.; Vongsouvath, M.; et al. Typhoid in Laos: An 18-Year Perspective. Am. J. Trop. Med. Hyg. 2020, 102, 749. [Google Scholar] [CrossRef]
- Marchello, C.S.; Carr, S.D.; Crump, J.A. A Systematic Review on Antimicrobial Resistance among Salmonella Typhi Worldwide. Am. J. Trop. Med. Hyg. 2020, 103, 2518–2527. [Google Scholar] [CrossRef]
- Admassu, D.; Egata, G.; Teklemariam, Z. Prevalence and antimicrobial susceptibility pattern of Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi among febrile patients at Karamara Hospital, Jigjiga, eastern Ethiopia. SAGE Open Med. 2019, 7, 2050312119837854. [Google Scholar] [CrossRef]
- Guevara, P.D.; Maes, M.; Thanh, D.P.; Duarte, C.; Rodriguez, E.C.; Montaño, L.A.; Dan, T.H.N.; Nguyen, T.N.T.; Carey, M.E.; Campos, J.; et al. A genomic snapshot of Salmonella enterica serovar Typhi in Colombia. PLoS Negl. Trop. Dis. 2021, 15, e0009755. [Google Scholar] [CrossRef]
- Diaz-Guevara, P.; Montaño, L.A.; Duarte, C.; Zabaleta, G.; Maes, M.; MartinezAngarita, J.C.; Thanh, D.P.; León-Quevedo, W.; Castañeda-Orjuela, C.; Alvarez Alvarez, C.J.; et al. Surveillance of Salmonella enterica serovar Typhi in Colombia, 2012–2015. PLoS Negl. Trop. Dis. 2020, 14, e0008040. [Google Scholar] [CrossRef]
- Qamar, F.N.; Yousafzai, M.T.; Dehraj, I.F.; Shakoor, S.; Irfan, S.; Hotwani, A.; Hunzai, M.J.; Thobani, R.S.; Rahman, N.; Mehmood, J.; et al. Antimicrobial Resistance in Typhoidal Salmonella: Surveillance for Enteric Fever in Asia Project, 2016–2019. Clin. Infect. Dis. 2020, 71, S276–S284. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Siddiqui, S.A. Antibiotic Susceptibility Patterns of Salmonella Typhi and Salmonella Paratyphi in a Tertiary Care Hospital in Islamabad. Cureus 2020, 12, e10228. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Gul, A.; Gul, F.; Gul, N.; Khan, S.; Khayam; Khan, W.; Ali, K.; Ullah, A.; Rehman, I. Comprehensive Analysis of Salmonella Species Antibiogram and Evolving Patterns in Empirical Therapy: Insights From Tertiary Care Hospitals in Peshawar, Pakistan. Cureus 2024, 16, e57110. [Google Scholar] [CrossRef]
- Asghar, M.; Khan, T.A.; Séraphin, M.N.; Schimke, L.F.; Cabral-Marques, O.; Haq, I.U.; Farooqi, Z.U.R.; Campino, S.; Ullah, I.; Clark, T.G. Exploring the Antimicrobial Resistance Profile of Salmonella typhi and Its Clinical Burden. Antibiotics 2024, 13, 765. [Google Scholar] [CrossRef]
- Nassir, K.F.; Ali, B.M.; Ibrahim, Z.H.; Qasim, Z.J.; Mahdi, S.G.; Mustafa, N.M.; Oudah, A.A.; Okab, A.A.; Al-Diwan, J.K. Prevalence and antimicrobial resistance profile of Salmonella typhi infection in Iraq, 2019–2021. Med. J. Malays. 2024, 79, 74–79. [Google Scholar]
