Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications
Abstract
:1. Introduction
2. Assessment of Myocardial Histomorphometric Parameters and Their Role in Myocardial Remodeling in the Context of AH
2.1. Role of Capillary Density (CD) in the Context of AH and Hypertensive Myocardium
2.1.1. Animal Studies
2.1.2. Human Studies
2.1.3. Potential Therapeutic Implications
2.2. Role of Fibrosis (FGF, FGFR/Collagen Types) in the Context of AH and Hypertensive Myocardium
2.2.1. Animal Studies
2.2.2. Human Studies
2.2.3. Potential Therapeutic Implications
2.3. Role of Mast Cells in the Context of AH and Hypertensive Myocardium
2.3.1. Animal Studies
2.3.2. Human Studies
2.3.3. Potential Therapeutic Implications
3. Assessment of the Molecular Modalities in AH and Their Role for Myocardial Remodeling
3.1. Role of the Apelinergic System in the Context of AH and Hypertensive Myocardium
3.1.1. Animal Studies
3.1.2. Human Studies
3.1.3. Potential Therapeutic Implications
3.2. Role of VEGF/VEGFR Pathway in the Context of AH and Hypertensive Myocardium
3.2.1. Animal Studies
3.2.2. Human Studies
3.2.3. Potential Therapeutic Implications
3.3. Role of NO/NOS Signaling in the Context of AH and Hypertensive Myocardium
3.3.1. Animal Studies
3.3.2. Human Studies
3.3.3. Potential Therapeutic Implications
4. Limitations
- Potential for publication bias: Like many reviews, this paper might be susceptible to publication bias, where studies showing positive or significant results are more likely to be published and included than those with negative or inconclusive findings. This could skew the overall picture presented for some pathways or therapeutic interventions.
- Scope of Studies: While this review extensively covers the apelinergic system, VEGF/VEGFR pathway, and NO/NOS signaling, it predominantly relies on animal studies, particularly those involving SHRs. The generalizability of these findings to humans might be constrained by interspecies differences in cardiovascular physiology and pathology.
- Human data gaps: Despite the inclusion of some human studies, there is a notable disparity in the depth and quantity of research compared to animal studies. For example, the role of mast cells and VEGF dynamics in human hypertensive myocardium remains underexplored, which is potentially limiting the applicability of findings to clinical settings.
- Variability in study design: The studies reviewed demonstrate considerable variability in experimental designs, methodologies, and endpoints, complicating direct comparisons and synthesis of findings. This heterogeneity may introduce bias and limit the ability to draw definitive conclusions.
- Therapeutic context: While potential therapeutic targets are discussed, the translation of these findings into clinical interventions is still in preliminary stages. The long-term safety and efficacy of proposed treatments, such as apelin analogs and VEGF modulation, require further clinical validation.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AH | Arterial Hypertension |
HHD | Hypertensive Heart Disease |
LVH | Left Ventricular Hypertrophy |
CD | Capillary Density |
RAAS | Renin–Angiotensin–Aldosterone System |
VEGF | Vascular Endothelial Growth Factor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
NO | Nitric Oxide |
NOS | Nitric Oxide Synthase |
eNOS | Endothelial Nitric Oxide Synthase |
iNOS | Inducible Nitric Oxide Synthase |
MCN | Mast Cell Network |
FGF-2 | Fibroblast Growth Factor-2 |
ANG II | Angiotensin II |
APLNR | Apelin Receptor |
SHR | Spontaneously Hypertensive Rats |
BH4 | Tetrahydrobiopterin |
2K1C | Two-Kidney, One-Clip (hypertension model) |
LV | Left Ventricle |
RV | Right Ventricle |
L-NAME | N(G)-Nitro-L-arginine methyl ester (NOS inhibitor) |
References
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global Epidemiology, Health Burden and Effective Interventions for Elevated Blood Pressure and Hypertension. Nat. Rev. Cardiol. 2021, 18, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Kockskämper, J.; Pluteanu, F. Left Atrial Myocardium in Arterial Hypertension. Cells 2022, 11, 3157. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef]
- Felker, G.M.; Solomon, S.D.; Claggett, B.; Diaz, R.; McMurray, J.J.V.; Metra, M.; Anand, I.; Crespo-Leiro, M.G.; Dahlström, U.; Goncalvesova, E.; et al. Assessment of Omecamtiv Mecarbil for the Treatment of Patients With Severe Heart Failure: A Post Hoc Analysis of Data From the GALACTIC-HF Randomized Clinical Trial. JAMA Cardiol. 2022, 7, 26–34. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kirabo, A. Hypertensive Heart Disease: Risk Factors, Complications and Mechanisms. Front. Cardiovasc. Med. 2023, 10, 1205475. [Google Scholar] [CrossRef]
- Savoia, C.; Volpe, M.; Grassi, G.; Borghi, C.; Agabiti Rosei, E.; Touyz, R.M. Personalized Medicine—A Modern Approach for the Diagnosis and Management of Hypertension. Clin. Sci. 2017, 131, 2671–2685. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Yang, X.; Liu, K.; Zhang, X.; Zuo, X.; Ye, R.; Wang, Z.; Shi, R.; Meng, Q.; et al. Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 168. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, L.; Zhang, L.; Li, Y.; Cui, X.; Lu, M.; Zhang, Z.; Guan, X.; Zhang, M.; Hao, J.; et al. Identification of Circulating Plasma Proteins as a Mediator of Hypertension-Driven Cardiac Remodeling: A Mediation Mendelian Randomization Study. Hypertension 2024, 81, 1132–1144. [Google Scholar] [CrossRef]
- Qu, Y.; Ma, D.; Wu, T.; Wang, H.; Tian, Z.; Liu, X.; Wang, Y. A Multi-Omics Approach Identifies the Key Role of Disorders of Sphingolipid Metabolism in Ang II-Induced Hypertensive Cardiomyopathy Myocardial Remodeling. Sci. Rep. 2024, 14, 30379. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, Y. Molecular Mechanisms Underlying Vascular Remodeling in Hypertension. Rev. Cardiovasc. Med. 2024, 25, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhazykbayeva, S.; Pabel, S.; Mügge, A.; Sossalla, S.; Hamdani, N. The Molecular Mechanisms Associated with the Physiological Responses to Inflammation and Oxidative Stress in Cardiovascular Diseases. Biophys. Rev. 2020, 12, 947–968. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, F. Molecular Mechanisms of Left Ventricular Hypertrophy (LVH) in Systemic Hypertension (SH)—Possible Therapeutic Perspectives. J. Am. Soc. Hypertens. 2011, 5, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.U.; Eiros, R.; Gavira, J.J.; Gallego, C.; Gonzalez, A.; Ravassa, S.; Lopez, B.; Beaumont, J.; San José, G.; Díez, J. The Hypertensive Myocardium: From Microscopic Lesions to Clinical Complications and Outcomes. Med. Clin. N. Am. 2017, 101, 43–52. [Google Scholar] [CrossRef]
- Iliev, A.A.; Kotov, G.N.; Dimitrova, I.N.; Landzhov, B.V. Evaluation of Structural Myocardial Changes during Chronic Hypertensive States in Rats. J. Cardiol. Cardiovasc. Sci. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Iliev, A.A.; Kotov, G.N.; Landzhov, B.V.; Jelev, L.S.; Kirkov, V.K.; Hinova-Palova, D.V. A Comparative Morphometric Study of the Myocardium during the Postnatal Development in Normotensive and Spontaneously Hypertensive Rats. Folia Morphol. 2018, 77, 253–265. [Google Scholar] [CrossRef]
- Tomanek, R.J. Response of the Coronary Vasculature to Myocardial Hypertrophy. J. Am. Coll. Cardiol. 1990, 15, 528–533. [Google Scholar] [CrossRef]
- Vidal, S.; Horvath, E.; Kovacs, K.; Scheithauer, B.W.; Lloyd, R.V. Morphologic Approaches to the Assessment of Angiogenesis. Microsc. Anal. 2002, 92, 23–25. [Google Scholar]
- Kotov, G.; Landzhov, B.; Stamenov, N.; Stanchev, S.; Iliev, A. Changes in the Number of Mast Cells, Expression of Fibroblast Growth Factor-2 and Extent of Interstitial Fibrosis in Established and Advanced Hypertensive Heart Disease. Ann. Anat. 2020, 232, 151564. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Mol. Aspects Med. 2019, 65, 70–99. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef] [PubMed]
- Stoker, M.E.; Gerdes, A.M.; May, J.F. Regional Differences in Capillary Density and Myocyte Size in the Normal Human Heart. Anat. Rec. 1982, 202, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Saheera, S.; Krishnamurthy, P. Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transplant. 2020, 29, 963689720920830. [Google Scholar] [CrossRef] [PubMed]
- Cowling, R.T.; Kupsky, D.; Kahn, A.M.; Daniels, L.B.; Greenberg, B.H. Mechanisms of Cardiac Collagen Deposition in Experimental Models and Human Disease. Transl. Res. 2019, 209, 138–155. [Google Scholar] [CrossRef]
- Wilcock, A.; Bahri, R.; Bulfone-Paus, S.; Arkwright, P.D. Mast Cell Disorders: From Infancy to Maturity. Allergy 2019, 74, 53–63. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2016, 6, 620. [Google Scholar] [CrossRef]
- Gurish, M.F.; Austen, K.F. Developmental Origin and Functional Specialization of Mast Cell Subsets. Immunity 2012, 37, 25–33. [Google Scholar] [CrossRef]
- Janicki, J.S.; Brower, G.L.; Levick, S.P. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling. Methods Mol. Biol. 2015, 1220, 121–139. [Google Scholar] [CrossRef]
- Legere, S.A.; Haidl, I.D.; Légaré, J.F.; Marshall, J.S. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front. Immunol. 2019, 10, 580. [Google Scholar] [CrossRef]
- Shaik-Dasthagirisaheb, Y.B.; Varvara, G.; Murmura, G.; Saggini, A.; Potalivo, G.; Caraffa, A.; Antinolfi, P.; Tetè, S.; Tripodi, D.; Conti, F.; et al. Vascular Endothelial Growth Factor (VEGF), Mast Cells and Inflammation. Int. J. Immunopathol. Pharmacol. 2013, 26, 327–335. [Google Scholar] [CrossRef]
- Stamenov, N.; Kotov, G.; Iliev, A.; Landzhov, B.; Kirkov, V.; Stanchev, S. Mast Cells and Basic Fibroblast Growth Factor in Physiological Aging of Rat Heart and Kidney. Biotech. Histochem. 2022, 97, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Maruhashi, T.; Higashi, Y.; Masuda, T.; Nagata, D.; Nagai, M.; Kario, K. Update on Hypertension Research in 2021. Hypertens. Res. 2022, 45, 1276–1297. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Hoshide, S.; Mogi, M. The Need for a Personalized “Implementation Hypertension” Strategy to Facilitate the Implementation of the New European Society of Hypertension (2023), European Society of Cardiology (2024) and the Upcoming Japanese Society of Hypertension (2025) Hypertension Guidelines in Clinical Practice. Hypertens. Res. 2024, 47, 3380–3382. [Google Scholar]
- Hunter, P.G.; Chapman, F.A.; Dhaun, N. Hypertension: Current Trends and Future Perspectives. Br. J. Clin. Pharmacol. 2021, 87, 3721–3736. [Google Scholar] [CrossRef]
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of Hypertension: A Review. JAMA 2022, 328, 1849–1861. [Google Scholar] [CrossRef]
- Song, Q.; Wang, X.; Cao, Z.; Xin, C.; Zhang, J.; Li, S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J. Inflamm. Res. 2024, 17, 313–330. [Google Scholar] [CrossRef]
- Folino, A.; Montarolo, P.G.; Samaja, M.; Rastaldo, R. Effects of Apelin on the Cardiovascular System. Heart Fail. Rev. 2015, 20, 505–518. [Google Scholar] [CrossRef]
- Lee, D.K.; Ferguson, S.S.; George, S.R.; O’Dowd, B.F. The Fate of the Internalized Apelin Receptor Is Determined by Different Isoforms of Apelin Mediating Differential Interaction with Beta-Arrestin. Biochem. Biophys. Res. Commun. 2010, 395, 185–189. [Google Scholar] [CrossRef]
- Yu, X.H.; Tang, Z.B.; Liu, L.J.; Qian, H.; Tang, S.L.; Zhang, D.W.; Tian, G.P.; Tang, C.K. Apelin and its receptor APJ in cardiovascular diseases. Clin. Chim. Acta 2014, 428, 1–8. [Google Scholar] [CrossRef]
- Siddiquee, K.; Hampton, J.; McAnally, D.; May, L.; Smith, L. The Apelin Receptor Inhibits the Angiotensin II Type 1 Receptor via Allosteric Trans-Inhibition. Br. J. Pharmacol. 2013, 168, 1104–1117. [Google Scholar] [CrossRef]
