Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types
Abstract
:1. Introduction
2. Results
2.1. Soil Chemical Properties
2.2. Variations in Carbon and Nitrogen Cycling Enzyme Activities and Functional Gene Abundance
2.3. Stochasticity and Determinism in Microbial Assembly of Cycling Communities
2.4. Divergent Microbial Nutrient Cycling Pathways in Different Crust Types
2.5. Key Drivers of Carbon and Nitrogen Cycling in Different Biological Soil Crust Types
3. Discussion
3.1. Increasing Aridity Suppresses Carbon and Nitrogen Cycling in BSCs
3.2. Carbon and Nitrogen Cycling Drives Adaptation in Cyanobacterial BSCs Under Arid Conditions
3.3. Ecological Strategies of Carbon and Nitrogen Cycling Differ Between BSC Types
4. Materials and Methods
4.1. Study Area and Sample Collection
4.2. Measurement of Soil Properties
4.3. Real-Time Quantitative PCR
4.4. DNA Extraction and Microbial Community Analysis
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adessi, A.; Cruz de Carvalho, R.; De Philippis, R.; Branquinho, C.; Marques da Silva, J. Microbial Extracellular Polymeric Substances Improve Water Retention in Dryland Biological Soil Crusts. Soil Biol. Biochem. 2018, 116, 67–69. [Google Scholar] [CrossRef]
- Fernandes, V.M.C.; Rudgers, J.A.; Collins, S.L.; Garcia-Pichel, F. Rainfall Pulse Regime Drives Biomass and Community Composition in Biological Soil Crusts. Ecology 2022, 103, e3744. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wang, K.; Xie, Y.; Wen, X.; Tu, Y.; Teng, T.; Luo, C.; Zhang, D. Impacts of Anthropogenic Disturbances on Antibiotic Resistomes in Biological Soil Crusts on the Qinghai-Tibetan Plateau. Environ. Pollut. 2025, 367, 125582. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Gufwan, L.A.; Wu, L.; Lan, S. Grazing Disturbance Reduces Biocrust-Related Cyanobacteria and N-Fixer Abundance but Increases Bacterial Diversity: Implications for Biocrust Restoration in Degraded Drylands. Agric. Ecosyst. Environ. 2025, 379, 109367. [Google Scholar] [CrossRef]
- Kidron, G.J.; Lichner, L.; Fischer, T.; Starinsky, A.; Or, D. Mechanisms for Biocrust-Modulated Runoff Generation—A Review. Earth Sci. Rev. 2022, 231, 104100. [Google Scholar] [CrossRef]
- Baldauf, S.; Porada, P.; Raggio, J.; Maestre, F.T.; Tietjen, B. Relative Humidity Predominantly Determines Long-Term Biocrust-Forming Lichen Cover in Drylands under Climate Change. J. Ecol. 2021, 109, 1370–1385. [Google Scholar] [CrossRef]
- She, W.; Chen, N.; Zhang, Y.; Qin, S.; Bai, Y.; Feng, W.; Lai, Z.; Qiao, Y.; Liu, L.; Zhang, W.; et al. Precipitation and Nitrogen Deposition Alter Biocrust-Vascular Plant Coexistence in a Desert Ecosystem: Threshold and Mechanisms. J. Ecol. 2022, 110, 772–783. [Google Scholar] [CrossRef]
- Bowker, M.A.; Reed, S.C.; Maestre, F.T.; Eldridge, D.J. Biocrusts: The Living Skin of the Earth. Plant Soil 2018, 429, 1–7. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Z.; Zhang, C.; Xia, L.; Meng, D.; Wu, L.; Song, S.; Sancheze, R.M.T.; Farias, M.E. Rapid Artificial Biocrust Development by Cyanobacterial Inoculation and Clay Amendment. Land Degrad. Dev. 2023, 34, 3728–3743. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, B.; Wang, W.; Revillini, D.; Delgado-Baquerizo, M. Biocrust Adaptations to Microhabitat Alter Bacterial Communities in a Semiarid Ecosystem. Plant Soil 2023, 492, 413–427. [Google Scholar] [CrossRef]