- Teferi, M.Y.; El-Khatib, Z.; Alemayehu, E.A.; Adane, H.T.; Andualem, A.T.; Hailesilassie, Y.A.; Kebede, A.S.; Asamoah, B.O.; Boltena, M.T.; Shargie, M.B. Prevalence and antimicrobial susceptibility level of typhoid fever in Ethiopia: A systematic review and meta-analysis. Prev. Med. Rep. 2021, 25, 101670. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, F.; Saeed, M.; Alikhan, N.F.; Baker, D.; Khurshid, M.; Ainsworth, E.V.; Turner, A.K.; Imran, A.A.; Rasool, M.H.; Saqalein, M.; et al. Emergence of Resistance to Fluoroquinolones and Third-Generation Cephalosporins in Salmonella Typhi in Lahore, Pakistan. Microorganisms 2020, 8, 1336. [Google Scholar] [CrossRef]
- Sorrell, T.; Selig, D.J.; Riddle, M.S.; Porter, C.K. Typhoid fever cases in the U.S. military. BMC Infect. Dis. 2015, 15, 424. [Google Scholar] [CrossRef]
- Fisher, I.S.T. Surveillance of infection with Salmonella typhi in Europe and the United States. Eurosurveillance 2000, 4, 1587. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Surveillance Report. Annual Epidemiological Report for 2016: Typhoid and Paratyphoid Fevers. Available online: https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2016-typhoid-paratyphoid-fevers.pdf (accessed on 12 April 2025).
- Date, K.A.; Newton, A.E.; Medalla, F.; Blackstock, A.; Richardson, L.; McCullough, A.; Mintz, E.D.; Mahon, B.E. Changing Patterns in Enteric Fever Incidence and Increasing Antibiotic Resistance of Enteric Fever Isolates in the United States, 2008–2012. Clin. Infect. Dis. 2016, 63, 322–329. [Google Scholar] [CrossRef]
- Butt, M.H.; Saleem, A.; Javed, S.O.; Ullah, I.; Rehman, M.U.; Islam, N.; Tahir, M.A.; Malik, T.; Hafeez, S.; Misbah, S. Rising XDR-Typhoid Fever Cases in Pakistan: Are We Heading Back to the Pre-antibiotic Era? Front. Public Health 2022, 9, 794868. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.R.; Qamar, F.N.; Charles, R.C.; Ryan, E.T. Extensively Drug-Resistant Typhoid—Are Conjugate Vaccines Arriving Just in Time? N. Engl. J. Med. 2018, 379, 1493–1495. [Google Scholar] [CrossRef]
- Walker, J.; Chaguza, C.; Grubaugh, N.D.; Carey, M.; Baker, S.; Khan, K.; Bogoch, I.I.; Pitzer, V.E. Assessing the global risk of typhoid outbreaks caused by extensively drug resistant Salmonella Typhi. Nat. Commun. 2023, 14, 6502. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Sur, D.; Gupta, S.S.; Ganguly, N.K. Typhoid fever: Control & challenges in India. Indian J. Med. Res. 2019, 150, 437–447. [Google Scholar] [CrossRef]
- Basnyat, B.; Qamar, F.N.; Rupali, P.; Ahmed, T.; Parry, C.M. Enteric fever. BMJ 2021, 372, n437. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef]
- Date, K.A.; Bentsi-Enchill, A.; Marks, F.; Fox, K. Typhoid fever vaccination strategies. Vaccine 2015, 33, C55–C61. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Gupta, N.; Nishant, H.S.S.; Dutta, T.; Mahajan, M. Typhoid Conjugate Vaccine: A Boon for Endemic Regions. Cureus 2024, 16, e56454. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Meeting of the Strategic Advisory Group of Experts on Immunization, October 2017-conclusions and recommendations. Wkly. Epidemiol. Rec. 2017, 92, 729–747. [Google Scholar]
- World Health Organization (WHO). Typhoid 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/typhoid (accessed on 15 December 2024).