- Chapman, F.A.; Maguire, J.J.; Newby, D.E.; Davenport, A.P.; Dhaun, N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc. Res. 2023, 119, 2683–2696. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.J.; Kleinz, M.J.; Pitkin, S.L.; Davenport, A.P. [Pyr1]Apelin-13 Identified as the Predominant Apelin Isoform in the Human Heart: Vasoactive Mechanisms and Inotropic Action in Disease. Hypertension 2009, 54, 598–604. [Google Scholar] [CrossRef]
- Akcilar, R.; Turgut, S.; Caner, V.; Akcilar, A.; Ayada, C.; Elmas, L.; Ozcan, T.O. Apelin Effects on Blood Pressure and RAS in DOCA-Salt-Induced Hypertensive Rats. Clin. Exp. Hypertens. 2013, 35, 550–557. [Google Scholar] [CrossRef]
- Yang, G.H.; Zhou, X.; Ji, W.J.; Liu, J.X.; Sun, J.; Dong, Y.; Jiang, T.M.; Li, Y.M. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2017, 39, 740–747. [Google Scholar] [CrossRef]
- Barnes, G.D.; Alam, S.; Carter, G.; Pedersen, C.M.; Lee, K.M.; Hubbard, T.J.; Veitch, S.; Jeong, H.; White, A.; Cruden, N.L.; et al. Sustained Cardiovascular Actions of APJ Agonism during Renin-Angiotensin System Activation and in Patients with Heart Failure. Circ. Heart Fail. 2013, 6, 482–491. [Google Scholar] [CrossRef]
- Cao, J.; Li, H.; Chen, L. Targeting Drugs to APJ Receptor: The Prospect of Treatment of Hypertension and Other Cardiovascular Diseases. Curr. Drug Targets 2015, 16, 148–155. [Google Scholar] [CrossRef]
- Wu, D.; He, L.; Chen, L. Apelin/APJ System: A Promising Therapy Target for Hypertension. Mol. Biol. Rep. 2014, 41, 6691–6703. [Google Scholar] [CrossRef]
- O’Carroll, A.M.; Selby, T.L.; Palkovits, M.; Lolait, S.J. Distribution of mRNA Encoding B78/APJ, the Rat Homologue of the Human APJ Receptor, and Its Endogenous Ligand Apelin in Brain and Peripheral Tissues. Biochim. Biophys. Acta 2000, 1492, 72–80. [Google Scholar] [CrossRef]
- Kumagai, S.; Nakayama, H.; Fujimoto, M.; Honda, H.; Serada, S.; Ishibashi-Ueda, H.; Kasai, A.; Obana, M.; Sakata, Y.; Sawa, Y.; et al. Myeloid Cell-Derived LRG Attenuates Adverse Cardiac Remodeling after Myocardial Infarction. Cardiovasc. Res. 2015, 109, 272–282. [Google Scholar] [CrossRef]
- Wang, W.; McKinnie, S.M.; Patel, V.B.; Haddad, G.; Wang, Z.; Zhabyeyev, P.; Das, S.K.; Basu, R.; McLean, B.; Kandalam, V.; et al. Loss of Apelin Exacerbates Myocardial Infarction Adverse Remodeling and Ischemia-Reperfusion Injury: Therapeutic Potential of Synthetic Apelin Analogues. J. Am. Heart Assoc. 2013, 2, e000249. [Google Scholar] [CrossRef]
- Ferrara, N.; Davis-Smyth, T. The Biology of Vascular Endothelial Growth Factor. Endocr. Rev. 1997, 18, 4–25. [Google Scholar] [CrossRef]
- Peach, C.J.; Mignone, V.W.; Arruda, M.A.; Alcobia, D.C.; Hill, S.J.; Kilpatrick, L.E.; Woolard, J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int. J. Mol. Sci. 2018, 19, 1264. [Google Scholar] [CrossRef]
- Ruhrberg, C.; Gerhardt, H.; Golding, M.; Watson, R.; Ioannidou, S.; Fujisawa, H.; Betsholtz, C.; Shima, D.T. Spatially Restricted Patterning Cues Provided by Heparin-Binding VEGF-A Control Blood Vessel Branching Morphogenesis. Genes. Dev. 2002, 16, 2684–2698. [Google Scholar] [CrossRef]
- Braile, M.; Marcella, S.; Cristinziano, L.; Galdiero, M.R.; Modestino, L.; Ferrara, A.L.; Varricchi, G.; Marone, G.; Loffredo, S. VEGF-A in Cardiomyocytes and Heart Diseases. Int. J. Mol. Sci. 2020, 21, 5294. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, W.; Meng, W.; Liu, C.; Chen, Y.; Gerling, I.C.; Weber, K.T.; Bhattacharya, S.K.; Kumar, R.; Sun, Y. VEGF-C/VEGFR-3 pathway promotes myocyte hypertrophy and survival in the infarcted myocardium. Am. J. Transl. Res. 2015, 7, 697–709. [Google Scholar]
- Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The Role of the VEGF Family in Coronary Heart Disease. Front. Cardiovasc. Med. 2021, 8, 738325. [Google Scholar] [CrossRef]
- Barouch, L.A.; Harrison, R.W.; Skaf, M.W.; Rosas, G.O.; Cappola, T.P.; Kobeissi, Z.A.; Hobai, I.A.; Lemmon, C.A.; Burnett, A.L.; O’Rourke, B.; et al. Nitric Oxide Regulates the Heart by Spatial Confinement of Nitric Oxide Synthase Isoforms. Nature 2002, 416, 337–339. [Google Scholar] [CrossRef]
- Dedkova, E.N.; Blatter, L.A. Characteristics and Function of Cardiac Mitochondrial Nitric Oxide Synthase. J. Physiol. 2009, 587, 851–872. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Jin, C.Z.; Jang, J.H.; Wang, Y. Molecular Mechanisms of Neuronal Nitric Oxide Synthase in Cardiac Function and Pathophysiology. J. Physiol. 2014, 592, 3189–3200. [Google Scholar] [CrossRef]
- Azizi, M.; Chedid, A.; Oudard, S. Home Blood-Pressure Monitoring in Patients Receiving Sunitinib. N. Engl. J. Med. 2008, 358, 95–98. [Google Scholar] [CrossRef]
- Iliev, A.; Gaydarski, L.; Kotov, G.; Landzhov, B.; Kirkov, V.; Stanchev, S. The Vascular Footprint in Cardiac Homeostasis and Hypertensive Heart Disease—A Link Between Apelin Receptor, Vascular Endothelial Growth Factor, and Neuronal Nitric Oxide Synthase. Anat. Rec. 2024, 307, 3548–3563. [Google Scholar] [CrossRef]
- Gu, J.W.; Fortepiani, L.A.; Reckelhoff, J.F.; Adair, T.H.; Wang, J.; Hall, J.E. Increased Expression of Vascular Endothelial Growth Factor and Capillary Density in Hearts of Spontaneously Hypertensive Rats. Microcirculation 2004, 11, 689–697. [Google Scholar] [CrossRef]
- Olianti, C.; Costantini, I.; Giardini, F.; Lazzeri, E.; Crocini, C.; Ferrantini, C.; Pavone, F.S.; Camici, P.G.; Sacconi, L. 3D Imaging and Morphometry of the Heart Capillary System in Spontaneously Hypertensive Rats and Normotensive Controls. Sci. Rep. 2020, 10, 14276. [Google Scholar] [CrossRef]
- Mohammed-Ali, Z.; Carlisle, R.E.; Nademi, S.; Dickhout, J.G. Animal Models of Kidney Disease. In Animal Models for the Study of Human Disease; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 379–417. [Google Scholar]
- Caudron, J.; Mulder, P.; Nicol, L.; Richard, V.; Thuillez, C.; Dacher, J.N. MR Relaxometry and Perfusion of the Myocardium in Spontaneously Hypertensive Rat: Correlation with Histopathology and Effect of Antihypertensive Therapy. Eur. Radiol. 2013, 23, 1871–1881. [Google Scholar] [CrossRef]
- Yazawa, H.; Miyachi, M.; Furukawa, M.; Takahashi, K.; Takatsu, M.; Tsuboi, K.; Ohtake, M.; Murase, T.; Hattori, T.; Kato, Y.; et al. Angiotensin-converting enzyme inhibition promotes coronary angiogenesis in the failing heart of Dahl salt-sensitive hypertensive rats. J. Card. Fail. 2011, 17, 1041–1050. [Google Scholar] [CrossRef]
- Gonzalez, G.E.; Rhaleb, N.E.; D’Ambrosio, M.A.; Nakagawa, P.; Liu, Y.; Leung, P.; Dai, X.; Yang, X.P.; Peterson, E.L.; Carretero, O.A. Deletion of Interleukin-6 Prevents Cardiac Inflammation, Fibrosis and Dysfunction Without Affecting Blood Pressure in Angiotensin II-High Salt-Induced Hypertension. J. Hypertens. 2015, 33, 144–152. [Google Scholar] [CrossRef]
- Yoshida, Y.; Shimizu, I.; Minamino, T. Capillaries as a Therapeutic Target for Heart Failure. J. Atheroscler. Thromb. 2022, 29, 971–988. [Google Scholar] [CrossRef]
- Stanchev, S.; Kotov, G.; Landzhov, B.; Kirkov, V.; Gaydarski, L.; Iliev, A. Depletion of Vascular Adaptive Mechanisms in Hypertension-Induced Injury of the Heart and Kidney. J. Bratisl. Lek. Listy 2023, 124, 133–142. [Google Scholar] [CrossRef]
- Cheng, C.; Daskalakis, C.; Falkner, B. Capillary Rarefaction in Treated and Untreated Hypertensive Subjects. Ther. Adv. Cardiovasc. Dis. 2008, 2, 79–88. [Google Scholar] [CrossRef]
- Prewitt, R.L.; Chen, I.I.; Dowell, R. Development of Microvascular Rarefaction in the Spontaneously Hypertensive Rat. Am. J. Physiol. 1982, 243, H243–H251. [Google Scholar] [CrossRef]
- Penna, G.L.; Garbero, R.F.; Neves, M.F.; Oigman, W.; Bottino, D.A.; Bouskela, E. Treatment of Essential Hypertension Does Not Normalize Capillary Rarefaction. Clinics 2008, 63, 613–618. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Uto, K.; Nishikawa, T.; Hagiwara, N.; Oda, H. Histological Features of Endomyocardial Biopsies in Patients Undergoing Hemodialysis: Comparison with Dilated Cardiomyopathy and Hypertensive Heart Disease. Cardiovasc. Pathol. 2020, 49, 107256. [Google Scholar] [CrossRef]
- Gogiraju, R.; Xu, X.; Bochenek, M.L.; Steinbrecher, J.H.; Lehnart, S.E.; Wenzel, P.; Kessel, M.; Zeisberg, E.M.; Dobbelstein, M.; Schäfer, K. Endothelial p53 Deletion Improves Angiogenesis and Prevents Cardiac Fibrosis and Heart Failure Induced by Pressure Overload in Mice. J. Am. Heart Assoc. 2015, 4, e001770. [Google Scholar] [CrossRef]
- Hein, S.; Arnon, E.; Kostin, S.; Schönburg, M.; Elsässer, A.; Polyakova, V.; Bauer, E.P.; Klövekorn, W.P.; Schaper, J. Progression from Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart: Structural Deterioration and Compensatory Mechanisms. Circulation 2003, 107, 984–991. [Google Scholar] [CrossRef]
- Debbabi, H.; Uzan, L.; Mourad, J.J.; Safar, M.; Levy, B.I.; Tibiriçà, E. Increased Skin Capillary Density in Treated Essential Hypertensive Patients. Am. J. Hypertens. 2006, 19, 477–483. [Google Scholar] [CrossRef]
- Van Kerckhoven, R.; van Veghel, R.; Saxena, P.R.; Schoemaker, R.G. Pharmacological Therapy Can Increase Capillary Density in Post-Infarction Remodeled Rat Hearts. Cardiovasc. Res. 2004, 61, 620–629. [Google Scholar] [CrossRef]
- Iliev, A.; Kotov, G.; Dimitrova, I.N.; Landzhov, B. Hypertension-Induced Changes in the Rat Myocardium during the Development of Cardiac Hypertrophy—A Comparison between the Left and the Right Ventricle. Acta Histochem. 2019, 121, 16–28. [Google Scholar] [CrossRef]
- Díez, J. Mechanisms of Cardiac Fibrosis in Hypertension. J. Clin. Hypertens. 2007, 9, 546–550. [Google Scholar] [CrossRef]
- Berk, B.C.; Fujiwara, K.; Lehoux, S. ECM Remodeling in Hypertensive Heart Disease. J. Clin. Investig. 2007, 117, 568–575. [Google Scholar] [CrossRef]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef]
- Varo, N.; Etayo, J.C.; Zalba, G. Losartan Inhibits the Post-Transcriptional Synthesis of Collagen Type I and Reverses Left Ventricular Fibrosis in Spontaneously Hypertensive Rats. J. Hypertens. 1999, 17, 107–114. [Google Scholar] [CrossRef]
- Varo, N.; Iraburu, M.J.; Varela, M. Chronic AT1 Blockade Stimulates Extracellular Collagen Type I Degradation and Reverses Myocardial Fibrosis in Spontaneously Hypertensive Rats. Hypertension 2000, 35, 1197–1202. [Google Scholar] [CrossRef]
- Komaki, H.; Iwasa, M.; Hayakawa, Y.; Okamoto, C.; Minatoguchi, S.; Yamada, Y.; Kanamori, H.; Kawasaki, M.; Nishigaki, K.; Minatoguchi, S. Azilsartan Attenuates Cardiac Damage Caused by High Salt Intake through the Downregulation of the Cardiac (Pro)Renin Receptor and Its Downstream Signals in Spontaneously Hypertensive Rats. Hypertens. Res. 2018, 41, 886–896. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Bashey, R.I.; Martinez-Hernandez, A.; Jimenez, S.A. Isolation, Characterization, and Localization of Cardiac Collagen Type VI. Associations with Other Extracellular Matrix Components. Circ. Res. 1992, 70, 1006–1017. [Google Scholar] [CrossRef]
- de Jong, S.; van Veen, T.A.; van Rijen, H.V.; de Bakker, J.M. Fibrosis and Cardiac Arrhythmias. J. Cardiovasc. Pharmacol. 2011, 57, 630–638. [Google Scholar] [CrossRef]
- Kurose, H. Cardiac Fibrosis and Fibroblasts. Cells 2021, 10, 1716. [Google Scholar] [CrossRef]
- Smolgovsky, S.; Ibeh, U.; Tamayo, T.P.; Alcaide, P. Adding Insult to Injury—Inflammation at the Heart of Cardiac Fibrosis. Cell Signal. 2021, 77, 109828. [Google Scholar] [CrossRef]