- Dou, W.; Delgado-Baquerizo, M.; Xiao, B. Biocrusts Drive Soil Respiration across Seasons and Depths in a Cold-Winter Desert. Soil Biol. Biochem. 2024, 191, 109355. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C. Biogeographical Patterns and Mechanisms of Microbial Community Assembly That Underlie Successional Biocrusts across Northern China. NPJ Biofilms Microbiomes 2021, 7, 15. [Google Scholar] [CrossRef]
- Drahorad, S.; Felix-Henningsen, P.; Siemens, J.; Marschner, B.; Heinze, S. Patterns of Enzyme Activities and Nutrient Availability within Biocrusts under Increasing Aridity in Negev Desert. Ecosphere 2022, 13, e4051. [Google Scholar] [CrossRef]
- Wang, Q.; Han, Y.; Lan, S.; Hu, C. Metagenomic Insight Into Patterns and Mechanism of Nitrogen Cycle During Biocrust Succession. Front. Microbiol. 2021, 12, 633428. [Google Scholar] [CrossRef]
- Li, S.; Bowker, M.A.; Xiao, B. Biocrust Impacts on Dryland Soil Water Balance: A Path toward the Whole Picture. Glob. Change Biol. 2022, 28, 6462–6481. [Google Scholar] [CrossRef]
- Bethany, J.; Johnson, S.L.; Garcia-Pichel, F. High Impact of Bacterial Predation on Cyanobacteria in Soil Biocrusts. Nat. Commun. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Phillips, M.L.; McNellis, B.E.; Howell, A.; Lauria, C.M.; Belnap, J.; Reed, S.C. Biocrusts Mediate a New Mechanism for Land Degradation under a Changing Climate. Nat. Clim. Change 2022, 12, 71–76. [Google Scholar] [CrossRef]
- Young, K.E.; Ferrenberg, S.; Reibold, R.; Reed, S.C.; Swenson, T.; Northen, T.; Darrouzet-Nardi, A. Vertical Movement of Soluble Carbon and Nutrients from Biocrusts to Subsurface Mineral Soils. Geoderma 2022, 405, 115495. [Google Scholar] [CrossRef]
- Qian, L.; Xiao, J.; Zhang, Z.; Yang, L.; Xia, L.; Farías, M.E.; Torres, R.M.; Wu, L. Impact of Different Nitrogen Additions on Microbes and Exopolysaccharides Excretion in Cyanobacterial Biocrusts. Plant Soil 2023, 487, 229–247. [Google Scholar] [CrossRef]
- Sun, J.; Yu, K.; Chen, N.; Munson, S.M.; Li, X.; Jia, R. Biocrusts Modulate Carbon Losses under Warming across Global Drylands: A Bayesian Meta-Analysis. Soil Biol. Biochem. 2024, 188, 109214. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Muñoz-Martín, M.A.; Cantón, Y.; Chamizo, S.; Rodríguez-Caballero, E.; Mateo, P. Land Degradation Effects on Composition of Pioneering Soil Communities: An Alternative Successional Sequence for Dryland Cyanobacterial Biocrusts. Soil Biol. Biochem. 2020, 146, 107824. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, A.; Zang, Y.; Guo, K.; Zhou, X.; Rong, X.; Yin, B.; Zhang, Y. Slope Position Affects Nonstructural Carbohydrate Allocation Strategies in Different Types of Biological Soil Crusts in the Gurbantunggut Desert. Plant Soil 2024, 502, 87–102. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Yu, G.; Rossi, F.; Huo, D.; De Philippis, R.; Cheng, X.; Wang, W.; Li, R. Multiple Diversity Facets of Crucial Microbial Groups in Biological Soil Crusts Promote Soil Multifunctionality. Glob. Ecol. Biogeogr. 2021, 30, 1204–1217. [Google Scholar] [CrossRef]