- MacLennan, C.A.; Martin, L.B.; Micoli, F. Vaccines against invasive Salmonella disease: Current status and future directions. Hum. Vaccines Immunother. 2014, 10, 1478–1493. [Google Scholar] [CrossRef]
- Birkhold, M.; Mwisongo, A.; Pollard, A.J.; Neuzil, K.M. Typhoid Conjugate Vaccines: Advancing the Research and Public Health Agendas. J. Infect. Dis. 2021, 224, S781–S787. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.K.; Varanasi, V.; Singh, A.; Pasetti, M.F.; Levine, M.M.; Venkatesan, R.; Ella, K.M. Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in healthy infants, children, and adults in typhoid endemic areas: A multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 study. Clin. Infect. Dis. 2015, 61, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Amicizia, D.; Arata, L.; Zangrillo, F.; Panatto, D.; Gasparini, R. Overview of the impact of Typhoid and Paratyphoid fever. Utility of Ty21a vaccine (Vivotif®). J. Prev. Med. Hyg. 2017, 58, E1–E8. [Google Scholar] [PubMed]
- Howlader, D.R.; Koley, H.; Maiti, S.; Bhaumik, U.; Mukherjee, P.; Dutta, S. A brief review on the immunological scenario and recent developmental status of vaccines against enteric fever. Vaccine 2017, 35, 6359–6366. [Google Scholar] [CrossRef]
- Black, R.E.; Levine, M.M.; Ferreccio, C.; Clements, M.L.; Lanata, C.; Rooney, J.; Germanier, R. Efficacy of one or two doses of Ty21a Salmonella typhi vaccine in enteric-coated capsules in a controlled field trial. Chilean Typhoid Committee. Vaccine 1990, 8, 81–84. [Google Scholar] [CrossRef]
- Levine, M.M.; Ferreccio, C.; Cryz, S.; Ortiz, E. Comparison of enteric-coated capsules and liquid formulation of Ty21a typhoid vaccine in randomised controlled field trial. Lancet 1990, 336, 891–894. [Google Scholar] [CrossRef]
- Meiring, J.E.; Giubilini, A.; Savulescu, J.; Pitzer, V.E.; Pollard, A.J. Generating the Evidence for Typhoid Vaccine Introduction: Considerations for Global Disease Burden Estimates and Vaccine Testing Through Human Challenge. Clin. Infect. Dis. 2019, 69, S402–S407. [Google Scholar] [CrossRef]
- Guzman, C.A.; Borsutzky, S.; Griot-Wenk, M.; Metcalfe, I.C.; Pearman, J.; Collioud, A.; Favre, D.; Dietrich, G. Vaccines against typhoid fever. Vaccine 2006, 24, 3804–3811. [Google Scholar] [CrossRef]
- Sur, D.; Ochiai, R.L.; Bhattacharya, S.K.; Ganguly, N.K.; Ali, M.; Manna, B.; Dutta, S.; Donner, A.; Kanungo, S.; Park, J.K.; et al. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. N. Engl. J. Med. 2009, 361, 335–344. [Google Scholar] [CrossRef]
- Klugman, K.P.; Koornhof, H.J.; Robbins, J.B.; Le Cam, N.N. Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 1996, 14, 435–438. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Capeding, M.R.; Bavdekar, A.; Marchetti, E.; Ariff, S.; Soofi, S.B.; Anemona, A.; Habib, M.A.; Alberto, E.; Juvekar, S.; et al. Immunogenicity and safety of the Vi-CRM197 conjugate vaccine against typhoid fever in adults, children, and infants in south and southeast Asia: Results from two randomised, observer-blind, age de-escalation, phase 2 trials. Lancet Infect. Dis. 2014, 14, 119–129. [Google Scholar] [CrossRef]
- Gavi. More Typhoid Conjugate Vaccines, More Impact. 2020. Available online: https://www.gavi.org/vaccineswork/more-typhoid-conjugate-vaccines-more-impact (accessed on 15 December 2024).