- Turner, N.A. Inflammatory and Fibrotic Responses of Cardiac Fibroblasts to Myocardial Damage Associated Molecular Patterns (DAMPs). J. Mol. Cell. Cardiol. 2016, 94, 189–200. [Google Scholar] [CrossRef]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Almendral, J.L.; Shick, V.; Rosendorff, C.; Atlas, S.A. Association Between Transforming Growth Factor-Beta(1) and Left Ventricular Mass and Diameter in Hypertensive Patients. J. Am. Soc. Hypertens. 2010, 4, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, S.K.; Shah, A.K.; Dhalla, N.S. Role of Angiotensin II in the Development of Subcellular Remodeling in Heart Failure. Explor. Med. 2021, 2, 352–371. [Google Scholar] [CrossRef]
- Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of Cardiac Hypertrophy and Heart Failure: Signaling Pathways and Novel Therapeutic Targets. Arch. Toxicol. 2015, 89, 1401–1438. [Google Scholar] [CrossRef]
- Hartupee, J.; Mann, D.L. Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef]
- Friedman, S.L. Fighting Cardiac Fibrosis with CAR T Cells. N. Engl. J. Med. 2022, 386, 1576–1578. [Google Scholar] [CrossRef]
- Morfino, P.; Aimo, A.; Castiglione, V.; Gálvez-Montón, C.; Emdin, M.; Bayes-Genis, A. Treatment of Cardiac Fibrosis: From Neuro-Hormonal Inhibitors to CAR-T Cell Therapy. Heart Fail. Rev. 2023, 28, 555–569. [Google Scholar] [CrossRef]
- Varga, J.; Pasche, B. Antitransforming Growth Factor-Beta Therapy in Fibrosis: Recent Progress and Implications for Systemic Sclerosis. Curr. Opin. Rheumatol. 2008, 20, 720–728. [Google Scholar] [CrossRef]
- Roubille, F.; Kritikou, E.; Busseuil, D. Colchicine: An Old Wine in a New Bottle? Antiinflamm. Antiallergy Agents Med. Chem. 2013, 12, 14–23. [Google Scholar] [CrossRef]
- Akodad, M.; Fauconnier, J.; Sicard, P.; Huet, F.; Blandel, F.; Bourret, A.; de Santa Barbara, P.; Aguilhon, S.; LeGall, M.; Hugon, G.; et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int. J. Cardiol. 2017, 240, 347–353. [Google Scholar] [CrossRef]
- Umbarkar, P.; Ejantkar, S.; Tousif, S.; Lal, H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021, 10, 2412. [Google Scholar] [CrossRef] [PubMed]
- Moccia, F.; Totaro, A.; Guerra, G.; Testa, G. Ca2+ Signaling in Cardiac Fibroblasts: An Emerging Signaling Pathway Driving Fibrotic Remodeling in Cardiac Disorders. Biomedicines 2025, 13, 734. [Google Scholar] [CrossRef] [PubMed]
- Kasner, M.; Westermann, D.; Lopez, B.; Gaub, R.; Escher, F.; Kühl, U.; Tschöpe, C. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 2011, 57, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Al-u’datt, D.A.; Allen, B.G.; Nattel, S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc. Res. 2019, 115, 1820–1837. [Google Scholar] [CrossRef]
- Ferrer-Curriu, G.; Redondo-Angulo, I.; Guitart-Mampel, M.; Ruperez, C.; Mas-Stachurska, A.; Sitges, M.; Planavila, A. Fibroblast growth factor-21 protects against fibrosis in hypertensive heart disease. J. Pathol. 2019, 248, 30–40. [Google Scholar] [CrossRef]
- Böckmann, I.; Lischka, J.; Richter, B.; Deppe, J.; Rahn, A.; Fischer, D.-C.; Heineke, J.; Haffner, D.; Leifheit-Nestler, M. FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int. J. Mol. Sci. 2019, 20, 4634. [Google Scholar] [CrossRef]
- Kinoshita, T.; Ishikawa, Y.; Arita, M.; Akishima-Fukasawa, Y.; Fujita, K.; Inomata, N.; Suzuki, T.; Namiki, A.; Mikami, T.; Ikeda, T.; et al. Antifibrotic response of cardiac fibroblasts in hypertensive hearts through enhanced TIMP-1 expression by basic fibroblast growth factor. Cardiovasc. Pathol. 2014, 23, 92–100. [Google Scholar] [CrossRef]
- Kai, H.; Kuwahara, F.; Tokuda, K.; Imaizumi, T. Diastolic dysfunction in hypertensive hearts: Roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens. Res. 2005, 28, 483–490. [Google Scholar] [CrossRef]
- Bradding, P.; Pejler, G. The Controversial Role of Mast Cells in Fibrosis. Immunol. Rev. 2018, 282, 198–231. [Google Scholar] [CrossRef]
- Juliano, G.R.; Skaf, M.F.; Ramalho, L.S.; Juliano, G.R.; Torquato, B.G.S.; Oliveira, M.S.; Oliveira, F.A.; Espíndola, A.P.; Cavellani, C.L.; Teixeira, V.P.A.; et al. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease. Rev. Port. Cardiol. 2020, 39, 89–96. [Google Scholar] [CrossRef]
- McLarty, J.L.; Meléndez, G.C.; Brower, G.L.; Janicki, J.S.; Levick, S.P. Tryptase/Protease-Activated Receptor 2 Interactions Induce Selective Mitogen-Activated Protein Kinase Signaling and Collagen Synthesis by Cardiac Fibroblasts. Hypertension 2011, 58, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Chen, Z.; Chen, F.; Yao, Y.; Lai, Y.; Xu, W.; Liu, X. Tryptase Promotes the Profibrotic Phenotype Transfer of Atrial Fibroblasts by PAR2 and PPARγ Pathway. Arch. Med. Res. 2018, 49, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Gawrys, O.; Roszkowska-Chojecka, M.M.; Badzynska, B.; Tymecka, D.; Olszynski, K.H.; Kompanowska-Jezierska, E. Chymase Dependent Pathway of Angiotensin II Generation and Rapeseed Derived Peptides for Antihypertensive Treatment of Spontaneously Hypertensive Rats. Front. Pharmacol. 2021, 12, 658805. [Google Scholar] [CrossRef]
- Rosenson, R.S. Experimental Therapies of the Vessel Wall. In Clinical Lipidology: A Companion to Braunwald’s Heart Disease; Saunders Elsevier: Philadelphia, Pennsylvania, 2009; Chapter 46. [Google Scholar] [CrossRef]
- Potnuri, A.G.; Allakonda, L.; Appavoo, A.; Saheera, S.; Nair, R.R. Association of Histamine with Hypertension-Induced Cardiac Remodeling and Reduction of Hypertrophy with the Histamine-2-Receptor Antagonist Famotidine Compared with the Beta-Blocker Metoprolol. Hypertens. Res. 2018, 41, 1023–1035. [Google Scholar] [CrossRef]
- Levick, S.P.; Meléndez, G.C.; Plante, E.; McLarty, J.L.; Brower, G.L.; Janicki, J.S. Cardiac Mast Cells: The Centrepiece in Adverse Myocardial Remodeling. Cardiovasc. Res. 2011, 89, 12–19. [Google Scholar] [CrossRef]
- Li, Q.Y.; Raza-Ahmad, A.; MacAulay, M.A.; Lalonde, L.D.; Rowden, G.; Trethewey, E.; Dean, S. The relationship of mast cells and their secreted products to the volume of fibrosis in posttransplant hearts. Transplantation 1992, 53, 1047–1051. [Google Scholar] [CrossRef]
- Mohajeri, M.; Kovanen, P.T.; Bianconi, V.; Pirro, M.; Cicero, A.F.G.; Sahebkar, A. Mast Cell Tryptase-Marker and Maker of Cardiovascular Diseases. Pharmacol. Ther. 2019, 199, 91–110. [Google Scholar] [CrossRef]
- Ferrario, C.M.; Ahmad, S.; Speth, R.; Dell’Italia, L.J. Is Chymase 1 a Therapeutic Target in Cardiovascular Disease? Expert Opin. Ther. Targets 2023, 27, 645–656. [Google Scholar] [CrossRef]
- Izikki, M.; Guignabert, C.; Fadel, E.; Humbert, M.; Tu, L.; Zadigue, P.; Dartevelle, P.; Simonneau, G.; Adnot, S.; Maitre, B.; et al. Endothelial-Derived FGF2 Contributes to the Progression of Pulmonary Hypertension in Humans and Rodents. J. Clin. Investig. 2009, 119, 512–523. [Google Scholar] [CrossRef]
- Molderings, G.J.; Haenisch, B.; Brettner, S.; Homann, J.; Menzen, M.; Dumoulin, F.L.; Panse, J.; Butterfield, J.; Afrin, L.B. Pharmacological Treatment Options for Mast Cell Activation Disease. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 671–694. [Google Scholar] [CrossRef]
- Remo, P.; Marone, G.; Galli, S.J.; Varricchi, G. Mast Cells: A Novel Therapeutic Avenue for Cardiovascular Diseases? Cardiovasc. Res. 2024, 120, 681–698. [Google Scholar]
- Muhammad, Y.; Park, J.; Han, E.T.; Park, W.S.; Han, J.H.; Chun, W. Identification of Potential Tryptase Inhibitors from FDA-Approved Drugs Using Machine Learning, Molecular Docking, and Experimental Validation. ACS Omega 2024, 9, 37. [Google Scholar]
- He, A.; Shi, G.P. Mast cell chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr. Pharm. Des. 2013, 19, 1114–1125. [Google Scholar] [CrossRef]
- Mamazhakypov, A.; Maripov, A.; Sarybaev, A.S.; Schermuly, R.T.; Sydykov, A. Mast Cells in Cardiac Remodeling: Focus on the Right Ventricle. J. Cardiovasc. Dev. Dis. 2024, 11, 54. [Google Scholar] [CrossRef]
- Hermans, M.; Lennep, J.R.V.; van Daele, P.; Bot, I. Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int. J. Mol. Sci. 2019, 20, 3395. [Google Scholar] [CrossRef]
- Ertuglu, L.A.; Kirabo, A. Hypersensitive or hypertensive? IgE-FcɛR1 signalling in mast cells adds a new piece to the immunity and hypertension puzzle. Cardiovasc. Res. 2022, 118, 2877–2879. [Google Scholar] [CrossRef]
- Ge, W.; Guo, X.; Song, X.; Pang, J.; Zou, X.; Liu, Y.; Niu, Y.; Li, Z.; Zhao, H.; Gao, R.; et al. The role of immunoglobulin E and mast cells in hypertension. Cardiovasc. Res. 2022, 118, 2985–2999. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Z.; Zhang, R.; Sun, W.; Chen, X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021, 12, 632886. [Google Scholar] [CrossRef]
- Shin, K.; Kenward, C.; Rainey, J.K. Apelinergic System Structure and Function. Compr. Physiol. 2018, 8, 407–450. [Google Scholar] [CrossRef]
- Liu, W.; Yan, J.; Pan, W.; Tang, M. Apelin/Elabela-APJ: A novel therapeutic target in the cardiovascular system. Ann. Transl. Med. 2020, 8, 243. [Google Scholar] [CrossRef]
- Yang, P.; Read, C.; Kuc, R.E.; Buonincontri, G.; Southwood, M.; Torella, R.; Davenport, A.P. Elabela/toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension. Circulation 2017, 135, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yan, J.; Travis, Z.D.; Lenahan, C.; Gao, L.; Wu, H.; Yu, J. Apelin/APJ system: A novel promising target for anti-oxidative stress in stroke. Front. Pharmacol. 2025, 15, 1352927. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 2013, 219, R13–R35. [Google Scholar] [CrossRef] [PubMed]
- Pope, G.R.; Roberts, E.M.; Lolait, S.J.; O’Carroll, A.M. Central and peripheral apelin receptor distribution in the mouse: Species differences with rat. Peptides 2012, 33, 139–148. [Google Scholar] [CrossRef]
- Chen, M.M.; Ashley, E.A.; Deng, D.X.; Tsalenko, A.; Deng, A.; Tabibiazar, R.; Quertermous, T. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 2003, 108, 1432–1439. [Google Scholar] [CrossRef]
- Andersen, C.U.; Hilberg, O.; Mellemkjær, S.; Nielsen-Kudsk, J.E.; Simonsen, U. Apelin and pulmonary hypertension. Pulm. Circ. 2011, 1, 334–346. [Google Scholar] [CrossRef]
- Mehri, K.; Hamidian, G.; Zavvari Oskuye, Z.; Nayebirad, S.; Farajdokht, F. The role of apelinergic system in metabolism and reproductive system in normal and pathological conditions: An overview. Front. Endocrinol. 2023, 14, 1193150. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Chen, L.; Jiang, Z. Apelin/APJ system: A novel promising therapy target for thrombotic diseases. Acta Biochim. Biophys. Sin. 2016, 48, 589–591. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Chen, L. Novel pathogenesis: Regulation of apoptosis by Apelin/APJ system. Acta Biochim. Biophys. Sin. 2017, 49, 471–478. [Google Scholar] [CrossRef]
- Zhong, S.; Guo, H.; Wang, H.; Xing, D.; Lu, T.; Yang, J.; Wang, C. Apelin-13 alleviated cardiac fibrosis via inhibiting the PI3K/Akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. Biosci. Rep. 2020, 40, BSR20200040. [Google Scholar] [CrossRef]
- Ma, Z.; Song, J.J.; Martin, S.; Yang, X.C.; Zhong, J.C. The Elabela-APJ axis: A promising therapeutic target for heart failure. Heart Fail. Rev. 2021, 26, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Zheng, X.; Cheng, G.C.; Ye, Q.H.; Deng, Y.Z.; Wu, L. Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed. Rep. 2016, 5, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.; Sun, C.; O’Rourke, S.T. Apelin reduces nitric oxide-induced relaxation of cerebral arteries by inhibiting activation of large-conductance, calcium-activated K channels. J. Cardiovasc. Pharmacol. 2018, 71, 223–232. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, K.; Huang, S.; Chen, W.; Mao, H.; Ouyang, X.; Chen, L.; Li, L. Apelin-13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy. J. Cell. Physiol. 2022, 237, 2230–2248. [Google Scholar] [CrossRef]