- Mugnai, G.; Chamizo, S.; Certini, G.; Li, H.; Rossi, F.; Adessi, A. The Contribution of the Phototrophic Fraction in the Fertility of Different Successional Stages of Induced Biological Soil Crusts. Biol. Fertil. Soils 2024, 60, 911–926. [Google Scholar] [CrossRef]
- Su, Y.G.; Liu, J.; Zhang, B.C.; Zhao, H.M.; Huang, G. Habitat-Specific Environmental Factors Regulate Spatial Variability of Soil Bacterial Communities in Biocrusts across Northern China’s Drylands. Sci. Total Environ. 2020, 719, 137479. [Google Scholar] [CrossRef]
- Li, S.; Xiao, B. Cyanobacteria and Moss Biocrusts Increase Evaporation by Regulating Surface Soil Moisture and Temperature on the Northern Loess Plateau, China. Catena 2022, 212, 106068. [Google Scholar] [CrossRef]
- Kurth, J.K.; Albrecht, M.; Karsten, U.; Glaser, K.; Schloter, M.; Schulz, S. Correlation of the Abundance of Bacteria Catalyzing Phosphorus and Nitrogen Turnover in Biological Soil Crusts of Temperate Forests of Germany. Biol. Fertil. Soils 2021, 57, 179–192. [Google Scholar] [CrossRef]
- Bao, T.; Zhao, Y.; Gao, L.; Yang, Q.; Yang, K. Moss-Dominated Biocrusts Improve the Structural Diversity of Underlying Soil Microbial Communities by Increasing Soil Stability and Fertility in the Loess Plateau Region of China. Eur. J. Soil Biol. 2019, 95, 103120. [Google Scholar] [CrossRef]
- Pepe-Ranney, C.; Koechli, C.; Potrafka, R.; Andam, C.; Eggleston, E.; Garcia-Pichel, F.; Buckley, D.H. Non-Cyanobacterial Diazotrophs Mediate Dinitrogen Fixation in Biological Soil Crusts during Early Crust Formation. ISME J. 2016, 10, 287–298. [Google Scholar] [CrossRef]
- Ghiloufi, W.; Seo, J.; Kim, J.; Chaieb, M.; Kang, H. Effects of Biological Soil Crusts on Enzyme Activities and Microbial Community in Soils of an Arid Ecosystem. Microb. Ecol. 2019, 77, 201–216. [Google Scholar] [CrossRef]
- Zhou, X.; An, X.; De Philippis, R.; Ye, C.; Ke, T.; Zhang, Y.; Chen, L. The Facilitative Effects of Shrub on Induced Biological Soil Crust Development and Soil Properties. Appl. Soil Ecol. 2019, 137, 129–138. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, B.; Ma, Z.; Zhang, M.; Zeng, H. Distinguishing Natural and Anthropogenic Contributions to Biological Soil Crust Distribution in China’s Drylands. Sci. Total Environ. 2024, 907, 168009. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Dou, Y.; Yang, X.; An, S. Soil Microbial Community and Their Functional Genes during Grassland Restoration. J. Environ. Manag. 2023, 325, 116488. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Li, Y.; Lu, Y.; Zhou, X.; Yin, B.; Zhang, Y. Shrubs Have a Greater Influence on the Nonstructural Carbohydrates of Desert Mosses along Precipitation Decreased. Environ. Exp. Bot. 2023, 216, 105530. [Google Scholar] [CrossRef]
- Qi, J.; Liu, Y.; Wang, Z.; Zhao, L.; Zhang, W.; Wang, Y.; Li, X. Variations in Microbial Functional Potential Associated with Phosphorus and Sulfur Cycling in Biological Soil Crusts of Different Ages at the Tengger Desert, China. Appl. Soil Ecol. 2021, 165, 104022. [Google Scholar] [CrossRef]