- Patel, P.D.; Patel, P.; Liang, Y.; Meiring, J.E.; Misiri, T.; Mwakiseghile, F.; Tracy, J.K.; Masesa, C.; Msuku, H.; Banda, D.; et al. Safety and Efficacy of a Typhoid Conjugate Vaccine in Malawian Children. N. Engl. J. Med. 2021, 385, 1104–1115. [Google Scholar] [CrossRef]
- Batool, R.; Qamar, Z.H.; Salam, R.A.; Yousafzai, M.T.; Ashorn, P.; Qamar, F.N. Efficacy of typhoid vaccines against culture-confirmed Salmonella Typhi in typhoid endemic countries: A systematic review and meta-analysis. Lancet Glob. Health 2024, 12, e589–e598. [Google Scholar] [CrossRef] [PubMed]
- Van Camp, R.O.; Shorman, M. Typhoid Vaccine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Qamar, F.N.; Qureshi, S.; Haq, Z.; Yousafzai, T.; Qazi, I.; Irfan, S.; Iqbal, N.; Amalik, Z.; Hotwani, A.; Ali, Q.; et al. Longevity of immune response after a single dose of typhoid conjugate vaccine against Salmonella Typhi among children in Hyderabad, Pakistan. Int. J. Infect. Dis. 2024, 147, 107187. [Google Scholar] [CrossRef] [PubMed]
- Kaufhold, S.; Yaesoubi, R.; Pitzer, V.E. Predicting the Impact of Typhoid Conjugate Vaccines on Antimicrobial Resistance. Clin. Infect. Dis. 2019, 68, S96–S104. [Google Scholar] [CrossRef] [PubMed]
- Britto, C.; Jin, C.; Theiss-Nyland, K.; Pollard, A.J. Prevention of enteric fever in travellers with typhoid conjugate vaccines. J. Travel. Med. 2018, 25, tay120. [Google Scholar] [CrossRef]
- MacLennan, C.A.; Stanaway, J.; Grow, S.; Vannice, K.; Steele, A.D. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect. Dis. 2023, 10, S58–S66. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Immunization, Vaccines and Biologicals, Paratyphoid Fever. 2022. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/paratyphoid-fever (accessed on 18 December 2024).
- Soulier, A.; Prevosto, C.; Chol, M.; Deban, L.; Cranenburgh, R.M. Engineering a Novel Bivalent Oral Vaccine against Enteric Fever. Int. J. Mol. Sci. 2021, 22, 3287. [Google Scholar] [CrossRef]
- Zhang, F.; Boerth, E.M.; Gong, J.; Ma, N.; Lucas, K.; Ledue, O.; Malley, R.; Lu, Y.-J. A Bivalent MAPS Vaccine Induces Protective Antibody Responses against Salmonella Typhi and Paratyphi A. Vaccines 2023, 11, 91. [Google Scholar] [CrossRef]
- Boerth, E.M.; Gong, J.; Roffler, B.; Thompson, C.M.; Song, B.; Malley, S.F.; Hirsch, A.; MacLennan, C.A.; Zhang, F.; Malley, R.; et al. Induction of Broad Immunity against Invasive Salmonella Disease by a Quadrivalent Combination Salmonella MAPS Vaccine Targeting Salmonella Enterica Serovars Typhimurium, Enteritidis, Typhi, and Paratyphi A. Vaccines 2023, 11, 1671. [Google Scholar] [CrossRef]
- Katiyar, A.; Sharma, P.; Dahiya, S.; Singh, H.; Kapil, A.; Kaur, P. Genomic profiling of antimicrobial resistance genes in clinical isolates of Salmonella Typhi from patients infected with Typhoid fever in India. Sci. Rep. 2020, 10, 8299. [Google Scholar] [CrossRef]
- Yap, K.P.; Thong, K.L. Salmonella Typhi genomics: Envisaging the future of typhoid eradication. Trop. Med. Int. Health 2017, 22, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, S.; Holt, K.E.; Weill, F.X.; Le Hello, S.; Hawkey, J.; Edwards, D.J.; Fourment, M.; Holmes, E.C. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2016, 2, e000094. [Google Scholar] [CrossRef] [PubMed]