- Song, J.; Tang, J.; Zhang, Z.; Liu, Y.; Zhong, J. Targeting the elabela/apelin-apelin receptor axis as a novel therapeutic approach for hypertension. Chin. Med. J. 2022, 135, 1019–1026. [Google Scholar] [CrossRef]
- Seo, K.; Parikh, V.N.; Ashley, E.A. Stretch-induced biased signaling in angiotensin II type 1 and apelin receptors for the mediation of cardiac contractility and hypertrophy. Front. Physiol. 2020, 11, 181. [Google Scholar] [CrossRef]
- Gaydarski, L.; Dimitrova, I.N.; Stanchev, S.; Iliev, A.; Kotov, G.; Kirkov, V.; Stamenov, N.; Dikov, T.; Georgiev, G.P.; Landzhov, B. Unraveling the Complex Molecular Interplay and Vascular Adaptive Changes in Hypertension-Induced Kidney Disease. Biomedicines 2024, 12, 1723. [Google Scholar] [CrossRef]
- Stanchev, S.; Gaydarski, L.; Dimitrova, I.N.; Kotov, G.; Landzhov, B.; Kirkov, V.; Iliev, A. Renal Structural Changes and Apelin Receptor Expression in Spontaneously Hypertensive Rats: Implications for Hypertension-Induced Kidney Injury. Folia Morphol. 2024; Advance online publication. [Google Scholar] [CrossRef]
- Najafipour, H.; Vakili, A.; Shahouzehi, B.; Soltani Hekmat, A.; Masoomi, Y.; Yeganeh Hajahmadi, M.; Esmaeli-Mahani, S. Investigation of Changes in Apelin Receptor mRNA and Protein Expression in the Myocardium and Aorta of Rats with Two-Kidney, One-Clip (2K1C) Goldblatt Hypertension. J. Physiol. Biochem. 2015, 71, 165–175. [Google Scholar] [CrossRef]
- Sekerci, R.; Acar, N.; Tepekoy, F.; Ustunel, I.; Keles-Celik, N. Apelin/APJ Expression in the Heart and Kidneys of Hypertensive Rats. Acta Histochem. 2018, 120, 196–204. [Google Scholar] [CrossRef]
- Yeganeh-Hajahmadi, M.; Najafipour, H.; Farzaneh, F.; Esmaeili-Mahani, S.; Joukar, S. Effect of Apelin on Cardiac Contractility in Acute Reno-Vascular Hypertension: The Role of Apelin Receptor and Kappa Opioid Receptor Heterodimerization. Iran. J. Basic Med. Sci. 2018, 21, 1305–1315. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, F.; Raizada, M.K.; O’Rourke, S.T.; Sun, C. Apelin Gene Transfer into the Rostral Ventrolateral Medulla Induces Chronic Blood Pressure Elevation in Normotensive Rats. Circulation Res. 2009, 104, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kadowaki, A.; Suzuki, T.; Ito, H.; Watanabe, H.; Imai, Y.; Kuba, K. Loss of Apelin Augments Angiotensin II-Induced Cardiac Dysfunction and Pathological Remodeling. Int. J. Mol. Sci. 2019, 20, 239. [Google Scholar] [CrossRef]
- Landzhov, B.; Gaydarski, L.; Stanchev, S.; Kostadinova, I.; Iliev, A.; Kotov, G.; Rashev, P.; Mourdjeva, M.; Pupaki, D.; Stamenov, N. A Morphological and Behavioral Study of Demyelination and Remyelination in the Cuprizone Model: Insights into APLNR and NG2+ Cell Dynamics. Int. J. Mol. Sci. 2024, 25, 13011. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Ding, F.; Zhang, L.; Shen, A.; Yao, H.; Deng, L.; Ding, Y. Serum Apelin is Associated with Left Ventricular Hypertrophy in Untreated Hypertension Patients. J. Transl. Med. 2015, 13, 290. [Google Scholar] [CrossRef] [PubMed]
- Baysal, S.S.; Pirat, B.; Okyay, K.; Bal, U.A.; Uluçam, M.Z.; Öztuna, D.; Müderrisoğlu, H. Treatment-Associated Change in Apelin Concentration in Patients with Hypertension and its Relationship with Left Ventricular Diastolic Function. Anatol. J. Cardiol. 2017, 17, 125–131. [Google Scholar] [CrossRef]
- Hemmati, M.; Abharzanjani, F.; Kazemi, T.; Estanesti, F. Comparing the Apelin Level in Hypertensive Patients Who Received Hypertension Drugs. Mod. Care J. 2020, 17, e106150. [Google Scholar] [CrossRef]
- Gupta, M.D.; Girish, M.P.; Shah, D.; Rain, M.; Mehta, V.; Tyagi, S.; Trehan, V.; Pasha, Q. Biochemical and Genetic Role of Apelin in Essential Hypertension and Acute Coronary Syndrome. Int. J. Cardiol. 2016, 223, 374–378. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, L.; Martin, S.; Zhang, Y.; Dong, Y.; Zhong, J.C.; Yang, X.C. Lower plasma elabela levels in hypertensive patients with heart failure predict the occurrence of major adverse cardiac events: A preliminary study. Front. Cardiovasc. Med. 2021, 8, 638468. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, W.; Jin, H.Y.; Chen, X.; Cheng, Y.W.; Xu, Y.L.; Song, B.; Penninger, J.M.; Oudit, G.Y.; Zhong, J.C. Apelin is a Negative Regulator of Angiotensin II-Mediated Adverse Myocardial Remodeling and Dysfunction. Hypertension 2017, 70, 1165–1175. [Google Scholar] [CrossRef]
- Wei, X.; Luo, L.; Lu, H.; Li, S.; Deng, X.; Li, Z.; Gong, D.; Chen, B. Apelin-13’s Actions in Controlling Hypertension-Related Cardiac Hypertrophy and the Expressions of Inflammatory Cytokines. Chem. Biol. Drug Des. 2024, 104, e14628. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Y.; Niloy, S.I.; O’Rourke, S.T.; Sun, C. Chronic Effects of Apelin on Cardiovascular Regulation and Angiotensin II-Induced Hypertension. Pharmaceutics 2023, 16, 600. [Google Scholar] [CrossRef] [PubMed]
- Dalzell, J.R.; Rocchiccioli, J.P.; Weir, R.A.; Jackson, C.E.; Padmanabhan, N.; Gardner, R.S.; Petrie, M.C.; McMurray, J.J. The Emerging Potential of the Apelin-APLNR System in Heart Failure. J. Card. Fail. 2015, 21, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, K.; Hampton, J.; Khan, S.; Zadory, D.; Gleaves, L.; Vaughan, D.E.; Smith, L.H. Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases plasminogen activator inhibitor type-1 production. J. Hypertens. 2011, 29, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.; O’Rourke, S.T. Vascular effects of apelin: Mechanisms and therapeutic potential. Pharmacol. Ther. 2018, 190, 139–147. [Google Scholar] [CrossRef]
- Hasheminezhad, M.M.; Mirzad, M. Early Administration of Apelin Could Prevent Heart Failure Following Myocardial Injury; A Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2024, 13, e4. [Google Scholar]
- Williams, T.L.; Nyimanu, D.; Kuc, R.E.; Foster, R.; Glen, R.C.; Maguire, J.J.; Davenport, A.P. The biased apelin receptor agonist, MM07, reverses Sugen/hypoxia-induced pulmonary arterial hypertension as effectively as the endothelin antagonist macitentan. Front. Pharmacol. 2024, 15, 1369489. [Google Scholar] [CrossRef]
- Gargalovic, P.; Wong, P.; Onorato, J.; Finlay, H.; Wang, T.; Yan, M.; Crain, E.; St-Onge, S.; Héroux, M.; Bouvier, M.; et al. In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. Circ. Heart Fail. 2021, 14, e007351. [Google Scholar] [CrossRef]
- Yeves, A.M.; Coto, J.G.; Pereyra, E.V.; Medina, A.J.; Arbelaez, L.F.G.; Cavalli, F.A.; Ennis, I.L. Apelin/APJ Signaling in IGF-1-Induced Acute Mitochondrial and Antioxidant Effects in Spontaneously Hypertensive Rat Myocardium. J. Physiol. Biochem. 2024. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, C.X.; Qi, Y.F.; Lou, L.X.; Chen, L.; Zhang, L.K.; Wang, X.; Tang, C. Exercise Training Promotes Expression of Apelin and APJ of Cardiovascular Tissues in Spontaneously Hypertensive Rats. Life Sci. 2006, 79, 1153–1159. [Google Scholar] [CrossRef]
- Ye, X.; Gaucher, J.-F.; Vidal, M.; Broussy, S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021, 26, 6759. [Google Scholar] [CrossRef]
- Failla, C.M.; Carbone, M.L.; Ramondino, C.; Bruni, E.; Orecchia, A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.I.; Zachary, I. The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biol. 2005, 6, 209. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 2013, 153, 13–19. [Google Scholar] [CrossRef]
- Tammela, T.; Enholm, B.; Alitalo, K.; Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res. 2005, 65, 550–563. [Google Scholar] [CrossRef]
- Huusko, J.; Lottonen, L.; Merentie, M.; Gurzeler, E.; Anisimov, A.; Miyanohara, A.; Alitalo, K.; Tavi, P.; Ylä-Herttuala, S. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol. Ther. 2012, 20, 2212–2221. [Google Scholar] [CrossRef]
- Zachary, I.; Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 2001, 49, 568–581. [Google Scholar] [CrossRef]
- Park, S.A.; Jeong, M.S.; Ha, K.T.; Jang, S.B. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 2018, 51, 73–78. [Google Scholar] [CrossRef]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Q.; Bai, W.W.; Xing, Y.F.; Lu, X.T.; Sun, Y.Y.; Zhao, Y.X. Tongxinluo protects against pressure overload–induced heart failure in mice involving VEGF/Akt/eNOS pathway activation. PLoS ONE 2014, 9, e98047. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singhi, E.K.; Arroyo, J.P.; Ikizler, T.A.; Gould, E.R.; Brown, J.; Beckman, J.A.; Harrison, D.G.; Moslehi, J. Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor-Associated Hypertension and Vascular Disease. Hypertension 2018, 71, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Jesmin, S.; Hattori, Y.; Togashi, H.; Ueno, K.I.; Yoshioka, M.; Sakuma, I. Age-Related Changes in Cardiac Expression of VEGF and its Angiogenic Receptor KDR in Stroke-Prone Spontaneously Hypertensive Rats. J. Mol. Cell. Biochem. 2005, 272, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Ni, L.; Wang, P.; Chen, C.; Yang, L.; Ma, B.; Gong, W.; Cai, Z.; Zou, M.H.; Wang, D.W. Deregulation of XBP1 Expression Contributes to Myocardial Vascular Endothelial Growth Factor-A Expression and Angiogenesis during Cardiac Hypertrophy in Vivo. Aging Cell 2016, 15, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Leychenko, A.; Konorev, E.; Jijiwa, M.; Matter, M.L. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes. PLoS ONE 2011, 6, e29055. [Google Scholar] [CrossRef] [PubMed]
- Shyu, K.G.; Liou, J.Y.; Wang, B.W.; Fang, W.J.; Chang, H. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in pressure-overloaded rat heart. J. Biomed. Sci. 2005, 12, 409–420. [Google Scholar] [CrossRef]
- Zhao, M.; Fajardo, G.; Urashima, T.; Spin, J.M.; Poorfarahani, S.; Rajagopalan, V.; Bernstein, D. Cardiac pressure overload hypertrophy is differentially regulated by β-adrenergic receptor subtypes. Am. J. Physiol.-Heart Circ. Physiol. 2011, 301, H1461–H1470. [Google Scholar] [CrossRef]
- Shimizu, T.; Okamoto, H.; Chiba, S.; Matsui, Y.; Sugawara, T.; Akino, M.; Kitabatake, A. VEGF-mediated angiogenesis is impaired by angiotensin type 1 receptor blockade in cardiomyopathic hamster hearts. Cardiovasc. Res. 2003, 58, 203–212. [Google Scholar] [CrossRef]
- McAinsh, A.M.; Geyer, M.; Fandrey, J.; Rüegg, J.C.; Wiesner, R.J. Expression of Vascular Endothelial Growth Factor during the Development of Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Mol. Cell. Biochem. 1998, 187, 141–146. [Google Scholar] [CrossRef]
- Touyz, R.M.; Lang, N.N.; Herrmann, J.; van den Meiracker, A.H.; Danser, A. Recent Advances in Hypertension and Cardiovascular Toxicities with Vascular Endothelial Growth Factor Inhibition. J. Hypertens. 2017, 70, 220–226. [Google Scholar] [CrossRef]
- Gogiraju, R.; Bochenek, M.L.; Schäfer, K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front. Cardiovasc. Med. 2019, 6, 20. [Google Scholar] [CrossRef]
- Visniauskas, B.; Perry, J.C.; Gomes, G.N.; Nogueira-Pedro, A.; Paredes-Gamero, E.J.; Tufik, S.; Chagas, J.R. Intermittent Hypoxia Changes the Interaction of the Kinin-VEGF System and Impairs Myocardial Angiogenesis in the Hypertrophic Heart. Physiol. Rep. 2021, 9, e14863. [Google Scholar] [CrossRef]
- Izumiya, Y.; Shiojima, I.; Sato, K.; Sawyer, D.B.; Colucci, W.S.; Walsh, K. Vascular Endothelial Growth Factor Blockade Promotes the Transition from Compensatory Cardiac Hypertrophy to Failure in Response to Pressure Overload. Hypertension 2006, 47, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Zaw, A.M.; Sekar, R.; Mak, S.O.K.; Law, H.K.W.; Chow, B.K.C. Loss of Secretin Results in Systemic and Pulmonary Hypertension with Cardiopulmonary Pathologies in Mice. Sci. Rep. 2019, 9, 14211. [Google Scholar] [CrossRef] [PubMed]