- Tang, K.; Liang, Y.; Yuan, B.; Meng, J.; Feng, F. Spatial Distribution and Core Community of Diazotrophs in Biological Soil Crusts and Subsoils in Temperate Semi-Arid and Arid Deserts of China. Front. Microbiol. 2023, 14, 1074855. [Google Scholar] [CrossRef] [PubMed]
- Hui, R.; Zhao, R.; Liu, L.; Li, X. Effect of Snow Cover on Water Content, Carbon and Nutrient Availability, and Microbial Biomass in Complexes of Biological Soil Crusts and Subcrust Soil in the Desert. Geoderma 2022, 406, 115505. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Li, C.; Kou, Y.; Li, J.; Yao, M.; Zhang, B.; Wang, L.; Xu, H.; You, C.; et al. Disentangling the Relative Importance of Precipitation, Biocrust Succession, and Shrub Cover in Mediating Soil PhoD-Harbouring Communities and Organic Phosphorus Mineralisation. Soil Biol. Biochem. 2023, 186, 109165. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, S.; Jia, R.; Li, Y.; Gu, S.; Li, X. Unveiling Hidden Bacterial Players: A Closer Look at the Succession Characteristics and Co-Occurrence Patterns of Abundant, Intermediate and Rare Bacteria in Biological Soil Crusts. Catena 2024, 243, 108223. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Trivedi, C.; Hu, H.; Anderson, I.C.; Jeffries, T.C.; Zhou, J.; Singh, B.K. Microbial Regulation of the Soil Carbon Cycle: Evidence from Gene-Enzyme Relationships. ISME J. 2016, 10, 2593–2604. [Google Scholar] [CrossRef]
- Zhang, X.; Rademacher, T.; Liu, H.; Wang, L.; Manzanedo, R.D. Fading Regulation of Diurnal Temperature Ranges on Drought-Induced Growth Loss for Drought-Tolerant Tree Species. Nat. Commun. 2023, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil Extracellular Enzyme Activities, Soil Carbon and Nitrogen Storage under Nitrogen Fertilization: A Meta-Analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef]
- Chen, L.; Rossi, F.; Deng, S.; Liu, Y.; Wang, G.; Adessi, A.; De Philippis, R. Macromolecular and Chemical Features of the Excreted Extracellular Polysaccharides in Induced Biological Soil Crusts of Different Ages. Soil Biol. Biochem. 2014, 78, 1–9. [Google Scholar] [CrossRef]
- Xiao, R.; Zheng, Y. Overview of Microalgal Extracellular Polymeric Substances (EPS) and Their Applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, X.; Tu, Y.; He, Y.; Wang, Y.; Luo, S.; Ge, H.; Zhang, D. Mechanisms of Artificial Biological Soil Crusts Development for Anti-Desertification Engineering on the Qinghai-Tibetan Plateau. Environ. Technol. Innov. 2024, 33, 105342. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Huo, D.; Hu, C.; Li, R.; Zhang, S.; Song, L. Aridity Modulates Biogeographic Distribution and Community Assembly of Cyanobacterial Morphotypes in Drylands. FEMS Microbiol. Ecol. 2023, 99, fiad053. [Google Scholar] [CrossRef]