- Sima, C.M.; Buzilă, E.R.; Trofin, F.; Păduraru, D.; Luncă, C.; Duhaniuc, A.; Dorneanu, O.S.; Nastase, E.V. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr. Issues Mol. Biol. 2024, 4, 7447–7472. [Google Scholar] [CrossRef]
- Wong, V.K.; Baker, S.; Pickard, D.J.; Parkhill, J.; Page, A.J.; Feasey, N.A.; Kingsley, R.A.; Thomson, N.R.; Keane, J.A.; Weill, F.X.; et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat. Genet. 2015, 47, 632–639. [Google Scholar] [CrossRef]
- Carey, M.E.; Dyson, Z.A.; Ingle, D.J.; Amir, A.; Aworh, M.K.; Chattaway, M.A.; Chew, K.L.; Crump, J.A.; Feasey, N.A.; Howden, B.P.; et al. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 2023, 12, e85867. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.I.A.; Dyson, Z.A.; Klemm, E.J.; Khanam, F.; Holt, K.E.; Chowdhury, E.K.; Dougan, G.; Qadri, F. Population structure and antimicrobial resistance patterns of Salmonella Typhi isolates in urban Dhaka, Bangladesh from 2004 to 2016. PLoS Negl. Trop. Dis. 2020, 14, e0008036. [Google Scholar] [CrossRef]
- Kasiano, P.; Morita, M.; Kodama, T.; Hiyoshi, H.; Kavai, S.; Kiiru, S.; Kariuki, S. Salmonella Typhi genotypic diversity, cluster identification and antimicrobial resistance determinants in Mukuru settlement, Nairobi Kenya. BMC Infect. Dis. 2024, 24, 727. [Google Scholar] [CrossRef]
- Maes, M.; Sikorski, M.J.; Carey, M.E.; Higginson, E.E.; Dyson, Z.A.; Fernandez, A.; Araya, P.; Tennant, S.M.; Baker, S.; Lagos, R.; et al. Whole genome sequence analysis of Salmonella Typhi provides evidence of phylogenetic linkage between cases of typhoid fever in Santiago, Chile in the 1980s and 2010–2016. PLoS Negl. Trop. Dis. 2022, 16, e0010178. [Google Scholar] [CrossRef]
Characteristics | Description |
---|---|
Evolution of the toxin | This toxin appears to have evolved by merging the functionalities of two exotoxins: cytolethal distending toxin (CDT) and pertussis toxin |
Structure | AB-type bacterial toxin family, comprising an enzymatic subunit “A” and a receptor-binding subunit “B”, resulting in an A2B5 structure |
The toxin forms a pyramid, with PltB at the base, PltA at the center, and CdtB at the apex | |
Synthesis and export | Toxin is produced exclusively by intracellular S. Typhi strainsExport to the extracellular environment is mediated by Salmonella-containing vacuoles (SCVs) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzilă, E.R.; Dorneanu, O.S.; Trofin, F.; Sima, C.M.; Iancu, L.S. Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever. Int. J. Mol. Sci. 2025, 26, 3981. https://doi.org/10.3390/ijms26093981
Buzilă ER, Dorneanu OS, Trofin F, Sima CM, Iancu LS. Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever. International Journal of Molecular Sciences. 2025; 26(9):3981. https://doi.org/10.3390/ijms26093981
Chicago/Turabian StyleBuzilă, Elena Roxana, Olivia Simona Dorneanu, Felicia Trofin, Cristina Mihaela Sima, and Luminița Smaranda Iancu. 2025. "Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever" International Journal of Molecular Sciences 26, no. 9: 3981. https://doi.org/10.3390/ijms26093981
APA StyleBuzilă, E. R., Dorneanu, O. S., Trofin, F., Sima, C. M., & Iancu, L. S. (2025). Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever. International Journal of Molecular Sciences, 26(9), 3981. https://doi.org/10.3390/ijms26093981