- Kaza, E.; Ablasser, K.; Poutias, D.; Griffiths, E.R.; Saad, F.A.; Hofstaetter, J.G.; del Nido, P.J.; Friehs, I. Up-Regulation of Soluble Vascular Endothelial Growth Factor Receptor-1 Prevents Angiogenesis in Hypertrophied Myocardium. Cardiovasc. Res. 2011, 89, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Gogiraju, R.; Schroeter, M.R.; Bochenek, M.L.; Hubert, A.; Münzel, T.; Hasenfuss, G.; Schäfer, K. Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovasc. Res. 2016, 111, 204–216. [Google Scholar] [CrossRef]
- Milkiewicz, M.; Hudlicka, O.; Brown, M.D.; Silgram, H. Nitric oxide, VEGF, and VEGFR-2: Interactions in activity-induced angiogenesis in rat skeletal muscle. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H336–H343. [Google Scholar] [CrossRef]
- Tirronen, A.; Downes, N.L.; Huusko, J.; Laakkonen, J.P.; Tuomainen, T.; Tavi, P.; Hedman, M.; Ylä-Herttuala, S. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules 2021, 11, 452. [Google Scholar] [CrossRef]
- Mei, L.; Huang, Y.; Lin, J.; Chu, M.; Hu, C.; Zhou, N.; Wu, L. Increased cardiac remodeling in cardiac-specific Flt-1 receptor knockout mice with pressure overload. Cell Tissue Res. 2015, 362, 389–398. [Google Scholar] [CrossRef]
- Adapala, R.K.; Katari, V.; Kanugula, A.K.; Ohanyan, V.; Paruchuri, S.; Thodeti, C.K. Deletion of Endothelial TRPV4 Protects Heart from Pressure Overload-Induced Hypertrophy. Hypertension 2023, 80, 2345–2356. [Google Scholar] [CrossRef]
- Samuelsson, A.M.; Bartolomaeus, T.U.P.; Anandakumar, H.; Thowsen, I.; Nikpey, E.; Han, J.; Marko, L.; Finne, K.; Tenstad, O.; Eckstein, J.; et al. VEGF-B Hypertrophy Predisposes to Transition from Diastolic to Systolic Heart Failure in Hypertensive Rats. Cardiovasc. Res. 2023, 119, 1553–1567. [Google Scholar] [CrossRef]
- Karpanen, T.; Bry, M.; Ollila, H.M.; Seppänen-Laakso, T.; Liimatta, E.; Leskinen, H.; Kivelä, R.; Helkamaa, T.; Merentie, M.; Jeltsch, M.; et al. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ. Res. 2008, 103, 1018–1026. [Google Scholar] [CrossRef]
- Bai, J.; Yin, L.; Yu, W.J.; Zhang, Y.L.; Lin, Q.Y.; Li, H.H. Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. Oxid. Med. Cell. Longev. 2022, 2022, 5044046. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.W.; Mehrabi, M.R.; Kaun, C.; Zorn, G.; Kastl, S.P.; Speidl, W.S.; Pfaffenberger, S.; Rega, G.; Glogar, H.D.; Maurer, G.; et al. Prostaglandin E1 induces vascular endothelial growth factor-1 in human adult cardiac myocytes but not in human adult cardiac fibroblasts via a cAMP-dependent mechanism. J. Mol. Cell Cardiol. 2004, 36, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Felmeden, D.C.; Spencer, C.G.; Belgore, F.M.; Blann, A.D.; Beevers, D.G.; Lip, G.Y. Endothelial Damage and Angiogenesis in Hypertensive Patients: Relationship to Cardiovascular Risk Factors and Risk Factor Management. Am. J. Hypertens. 2003, 16, 11–20. [Google Scholar] [CrossRef]
- Sasso, F.C.; Torella, D.; Carbonara, O.; Ellison, G.M.; Torella, M.; Scardone, M.; Salvatore, T. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J. Am. Coll. Cardiol. 2005, 46, 827–834. [Google Scholar] [CrossRef]
- Mäki-Petäjä, K.M.; McGeoch, A.; Yang, L.L.; Hubsch, A.; McEniery, C.M.; Meyer, P.A.; Cheriyan, J. Mechanisms underlying vascular endothelial growth factor receptor inhibition–induced hypertension: The HYPAZ trial. Hypertension 2021, 77, 1591–1599. [Google Scholar] [CrossRef]
- Vyzantiadis, T.; Karagiannis, A.; Douma, S.; Harsoulis, P.; Vyzantiadis, A.; Zamboulis, C. Vascular Endothelial Growth Factor and Nitric Oxide Serum Levels in Arterial Hypertension. Clin. Exp. Hypertens. 2006, 28, 603–609. [Google Scholar] [CrossRef]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Yamanashi, H.; Kawashiri, S.Y.; Nobusue, K.; Nonaka, F.; Aoyagi, K.; Nagata, Y.; Maeda, T. Vascular endothelial growth factor (VEGF) polymorphism rs3025039 and atherosclerosis among older with hypertension. Sci. Rep. 2022, 12, 5564. [Google Scholar] [CrossRef]
- Wulkersdorfer, B.; Zeitlinger, M.; Schmid, M. Pharmacokinetic Aspects of Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitors. Clin. Pharmacokinet. 2016, 55, 47–77. [Google Scholar] [CrossRef]
- Abdel-Qadir, H.; Ethier, J.L.; Lee, D.S.; Thavendiranathan, P.; Amir, E. Cardiovascular Toxicity of Angiogenesis Inhibitors in Treatment of Malignancy: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2017, 53, 120–127. [Google Scholar] [CrossRef]
- Small, H.Y.; Montezano, A.C.; Rios, F.J.; Savoia, C.; Touyz, R.M. Hypertension Due to Antiangiogenic Cancer Therapy with Vascular Endothelial Growth Factor Inhibitors: Understanding and Managing a New Syndrome. Can. J. Cardiol. 2014, 30, 534–543. [Google Scholar] [CrossRef]
- Robinson, E.S.; Matulonis, U.A.; Ivy, P.; Berlin, S.T.; Tyburski, K.; Penson, R.T.; Humphreys, B.D. Rapid Development of Hypertension and Proteinuria with Cediranib, an Oral Vascular Endothelial Growth Factor Receptor Inhibitor. Clin. J. Am. Soc. Nephrol. 2010, 5, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.Y.; Peng, Y.Z.; Hang, W.J.; Zhang, M.; Shen, L.; Wang, D.W.; Zhou, N. Trimetazidine Enhances Myocardial Angiogenesis in Pressure Overload-Induced Cardiac Hypertrophy Mice through Directly Activating Akt and Promoting the Binding of HSF1 to VEGF-A Promoter. Acta Pharmacol. Sin. 2022, 43, 2550–2561. [Google Scholar] [CrossRef] [PubMed]
- Belcik, J.T.; Qi, Y.; Kaufmann, B.A.; Xie, A.; Bullens, S.; Morgan, T.K.; Bagby, S.P.; Kolumam, G.; Kowalski, J.; Oyer, J.A.; et al. Cardiovascular and Systemic Microvascular Effects of Anti-Vascular Endothelial Growth Factor Therapy for Cancer. J. Am. Coll. Cardiol. 2012, 60, 618–625. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, N.; Yuan, J.; Lu, L.; Zhang, Q.; Wei, M.; Zou, Y.; Yuan, L. Heat Shock Transcription Factor 1 Regulates Exercise-Induced Myocardial Angiogenesis after Pressure Overload via HIF-1α/VEGF Pathway. J. Cell. Mol. Med. 2020, 24, 2178–2188. [Google Scholar] [CrossRef]
- Husain, K. Physical Conditioning Modulates Rat Cardiac Vascular Endothelial Growth Factor Gene Expression in Nitric Oxide-Deficient Hypertension. Biochem. Biophys. Res. Commun. 2004, 320, 1169–1174. [Google Scholar] [CrossRef]
- Belabbas, H.; Zalvidea, S.; Casellas, D.; Molès, J.P.; Galbes, O.; Mercier, J.; Jover, B. Contrasting effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1512–R1518. [Google Scholar] [CrossRef]
- Mir, O.; Coriat, R.; Cabanes, L.; Ropert, S.; Billemont, B.; Alexandre, J.; Durand, J.P.; Treluyer, J.M.; Knebelmann, B.; Goldwasser, F. An Observational Study of Bevacizumab-Induced Hypertension as a Clinical Biomarker of Antitumor Activity. Oncologist 2011, 16, 1325–1332. [Google Scholar] [CrossRef]
- Lankhorst, S.; Baelde, H.J.; Clahsen-van Groningen, M.C.; Smedts, F.M.; Danser, A.H.J.; van den Meiracker, A.H. Effect of High Salt Diet on Blood Pressure and Renal Damage during Vascular Endothelial Growth Factor Inhibition with Sunitinib. Nephrol. Dial. Transplant. 2016, 31, 914–921. [Google Scholar] [CrossRef]
- Kuang, H.; Yan, Q.; Li, Z.; Lin, A.; Li, K.; Zhang, J.; Luo, P.; Yin, Y. Comprehensive Analysis of VEGF/VEGFR Inhibitor-Induced Immune-Mediated Hypertension: Integrating Pharmacovigilance, Clinical Data, and Preclinical Models. Front. Immunol. 2024, 15, 1488853. [Google Scholar] [CrossRef]
- Duffaud, F.; Sleijfer, S.; Litière, S.; Ray-Coquard, I.; Le Cesne, A.; Papai, Z.; Judson, I.; Schöffski, P.; Chawla, S.P.; Dewji, R.; et al. Hypertension (HTN) as a potential biomarker of efficacy in pazopanib-treated patients with advanced non-adipocytic soft tissue sarcoma. A retrospective study based on European Organisation for Research and Treatment of Cancer (EORTC) 62043 and 62072 trials. Eur. J. Cancer 2015, 51, 2615–2623. [Google Scholar] [CrossRef]
- Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Mol. Asp. Med. 2005, 26, 33–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.W.; Huang, P.L. Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc. Res. 2008, 77, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.S.; Chung, J.C.; Kroetsch, J.T.; Rush, J.W. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc. Health Risk Manag. 2009, 5, 1075–1087. [Google Scholar] [PubMed]
- Gee, L.C.; Massimo, G.; Lau, C.; Primus, C.; Fernandes, D.; Chen, J.; Ahluwalia, A. Inorganic nitrate attenuates cardiac dysfunction: Roles for xanthine oxidoreductase and nitric oxide. Br. J. Pharmacol. 2022, 179, 4757–4777. [Google Scholar] [CrossRef]
- Shabeeh, H.; Khan, S.; Jiang, B.; Brett, S.; Melikian, N.; Casadei, B.; Chowienczyk, P.J.; Shah, A.M. Blood Pressure in Healthy Humans Is Regulated by Neuronal NO Synthase. Hypertension 2017, 69, 970–976. [Google Scholar] [CrossRef]
- Costa, E.D.; Rezende, B.A.; Cortes, S.F.; Lemos, V.S. Neuronal nitric oxide synthase in vascular physiology and diseases. Front. Physiol. 2016, 7, 206. [Google Scholar] [CrossRef]
- Ally, A.; Powell, I.; Ally, M.M.; Chaitoff, K.; Nauli, S.M. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide: Biol. Chem. 2020, 102, 52–73. [Google Scholar] [CrossRef]
- Roy, R.; Wilcox, J.; Webb, A.J.; O’Gallagher, K. Dysfunctional and dysregulated nitric oxide synthases in cardiovascular disease: Mechanisms and therapeutic potential. Int. J. Mol. Sci. 2023, 24, 15200. [Google Scholar] [CrossRef]
- Förstermann, U.; Nakane, M.; Tracey, W.R.; Pollock, J.S. Isoforms of nitric oxide synthase: Functions in the cardiovascular system. Eur. Heart J. 1993, 14 (Suppl. SI), 10–15. [Google Scholar]
- Münzel, T.; Camici, G.G.; Maack, C.; Bonetti, N.R.; Fuster, V.; Kovacic, J.C. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J. Am. Coll. Cardiol. 2017, 70, 212–229. [Google Scholar] [CrossRef]
- Kietadisorn, R.; Juni, R.P.; Moens, A.L. Tackling endothelial dysfunction by modulating NOS uncoupling: New insights into its pathogenesis and therapeutic possibilities. Am. J. Physiol.-Endocrinol. Metab. 2012, 302, E481–E495. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837, 837a–837d. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Bachetti, T.; D’Anna, S.E.; Galloway, B.; Bianco, A.; D’Agnano, V.; Papa, A.; Motta, A.; Perrotta, F.; Maniscalco, M. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension. J. Cardiovasc. Dev. Dis. 2022, 9, 136. [Google Scholar] [CrossRef]
- He, M.; Wang, D.; Xu, Y.; Jiang, F.; Zheng, J.; Feng, Y.; Cao, J.; Zhou, X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022, 14, 1345. [Google Scholar] [CrossRef] [PubMed]
- Eirin, A.; Lerman, A.; Lerman, L.O. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur. Heart J. 2014, 35, 3258–3266. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric oxide and endothelial dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. Oxidative stress, antioxidants and hypertension. Antioxidants 2023, 12, 281. [Google Scholar] [CrossRef]
- Paulus, W.J.; Zile, M.R. From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circ. Res. 2021, 128, 1451–1467. [Google Scholar] [CrossRef]
- Nemtsova, V.; Vischer, A.S.; Burkard, T. Hypertensive heart disease: A narrative review series-Part 1: Pathophysiology and microstructural changes. J. Clin. Med. 2023, 12, 2606. [Google Scholar] [CrossRef]
- Kubis, N.; Besnard, S.; Silvestre, J.S.; Feletou, M.; Huang, P.L.; Lévy, B.I.; Tedgui, A. Decreased Arteriolar Density in Endothelial Nitric Oxide Synthase Knockout Mice Is Due to Hypertension, Not to the Constitutive Defect in Endothelial Nitric Oxide Synthase Enzyme. J. Hypertens. 2002, 20, 273–280. [Google Scholar] [CrossRef]