- Yu, L.; Luo, S.; Xu, X.; Gou, Y.; Wang, J. The Soil Carbon Cycle Determined by GeoChip 5.0 in Sugarcane and Soybean Intercropping Systems with Reduced Nitrogen Input in South China. Appl. Soil Ecol. 2020, 155, 103653. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Shao, X.; Li, H.; He, Y.; Sirimuji; Wang, B. Microbes Require a Relatively Long Time to Recover in Natural Succession Restoration of Degraded Grassland Ecosystems. Ecol. Indic. 2021, 129, 107881. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, D.; Wang, G.; Zhou, X.; Ye, C.; Fu, T.; Ke, T.; Zhang, Y.; Liu, Y.; Chen, L. Biological Soil Crust Succession in Deserts through a 59-Year-Long Case Study in China: How Induced Biological Soil Crust Strategy Accelerates Desertification Reversal from Decades to Years. Soil Biol. Biochem. 2020, 141, 107665. [Google Scholar] [CrossRef]
- Couradeau, E.; Giraldo-Silva, A.; De Martini, F.; Garcia-Pichel, F. Spatial Segregation of the Biological Soil Crust Microbiome around Its Foundational Cyanobacterium, Microcoleus Vaginatus, and the Formation of a Nitrogen-Fixing Cyanosphere. Microbiome 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Z.; Shen, G.; Cheng, H.; Tao, S. Distribution of Microbial Communities in Seasonally Frozen Soil Layers on the Tibetan Plateau and the Driving Environmental Factors. Environ. Sci. Pollut. Res. 2022, 30, 1919–1937. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Tao, Y.; Zeng, Y.; Tu, J.; She, S.; Fu, Y.; Hou, L.; Chen, L. A Feasible Method of Induced Biological Soil Crust Propagation through the Inoculation of Moss and Addition of Soil Amendments in a Pb-Zn Tailing Pond. Sci. Total Environ. 2024, 910, 168569. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Tao, Y.; Tu, J.; Zeng, Y.; Li, Y.; Wang, P.; Li, X.; He, F.; Chen, L. Induced and Natural Moss Soil Crusts Accelerate the C, N, and P Cycles of Pb[Sbnd]Zn Tailings. Sci. Total Environ. 2024, 909, 168657. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Y.; Tu, J.; Chen, Z.; Fu, Y.; Ye, W.; Zhu, J.; Chen, C.; Hou, L.; Chen, L. Dam Construction Accelerated the Development of Biological Soil Crusts in Degraded Soil Patches in the Lhasa River Basin, Qinghai-Tibetan Plateau. Appl. Soil Ecol. 2024, 200, 105454. [Google Scholar] [CrossRef]
- Ye, C.R.; Tao, Y.; Zhang, Y.R.; Cao, J.; Ke, T.; Wei, S.J.; De Philippis, R.; Chen, L.Z. Monosaccharide Composition of Primary Cell Wall Polysaccharides as a Developmental Level Indicator of Biological Soil Crusts. Catena 2020, 195, 104782. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, K.; Zhang, B.; Tang, L.; Pang, Z.; Wang, F.; Che, R.; Ran, Q.; Xia, A.; Wang, K.; et al. Spatial Patterns of Microbial Nitrogen-Cycling Gene Abundances along a Precipitation Gradient in Various Temperate Grasslands at a Regional Scale. Geoderma 2021, 404, 115236. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, S.; Wu, H.; Liao, L.; Wang, X.; Zhang, L.; Liu, G.; Wang, G.; Fang, L.; Song, Z. Simplified Microbial Network Reduced Microbial Structure Stability and Soil Functionality in Alpine Grassland along a Natural Aridity Gradient. Soil Biol. Biochem. 2024, 191, 109366. [Google Scholar] [CrossRef]
- Qiu, D.; Bowker, M.A.; Xiao, B.; Zhao, Y.; Zhou, X.; Li, X. Mapping Biocrust Distribution in China’s Drylands under Changing Climate. Sci. Total Environ. 2023, 905, 167211. [Google Scholar] [CrossRef]
- Miralles, I.; Lázaro, R.; Sánchez-Marañón, M.; Soriano, M.; Ortega, R. Biocrust Cover and Successional Stages Influence Soil Bacterial Composition and Diversity in Semiarid Ecosystems. Sci. Total Environ. 2020, 709, 134654. [Google Scholar] [CrossRef]