- Guo, W.; Kada, K.; Kamiya, K.; Toyama, J. IGF-I Regulates K(+)-Channel Expression of Cultured Neonatal Rat Ventricular Myocytes. Am. J. Physiol. 1997, 272, H2599–H2606. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chalupsky, K.; Stefani, E.; Cai, H. Mechanistic Insights into Folic Acid-Dependent Vascular Protection: Dihydrofolate Reductase (DHFR)-Mediated Reduction in Oxidant Stress in Endothelial Cells and Angiotensin II-Infused Mice: A Novel HPLC-Based Fluorescent Assay for DHFR Activity. J. Mol. Cell. Cardiol. 2009, 47, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Ulker, S.; McKeown, P.P.; Bayraktutan, U. Vitamins Reverse Endothelial Dysfunction through Regulation of eNOS and NAD(P)H Oxidase Activities. Hypertension 2003, 41, 534–539. [Google Scholar] [CrossRef]
- Landmesser, U.; Dikalov, S.; Price, S.R.; McCann, L.; Fukai, T.; Holland, S.M.; Mitch, W.E.; Harrison, D.G. Oxidation of Tetrahydrobiopterin Leads to Uncoupling of Endothelial Cell Nitric Oxide Synthase in Hypertension. J. Clin. Investig. 2003, 111, 1201–1209. [Google Scholar] [CrossRef]
- Buys, E.S.; Raher, M.J.; Blake, S.L.; Neilan, T.G.; Graveline, A.R.; Passeri, J.J.; Llano, M.; Perez-Sanz, T.M.; Ichinose, F.; Janssens, S.; et al. Cardiomyocyte-Restricted Restoration of Nitric Oxide Synthase 3 Attenuates Left Ventricular Remodeling after Chronic Pressure Overload. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H620–H627. [Google Scholar] [CrossRef]
- Massion, P.B.; Balligand, J.L. Relevance of Nitric Oxide for Myocardial Remodeling. Curr. Heart Fail. Rep. 2007, 4, 18–25. [Google Scholar] [CrossRef]
- Belló-Klein, A.; Bock, P.M.; Travacio, M.; Senna, S.M.; Llesuy, S.; de Bittencourt, P.I., Jr.; Irigoyen, M.C.; Belló, A.A.; Kumar, D.; Singal, P.K. Myocardial oxidative stress and antioxidants in hypertension as a result of nitric oxide synthase inhibition. Cardiovasc. Toxicol. 2001, 1, 43–50. [Google Scholar] [CrossRef]
- Ward, M.E.; Toporsian, M.; Scott, J.A.; Teoh, H.; Govindaraju, V.; Quan, A.; Wener, A.D.; Wang, G.; Bevan, S.C.; Newton, D.C.; et al. Hypoxia Induces a Functionally Significant and Translationally Efficient Neuronal NO Synthase mRNA Variant. J. Clin. Investig. 2005, 115, 3128–3139. [Google Scholar] [CrossRef]
- Jin, C.Z.; Jang, J.H.; Wang, Y.; Kim, J.G.; Bae, Y.M.; Shi, J.; Che, C.R.; Kim, S.J.; Zhang, Y.H. Neuronal Nitric Oxide Synthase Is Up-Regulated by Angiotensin II and Attenuates NADPH Oxidase Activity and Facilitates Relaxation in Murine Left Ventricular Myocytes. J. Mol. Cell. Cardiol. 2012, 52, 1274–1281. [Google Scholar] [CrossRef]
- Oliveira-Paula, G.H.; Lacchini, R.; Tanus-Santos, J.E. Inducible Nitric Oxide Synthase as a Possible Target in Hypertension. Curr. Drug Targets 2014, 15, 164–174. [Google Scholar] [CrossRef]
- Liu, Y.H.; Carretero, O.A.; Cingolani, O.H.; Liao, T.D.; Sun, Y.; Xu, J.; Li, L.Y.; Pagano, P.J.; Yang, J.J.; Yang, X.P. Role of Inducible Nitric Oxide Synthase in Cardiac Function and Remodeling in Mice with Heart Failure Due to Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2616–H2623. [Google Scholar] [CrossRef] [PubMed]
- Dias, F.A.; Urboniene, D.; Yuzhakova, M.A.; Biesiadecki, B.J.; Pena, J.R.; Goldspink, P.H.; Geenen, D.L.; Wolska, B.M. Ablation of iNOS Delays Cardiac Contractile Dysfunction in Chronic Hypertension. Front. Biosci. Elite Ed. 2010, 2, 312–324. [Google Scholar] [PubMed]
- Sun, Y.; Carretero, O.A.; Xu, J.; Rhaleb, N.E.; Yang, J.J.; Pagano, P.J.; Yang, X.P. Deletion of Inducible Nitric Oxide Synthase Provides Cardioprotection in Mice with 2-Kidney, 1-Clip Hypertension. Hypertension 2009, 53, 49–56. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, X.; Hu, X.; van Deel, E.D.; Zhu, G.; Chen, Y. Inducible Nitric Oxide Synthase Deficiency Protects the Heart from Systolic Overload-Induced Ventricular Hypertrophy and Congestive Heart Failure. Circ. Res. 2007, 100, 1089–1098. [Google Scholar] [CrossRef]
- Kimura, Y.; Hirooka, Y.; Sagara, Y.; Ito, K.; Kishi, T.; Shimokawa, H.; Takeshita, A.; Sunagawa, K. Overexpression of Inducible Nitric Oxide Synthase in Rostral Ventrolateral Medulla Causes Hypertension and Sympathoexcitation via an Increase in Oxidative Stress. Circ. Res. 2005, 96, 252–260. [Google Scholar] [CrossRef]
- Manning, R.D., Jr.; Hu, L.; Tan, D.Y.; Meng, S. Role of Abnormal Nitric Oxide Systems in Salt-Sensitive Hypertension. Am. J. Hypertens. 2001, 14, 68S–73S. [Google Scholar] [CrossRef]
- Hallemeesch, M.M.; Janssen, B.J.; de Jonge, W.J.; Soeters, P.B.; Lamers, W.H.; Deutz, N.E. NO Production by cNOS and iNOS Reflects Blood Pressure Changes in LPS-Challenged Mice. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E871–E875. [Google Scholar] [CrossRef]
- Hong, H.J.; Loh, S.H.; Yen, M.H. Suppression of the Development of Hypertension by the Inhibitor of Inducible Nitric Oxide Synthase. Br. J. Pharmacol. 2000, 131, 631–637. [Google Scholar] [CrossRef]
- Schlaich, M.P.; Parnell, M.M.; Ahlers, B.A.; Finch, S.; Marshall, T.; Zhang, W.Z.; Kaye, D.M. Impaired L-Arginine Transport and Endothelial Function in Hypertensive and Genetically Predisposed Normotensive Subjects. Circulation 2004, 110, 3680–3686. [Google Scholar] [CrossRef]
- Hishikawa, K.; Nakaki, T.; Suzuki, H.; Kato, R.; Saruta, T. Role of L-Arginine-Nitric Oxide Pathway in Hypertension. J. Hypertens. 1993, 11, 639–645. [Google Scholar] [CrossRef]
- Forte, P.; Copland, M.; Smith, L.M.; Milne, E.; Sutherland, J.; Benjamin, N. Basal Nitric Oxide Synthesis in Essential Hypertension. Lancet 1997, 349, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S.; Virdis, A.; Mattei, P.; Ghiadoni, L.; Sudano, I.; Salvetti, A. Defective L-Arginine-Nitric Oxide Pathway in Offspring of Essential Hypertensive Patients. Circulation 1996, 94, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Saito, Y.; Kajiyama, N.; Yoshimura, M.; Shimasaki, Y.; Nakayama, M.; Kamitani, S.; Harada, M.; Ishikawa, M.; Kuwahara, K.; et al. Endothelial Nitric Oxide Synthase Gene Is Positively Associated with Essential Hypertension. Hypertension 1998, 32, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ye, W.; Chen, H.; Liu, M.; Jiang, W.; Fang, Z. Association of Endothelial Nitric Oxide Synthase Intron 4a/b Gene Polymorphisms and Hypertension: A Systematic Review and Meta-Analysis. J. Int. Med. Res. 2021, 49, 300060520979230. [Google Scholar] [CrossRef]
- Costa, E.D.; Silva, J.F.; Aires, R.D.; Garcia, D.C.; Kansaon, M.J.; Wainstein, A.J.; Rezende, B.A.; Teixeira, M.M.; Silva, R.F.; Cortes, S.F.; et al. Neuronal Nitric Oxide Synthase Contributes to the Normalization of Blood Pressure in Medicated Hypertensive Patients. Nitric Oxide 2018, 80, 98–107. [Google Scholar] [CrossRef]
- Armas-Padilla, M.C.; Armas-Hernández, M.J.; Sosa-Canache, B.; Cammarata, R.; Pacheco, B.; Guerrero, J.; Carvajal, A.R.; Hernández-Hernández, R.; Israili, Z.H.; Valasco, M. Nitric Oxide and Malondialdehyde in Human Hypertension. Am. J. Ther. 2007, 14, 172–176. [Google Scholar] [CrossRef]
- Khan, S.G.; Geer, A.; Fok, H.W.; Shabeeh, H.; Brett, S.E.; Shah, A.M.; Chowienczyk, P.J. Impaired Neuronal Nitric Oxide Synthase-Mediated Vasodilator Responses to Mental Stress in Essential Hypertension. Hypertension 2015, 65, 903–909. [Google Scholar] [CrossRef]
- Turoni, C.M.; de Bruno, M.P.; Coviello, A.; Marañón, R.O.; Herrera, R.N.; Muntaner, J.; Proto, V. Internal Mammary Artery Grafts Reactivity in Hypertensive Patients: Role of Stretching in Extraendothelial Nitric Oxide. Clin. Exp. Hypertens. 2007, 29, 327–344. [Google Scholar] [CrossRef]
- Turoni, C.J.; Marañón, R.O.; Proto, V.; Herrera, R.; de Bruno, M.P. Nitric Oxide Modulates Reactivity to Angiotensin II in Internal Mammary Arterial Grafts in Hypertensive Patients without Associated Risk Factors. Clin. Exp. Hypertens. 2011, 33, 27–33. [Google Scholar] [CrossRef]
- Infante, T.; Costa, D.; Napoli, C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology 2021, 72, 411–425. [Google Scholar] [CrossRef]
- Jin, C.Z.; Jang, J.H.; Kim, H.J.; Wang, Y.; Hwang, I.C.; Sadayappan, S.; Park, B.M.; Kim, S.H.; Jin, Z.H.; Seo, E.Y.; et al. Myofilament Ca2+ Desensitization Mediates Positive Lusitropic Effect of Neuronal Nitric Oxide Synthase in Left Ventricular Myocytes from Murine Hypertensive Heart. J. Mol. Cell. Cardiol. 2013, 60, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Tambascia, R.C.; Fonseca, P.M.; Corat, P.D.; Moreno, H., Jr.; Saad, M.J.; Franchini, K.G. Expression and Distribution of NOS1 and NOS3 in the Myocardium of Angiotensin II-Infused Rats. Hypertension 2001, 37, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Alkaitis, M.S.; Crabtree, M.J. Recoupling the Cardiac Nitric Oxide Synthases: Tetrahydrobiopterin Synthesis and Recycling. Curr. Heart Fail. Rep. 2012, 9, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Sasaki, S.; Nakagawa, K.; Fukuda, Y.; Matsuura, H.; Oshima, T.; Chayama, K. Tetrahydrobiopterin Enhances Forearm Vascular Response to Acetylcholine in Both Normotensive and Hypertensive Individuals. Am. J. Hypertens. 2002, 15, 326–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Janssens, S.P.; Wingler, K.; Schmidt, H.H.; Moens, A.L. Modulating endothelial nitric oxide synthase: A new cardiovascular therapeutic strategy. Am. J. Physiol.-Heart Circ. Physiol. 2011, 301, H634–H646. [Google Scholar] [CrossRef]
- Hashimoto, T.; Sivakumaran, V.; Carnicer, R.; Zhu, G.; Hahn, V.S.; Bedja, D.; Recalde, A.; Duglan, D.; Channon, K.M.; Casadei, B.; et al. Tetrahydrobiopterin Protects Against Hypertrophic Heart Disease Independent of Myocardial Nitric Oxide Synthase Coupling. J. Am. Heart Assoc. 2016, 5, e003208. [Google Scholar] [CrossRef]
- Dumont, Y.; D’Amours, M.; Lebel, M.; Lariviere, R.W. Supplementation with a Low Dose of L-Arginine Reduces Blood Pressure and Endothelin-1 Production in Hypertensive Uraemic Rats. Nephrol. Dial. Transplant. 2001, 16, 746–754. [Google Scholar] [CrossRef]
- Alp, N.J.; Channon, K.M. Regulation of Endothelial Nitric Oxide Synthase by Tetrahydrobiopterin in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 413–420. [Google Scholar] [CrossRef]
- Kuzkaya, N.; Weissmann, N.; Harrison, D.G.; Dikalov, S. Interactions of Peroxynitrite, Tetrahydrobiopterin, Ascorbic Acid, and Thiols: Implications for Uncoupling Endothelial Nitric-Oxide Synthase. J. Biol. Chem. 2003, 278, 22546–22554. [Google Scholar] [CrossRef]
- Cosentino, F.; Patton, S.; d’Uscio, L.V.; Werner, E.R.; Werner-Felmayer, G.; Moreau, P.; Malinski, T.; Lüscher, T.F. Tetrahydrobiopterin Alters Superoxide and Nitric Oxide Release in Prehypertensive Rats. J. Clin. Investig. 1998, 101, 1530–1537. [Google Scholar] [CrossRef]
- Harding, C.O. Sepiapterin: A Potential New Therapy for Phenylketonuria. Lancet 2024, 404, 1284–1286. [Google Scholar] [CrossRef] [PubMed]
- Tiefenbacher, C.P.; Bleeke, T.; Vahl, C.; Amann, K.; Vogt, A.; Kübler, W. Endothelial Dysfunction of Coronary Resistance Arteries is Improved by Tetrahydrobiopterin in Atherosclerosis. Circulation 2000, 102, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.C.; Mustafa, M.R.; Murugan, D.D. Therapeutic Implications of Nitrite in Hypertension. J. Cardiovasc. Pharmacol. 2020, 75, 123–134. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Ni, Z.; Oveisi, F.; Trnavsky-Hobbs, D.L. Effect of Antioxidant Therapy on Blood Pressure and NO Synthase Expression in Hypertensive Rats. Hypertension 2000, 36, 957–964. [Google Scholar] [CrossRef]
- Escames, G.; Khaldy, H.; León, J.; González, L.; Acuña-Castroviejo, D. Changes in iNOS Activity, Oxidative Stress and Melatonin Levels in Hypertensive Patients Treated with Lacidipine. J. Hypertens. 2004, 22, 629–635. [Google Scholar] [CrossRef]
- Westermann, D.; Riad, A.; Richter, U.; Jäger, S.; Savvatis, K.; Schuchardt, M.; Tschöpe, C. Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res. Cardiol. 2009, 104, 499–509. [Google Scholar] [CrossRef]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Goikoetxea, M.J.; Beaumont, J.; González, A.; López, B.; Querejeta, R.; Larman, M.; Díez, J. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc. Res. 2006, 69, 899–907. [Google Scholar] [CrossRef]
Feature | Animal Studies | Human Studies |
---|---|---|
Models/Subjects | Models Used: Spontaneously hypertensive rats (SHRs) vs. normotensive Wistar-Kyoto (WKY) rats, as well as other models (Dahl salt-sensitive rats; C57BL/6J mice on a high-salt/ANG II regimen). | Subjects: Adults aged 19–55 years, categorized as normotensive, untreated hypertensive, and hypertensive under therapy. Biopsy samples from patients with hypertensive heart disease (HHD) were also analyzed. |
Method of Assessment | Measurements: Direct evaluation of CD in heart tissue (e.g., left and right ventricles) and capillary-to-fiber ratio. | Measurements: CD assessed indirectly via nailfold skin analysis (functional and structural assessments) and directly via biopsy samples in some studies. |
Key Findings on Capillary Density | Increased CD: Some studies report increased CD in SHRs (often associated with elevated VEGF expression and a higher capillary-to-fiber ratio) observed even in young rats (e.g., 4-week-old), suggesting early compensatory vascular remodeling. •Decreased CD: Other studies (e.g., Caudron et al.) report decreased CD, particularly in older SHRs with severe hypertension-induced cardiac injury, with similar rarefaction seen in other hypertensive models. | Capillary Rarefaction: Some studies (e.g., Cheng et al. and Prewitt et al.) indicate an initial functional rarefaction followed by irreversible structural rarefaction without significant differences in structural CD in certain assessments. - Others (e.g., Penna et al. and biopsy studies in HHD patients) report significant structural deficits (up to ~25% lower CD). |
Timing of Changes | Increased CD observed before significant changes in blood pressure in some studies. Decreased CD associated with later stages of hypertension and cardiac injury in other studies. | Functional rarefaction may precede structural rarefaction. Pronounced structural rarefaction evident in established hypertensive heart disease. |
Proposed Mechanism(s) | Increased CD: Compensatory mechanism for hypoxia, linked to elevated VEGF. Decreased CD: Linked to reduced VEGF expression, contributing to hypertension-induced cardiac injury. | Functional Rarefaction: Initial stage. Structural Rarefaction: Later stage, potentially irreversible, contributing to cardiac injury. Reduced vascular network in HHD impacting heart function. |
Implications | Early vs. Late Remodeling: The findings suggest that early increases in CD (possibly as a compensatory mechanism) may precede the development of overt hypertension, whereas later decreases in CD (capillary rarefaction) may contribute to hypertension-induced cardiac injury. | Vascular Health: The structural and functional capillary rarefaction observed in hypertensive individuals underlines the importance of the vascular network in maintaining proper heart function and may be key in understanding the progression of hypertensive cardiac injury |
Parameter | Change in HHD | Key Mechanisms/Mediators | Functional Consequence |
---|---|---|---|
Total Collagen Content | Increased (interstitial and perivascular fibrosis) | Increased fibroblast/myofibroblast activity, increased synthesis leading to decreased degradation; stimuli: pressure overload, RAAS, TGF-β | Increased myocardial stiffness, diastolic dysfunction, arrhythmogenesis |
Collagen Type I | Increased deposition | Preferential synthesis/deposition by myofibroblasts | Highly increased myocardial stiffness (major contributor), diastolic dysfunction |
Collagen Type III | Increased deposition (but less proportionally than type I) | Synthesis by myofibroblasts | Contributes to fibrosis, but less impact on stiffness than type I |
Type I/III Ratio | Increased | Disproportionate increase in type I synthesis/deposition | Highly increased myocardial stiffness, reduced compliance, diastolic dysfunction |
Pathway Name | Key Stimuli in HHD | Key Mediators/Receptors | Primary Effect on Fibroblasts and ECM | Key Downstream Effectors |
---|---|---|---|---|
Mechanical stress | Increased pressure overload and cardiac wall stress, tissue stiffness | Integrins, mechanosensitive ion channels | Activation, differentiation, elevated collagen synthesis | FAK, MAPKs, RhoA/ROCK, YAP/TAZ |
Angiotensin II | Pressure overload, sympathetic nervous system activation, local production | ANG II, AT1R | Proliferation, differentiation into myofibroblasts, elevated ECM synthesis, elevated TGF-β | MAPK, SMADs, PLC |
Aldosterone | AngII stimulation | Aldosterone, Mineralocorticoid Receptor (MR) | Fibroblast activation, elevated collagen synthesis and oxidative stress, inflammation | MR nuclear translocation, MAPK |
TGF-β | Ang II, mechanical stress, inflammation, FGF23 | TGF-β1, TGF-β Receptors (Type I/II) | Differentiation (myoFb), ↑Collagen I/III synthesis, ↑Fibronectin, ↑TIMP expression | SMAD2/3 phosphorylation and nuclear translocation |
Feature | Animal Studies | Human Studies |
---|---|---|
Models/Subjects | Spontaneously hypertensive rats (SHRs) compared to normotensive WKY rats. | Hypertensive patients. |
Fibrosis Type | Predominantly reactive fibrosis characterized by increased interstitial collagen deposition. | Four histologically distinct types: interstitial, compact, diffuse, and patchy, with a common feature of increased collagen deposition. |
Cardiac Changes | Increased LV and RV wall thickness. Elevated collagen deposition in the cardiac interstitium, more pronounced in the LV. Severity increases with age and progression of HHD. | Increased deposition of collagen types I and III in various patterns (interstitial, compact, diffuse, patchy). Increased LV wall thickness observed in correlation with elevated TGF-β. |
Collagen Composition | Excessive deposition of collagen types I and III. Normal or downregulated collagen degradation by matrix metalloproteinases. | Collagen type I is the predominant type, followed by collagen type III. |
Age-Related Changes | More pronounced fibrosis in 12-month-old SHRs (advanced hypertensive heart disease) compared to 6-month-old SHRs (early AH development). | Although specific age-related dynamics are not detailed, increased fibrosis correlates with higher LV wall thickness and elevated levels of profibrotic factors such as TGF-β. |
Key Signaling Pathways and Markers | FGF-2 Pathway: moderate increase in FGF-2 expression, correlating with regions of enhanced fibrosis. •Procollagen type I mRNA: elevated in the LV. •ANG II: administration increases blood pressure and fibrosis, linked with higher TGF-β levels. | Fibroblast activation: increased transformation of fibroblasts into myofibroblasts drives collagen production. •Inflammatory response: inflammation elevates TGF-β levels, correlating with increased LV wall thickness. •ANG II: elevated levels observed, with evidence that ANG II blockade reduces fibrotic changes. |
Cellular Mechanisms | Increased collagen production likely due to fibroblast activation. | Transformation of fibroblasts into myofibroblasts drives ECM production, including collagen. Myofibroblast transformation and activation are exacerbated by inflammation. |
Role of Inflammation | Not explicitly detailed in the text regarding direct inflammatory involvement in SHRs, but other pathways (like ANG II/TGF-β) have inflammatory components. | Fibrotic changes are closely linked with inflammation, which exacerbates collagen deposition through increased myofibroblast transformation and activation. Immunocompetent cells at inflammatory sites increase TGF-β levels. |
Therapeutic Implications | ANG II blockade shown to reduce fibrosis in SHRs, suggesting a potential therapeutic target. | Studies using ANG II blockade have demonstrated reduced fibrotic changes in the heart, highlighting its potential therapeutic role. |
Mediator | Source (Preformed/Synthesized) | Key Implicated Actions in HHD |
---|---|---|
Chymase | Preformed | Fibrosis promotion (TGF-β activation, fibroblast proliferation, collagen synthesis, procollagen processing); ACE-independent Ang II formation; cardiomyocyte apoptosis; MMP activation; potential ECM degradation |
Tryptase | Preformed | Fibrosis promotion (fibroblast proliferation/activation via PAR-2); MMP activation; potential ECM degradation; HDL degradation |
Histamine | Preformed | Increased vascular permeability; potential fibrosis role (H2R?); endothelial dysfunction; vasodilation/constriction (context-dependent); Prostaglandin release from fibroblasts |
TNF-α | Preformed/Synthesized | Pro-inflammatory; pro-hypertrophic; pro-fibrotic (via AT1R upregulation); MMP activation; cardiac dysfunction |
IL-6 | Synthesized | Pro-inflammatory; endothelial dysfunction (via ROS, ↓p-eNOS in IgE pathway); potential hypertrophy role |
Renin | Preformed | Initiates local cardiac RAS → Ang II formation |
TGF-β | Synthesized (also activated by Chymase) | Potent pro-fibrotic (fibroblast activation, collagen synthesis); potential pro-hypertrophic |
VEGF | Synthesized | Angiogenesis; potential protective/reparative role |
IL-10 | Synthesized | Anti-inflammatory; potential anti-fibrotic |
Feature | Animal Studies | Human Studies |
---|---|---|
Evaluation Method in HHD | Direct measurement of MCN and correlation with fibrosis and specific mediators is feasible and reported. | Evaluation currently relies on assessing the neurochemical profile (mediators) rather than directly quantifying MCN in the context of HHD. |
Mast Cell Numbers (MCN) | •Statistically significant increased MCN observed in SHRs, with a statistically significant rise from 6- to 12-month-old rats. •Increase correlates with elevated FGF-2 levels and expanded fibrotic areas. - MCN rise seen in both the LV and RV (less pronounced in the RV). | •Increased MCN reported in patients with dilated cardiomyopathy. •Transplanted human heart studies reveal a correlation between cardiac mast cells and interstitial as well as perimyocytic fibrosis. •Direct investigation in hypertensive conditions is lacking. |
FGF-2 Association | •Mast cells are a significant source of FGF-2, a key profibrotic factor. •FGF-2 expression correlates with increased fibrosis in animal models. | •FGF-2 in humans shows profibrotic effects similar to animal models. •However, there is no direct study linking increased MCN to higher FGF-2 expression in hypertensive heart disease. |
Role of FGF-2 | Mast cells identified as an important source of FGF-2, linking increased MCN to this profibrotic agent. | FGF-2 exhibits the same profibrotic effects (fibroblast activation, etc.) as in animal models. •No studies directly link MCN to FGF-2 expression in human HHD. |
Role of Tryptase | Demonstrates profibrotic role via PAR-2/MAPK/ERK pathway, driving fibroblast-to-myofibroblast transformation and collagen synthesis. •Increases cell proliferation and collagen I synthesis in rats. | Tryptase exhibits the same profibrotic effects as in animal models. •No studies directly link MCN to tryptase activity/expression in human HHD. |
Role of Chymase | Shows profibrotic effects (e.g., TGF-β activation). •Generates ANG II, contributing to proinflammatory and profibrotic changes. | Chymase exhibits the same profibrotic effects (fibroblast activation, inflammation, ANG II generation) as in animal models. •No studies directly link MCN to chymase activity/expression in human HHD. |