- Mai, Z.; Chen, Q.; Wang, L.; Zhang, J.; Cheng, H.; Su, H.; Zhang, S.; Li, J. Bacterial Carbonic Anhydrase-Induced Carbonates Mitigate Soil Erosion in Biological Soil Crusts. J. Environ. Manag. 2024, 352, 120085. [Google Scholar] [CrossRef]
- Kang, Z.; Lei, Z.; Fei, W.; Kaikai, L.; Yali, Z.; Bingchang, Z. Dynamics in Eukaryotic Algal Communities Regulate Bacterial and Fungal Communities as Biocrusts Develop in a Temperate Desert in Central Asia. Funct. Ecol. 2024, 38, 531–545. [Google Scholar] [CrossRef]
- Ginestet, C. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Lefcheck, J.S. PiecewiseSEM: Piecewise Structural Equation Modelling in r for Ecology, Evolution, and Systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
Parameter | Arid (Ningxia) | Semi-Arid (Tibet) | Semi-Humid (Inner Mongolia) | BSC Type Effect (C vs. M) | Interaction (Aridity × BSC) |
---|---|---|---|---|---|
Moisture | 0.13 ± 0.02 a | 0.17 ± 0.01 a | 0.23 ± 0.04 a | n.s. | n.s. |
pH | 8.07 ± 0.53 a | 7.65 ± 0.15 b | 7.04 ± 0.15 b | M > C ** (F = 8.92, p = 0.005) | F = 4.12, p = 0.028 |
TC (g/kg) | 15.62 ± 4.43 a | 25.62 ± 0.79 b | 35.83 ± 3.03 c | M > C *** (F = 32.1, p < 0.001) | F = 12.4, p = 0.001 |
TN (g/kg) | 1.08 ± 0.04 a | 1.83 ± 0.09 b | 2.33 ± 0.13 c | M > C *** (F = 28.7, p < 0.001) | F = 5.21, p = 0.019 |
TC/TN | 12.50 ± 0.56 a | 12.49 ± 0.43 a | 15.38 ± 0.91 b | n.s. | F = 4.02, p = 0.045 |
NH4+-N (mg/kg) | 10.00 ± 0.57 a | 10.83 ± 0.31 ab | 13.17 ± 0.60 b | M > C * (F = 5.44, p = 0.029) | F = 4.32, p = 0.037 |
NO3−-N (mg/kg) | 14.17 ± 0.34 a | 16.17 ± 0.17 b | 19.50 ± 0.34 c | M > C ** (F = 9.87, p = 0.004) | F = 6.12, p = 0.012 |
TP (g/kg) | 2.33 ± 0.21 a | 7.33 ± 0.42 b | 25.17 ± 3.31 c | M > C *** (F = 45.3, p < 0.001) | F = 8.91, p = 0.002 |
AP (mg/kg) | 6.79 ± 2.74 a | 13.53 ± 2.42 a | 29.94 ± 10.82 a | n.s. | n.s. |
TK (mg/kg) | 4.17 ± 0.87 a | 10.83 ± 0.60 b | 35.50 ± 4.50 c | M > C *** (F = 51.2, p < 0.001) | F = 14.7, p = 0.001 |
AK (mg/kg) | 11.33 ± 0.21 a | 13.17 ± 0.17 b | 16.50 ± 0.56 c | M > C *** (F = 24.8, p < 0.001) | F = 7.89, p = 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Li, Y.; Fu, Y.; She, S.; Wang, X.; Hou, L.; Chen, C.; Chen, L. Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types. Int. J. Mol. Sci. 2025, 26, 3989. https://doi.org/10.3390/ijms26093989
Tao Y, Li Y, Fu Y, She S, Wang X, Hou L, Chen C, Chen L. Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types. International Journal of Molecular Sciences. 2025; 26(9):3989. https://doi.org/10.3390/ijms26093989
Chicago/Turabian StyleTao, Yue, Yan Li, Yaojia Fu, Sijia She, Xinyue Wang, Lianghui Hou, Chaoqi Chen, and Lanzhou Chen. 2025. "Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types" International Journal of Molecular Sciences 26, no. 9: 3989. https://doi.org/10.3390/ijms26093989
APA StyleTao, Y., Li, Y., Fu, Y., She, S., Wang, X., Hou, L., Chen, C., & Chen, L. (2025). Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types. International Journal of Molecular Sciences, 26(9), 3989. https://doi.org/10.3390/ijms26093989