Role of Histamine | Elevated histamine levels and increased H2R expression found in SHRs compared to normotensive rats, linked to increased MCN. | Histamine exhibits the same profibrotic effects as in animal models. •No studies directly link MCN to histamine levels/activity in human HHD. |
Mechanisms of Fibroblast Activation | Mast cell-derived mediators (tryptase, chymase, histamine) contribute to fibroblast activation and myofibroblast transformation via specific signaling pathways (e.g., PAR-2 → MAPK/ERK). •Mast cells may release both antifibrotic and profibrotic mediators depending on microenvironmental signals. | The profibrotic roles of FGF-2, tryptase, chymase, and histamine are acknowledged based on their neurochemical actions. •Direct mechanistic links between mast cell numbers and fibroblast activation under hypertensive conditions in humans remain to be elucidated. |
Complexity of Role | Noted that mast cells can release both pro- and anti-fibrotic mediators depending on the microenvironment. | Primarily emphasizes the profibrotic roles of known mediators. |
Therapeutic Strategy | Specific Agent(s)/Approach | Key Preclinical Findings in CV Models (HHD, HF, Fibrosis) | Clinical Trial Status/Notes |
---|---|---|---|
Mast Cell Stabilization | Tranilast, Nedocromil Sodium, Disodium Cromoglycate | Prevented HF transition; reduced fibrosis (pressure overload, SHR models) | Primarily used/trialed for allergy/mastocytosis; no large CV trials for HHD/HF. |
εPKC Inhibition | εV1-2 peptide inhibitor | Attenuated HF progression, reduced fibrosis, prevented MC degranulation (hypertensive HF model) | Preclinical stage for this mechanism. |
Chymase Inhibition | Various specific inhibitors (e.g., Chymostatin in preclinical) | Reduced fibrosis, improved diastolic function, reduced Ang II/TGF-β activation (HF, pressure overload models) | Preclinical validation strong; potential to address residual risk; clinical CV trials needed. |
Tryptase Inhibition | Specific inhibitors | Rationale based on pro-fibrotic effects; serum tryptase as potential biomarker? | Inhibitors exist; clinical CV trials needed. |
Histamine Receptor Antagonism | H2 Receptor Antagonists (e.g., Famotidine) | Associated with reduced HF risk (observational human data); decreased infarct size (canine ischemia model) | Requires prospective RCT validation for CV indications. |
Anti-IgE Therapy | Omalizumab | Attenuated Ang II-induced hypertension and vascular remodeling (mouse model); alleviated HF/remodeling (mouse HF models) | Approved for allergy/asthma; CV effects largely unexplored; some trials exclude severe CV disease. |
Anti-IL-6 Therapy | IL-6 inhibitors (e.g., Tocilizumab) | Rationale based on IgE-MC-IL-6 pathway in hypertension/endothelial dysfunction. | Approved for inflammatory diseases; potential CV relevance via this pathway needs investigation. |
Feature | Animal Studies | Human Studies |
---|---|---|
Model/Subjects | •Spontaneously hypertensive rats (SHRs). •Two-kidney, one-clip (2K1C) hypertensive rats. •Hypertensive rats induced by L-NAME. •Apelin-knockout mice. | •Essential hypertension (EH) patients. •Untreated hypertensive patients. •Patients with acute coronary syndrome (ACS). •Healthy controls. |
Focus | Hypertension-induced cardiac remodeling, mechanisms of apelin/APLNR in HHD. | Association of apelin levels with LVH, blood pressure regulation, and cardiovascular risk in hypertensive patients. |
Role in Cardiac Remodeling | The apelin/APLNR system regulates myocardial hypertrophy, fibrosis, vascular function, and neurohormonal interactions. •Acts as a compensatory mechanism in response to ligand depletion in advanced AH. | •Reduced serum apelin levels are strongly associated with left ventricular hypertrophy (LVH) in essential hypertension (EH). •Implicated in blood pressure regulation and pathological cardiac remodeling. |
Key Findings (Apelin/APLNR Expression) | •Upregulation of APLNR in aged SHRs (compensatory mechanism). •Dynamic APLNR changes in 2K1C rats (reduced in acute, partial recovery in chronic). •Differential organ-specific apelin/APLNR expression (increased in cardiac, decreased in renal). •Increased apelin in the rostral ventrolateral medulla of SHRs (sympathetic overdrive). •Reduced apelin levels in hypertensive rats with LVH. | •Low serum apelin levels associated with LVH in essential hypertension (EH). •Lower apelin levels in untreated hypertensive patients. •Increased apelin levels with antihypertensive treatment. •Lower apelin levels in EH and acute coronary syndrome (ACS) patients, especially females. |
Key Findings (Functional Effects) | •Apelin administration reduces blood pressure and LV systolic pressure. •Apelin mitigates ANG II-induced cardiac fibrosis, hypertrophy, and dysfunction. —Apelin-knockout exacerbates cardiac damage under ANG II exposure. •Apelin-normalized hypertension induced heterodimerization of APLNR and kappa-opioid receptor. | •Reduced apelin levels associated with LVH and blood pressure dysregulation. •Apelin levels may be a biomarker for AH management. |
Expression Dynamics | •APLNR Expression: Upregulated in aged SHRs, suggesting compensation. •In 2K1C hypertensive rats, myocardial APLNR levels are reduced in the acute phase with partial recovery in the chronic phase, while aortic APLNR mRNA declines consistently, with protein reduction evident in the chronic phase. •Differential responses observed: marked reduction in apelin/APLNR in SHRs vs. only mild changes in 2K1C models, and tissue-specific alterations (e.g., increased in cardiac tissue, reduced in kidney tissue in L-NAME-induced hypertension). | •Apelin levels: lower in untreated hypertensive patients compared to normotensive controls. •Antihypertensive treatment increases apelin levels, indicating its regulatory role. •Genetic studies show significantly lower apelin-13 levels in EH and acute coronary syndrome patients, with possible sex-specific effects (e.g., risk allele in women). |
Cardiovascular Effects | •Functional effects: Apelin administration reduces mean arterial pressure and left ventricular systolic pressure. •Mitigates ANG II-induced cardiac fibrosis, hypertrophy, and dysfunction. •Increased apelin in specific brain regions (rostral ventrolateral medulla) contributes to sympathetic overdrive. | •Lower apelin levels correlate with LVH and increased cardiovascular risk. •Suggested potential as a biomarker for disease severity and response to antihypertensive therapy. |
Compound Name/Type | Mechanism | Key Preclinical/Clinical Findings (HHD/HF Relevant) | Status/Potential |
---|---|---|---|
[Pyr1]apelin-13 (Native Peptide) | Full Agonist | Acute ↑CO, ↓PVR, ↓BP, +inotropy; Preserved in HF/PAH; chronic infusion failed to ↓BP or prevent AngII-induced hypertrophy/fibrosis. | Proof-of-concept; limited by short half-life. |
Elabela (Native Peptide) | Agonist | ↓BP, +inotropy, anti-fibrotic, anti-remodeling; Beneficial in hypertension/HF models; Critical for development. | Potential therapeutic; stability/delivery challenges similar to apelin. |
BMS-986224 (Small Molecule) | Agonist (Non-biased) | Potent APJ activation; ↑CO in rats (acute/chronic); did not prevent hypertrophy/fibrosis in RHR model. | Oral bioavailability; phase 1 trials initiated (some terminated/completed). Potential for HF. |
MM07 (Peptide Analogue) | Biased Agonist (G protein-preferred) | Enhanced/sustained vasodilation vs. apelin-13 (human); ↑CO (rodent); reduced desensitization; attenuated experimental PAH features. | Potential for improved efficacy/reduced side effects (hypertrophy); early clinical validation. |
Azelaprag (AMG 986/BGE-105) (Small Molecule) | Agonist | Potent agonist (pEC50 ~9.5). | Potential oral therapeutic; further data needed from snippets. |
CMF-019 (Small Molecule) | Biased Agonist (G protein-preferred) | Potent biased agonist (pEC50 ~10.0). | Potential oral biased therapeutic; further data needed from snippets. |
Feature | Animal Studies | Human Studies |
---|---|---|
Overall Role of VEGF/VEGFR | •Central role in angiogenesis, cardiac remodeling, and transition from adaptive hypertrophy to Heart Failure (HF). •Inhibition of VEGF accelerates the transition to HF. | •Multifaceted role: promotes adaptive myocardial angiogenesis •Dysregulated signaling linked to endothelial dysfunction and cardiovascular risk. |
General Role | Central to mediating angiogenesis, adaptive remodeling, and the transition from compensatory hypertrophy to heart failure (HF). | Multifaceted role balancing adaptive angiogenesis and maladaptive endothelial dysfunction; linked to both protective and pathological responses. |
VEGF Expression Dynamics | Induced during compensatory hypertrophy; levels fluctuate with age/stage (e.g., initial increase, later decline in SHRs) •Significant increase noted at specific stages (e.g., 5-fold VEGF-A in 18-week SHRs) [63]. —Detailed regional changes reported (e.g., LV depletion in older SHRs). •Different isoforms (VEGF188, VEGF-C) show specific patterns. | Elevated XBP1 associated with increased VEGF-A in hypertrophic/failing hearts (suggesting adaptive role) •PGE1 increases VEGF-1 production in cardiac myocytes. •Conflicting findings on plasma VEGF levels: higher levels associated with risk vs. lower levels in hypertensives compared to controls. |
VEGF and Angiogenesis/Capillary Density | •VEGF-A upregulation can increase capillary-to-myocyte ratio but may reduce net Capillary Density (CD) due to myocyte growth. •VEGF-A depletion correlates with reduced CD and transition to HF. •VEGFR-2 is central to angiogenesis; VEGFR-1/sVEGFR-1 modulates VEGF availability. •VEGF-C/VEGFR-3 involved in lymphangiogenesis. •TRPV4 deletion enhances VEGF-A/VEGFR2 mediated angiogenesis. | •VEGF-A drives myocardial angiogenesis in hypertrophy. •VEGF-1 promotes endothelial cell proliferation/tube formation. •Lower VEGF activity (via polymorphism rs3025039) inversely correlated with atherosclerosis in some hypertensive patients. |
Specific VEGF Isoforms/Family | •Extensive study of VEGF-A dynamics. •VEGF188 studied. •VEGF-B implicated in metabolic adaptation and maladaptive hypertrophy/fibrosis. •VEGF-C linked to lymphangiogenesis under high salt/ANG II stimulation. | •VEGF-A studied in relation to XBP1. •VEGF-1 (esp. VEGF165) induced by PGE1. •Plasma VEGF levels studied (isoform often unspecified). •Genetic polymorphism affecting VEGF activity studied. |
Receptor Involvement | •VEGFR-2 is central for angiogenesis, while VEGFR-1 (and its soluble form sVEGFR-1) regulates VEGF bioavailability by sequestering VEGF. •TRPV4 suppression boosts VEGFR-2-mediated angiogenesis. •VEGF-C/VEGFR-3 activation promotes lymphangiogenesis that may impact cardiac edema and remodeling. | •Studies indicate involvement of VEGF receptors indirectly through markers of endothelial function (e.g., associations with von Willebrand factor and soluble Flt-1). •Direct receptor-specific investigations are limited, though the impact on angiogenesis and endothelial function is noted. |
Impact on Cardiac Remodeling | •Early VEGF upregulation supports capillary density and compensatory angiogenesis; later depletion of VEGF-A, especially in the LV, correlates with reduced capillary density and progression to HF. •Overexpression of VEGF-B may lead to hypertrophy, fibrosis, and metabolic exhaustion, while VEGF-C/VEGFR-3 influences lymphangiogenesis and edema. | •VEGF-A appears to promote myocardial angiogenesis to mitigate ischemic damage and support adaptation during hypertrophic stress. •However, dysregulated VEGF signaling (with either elevated or reduced levels) is linked with endothelial dysfunction and adverse cardiovascular outcomes. |
Regulatory Mechanisms | Complex regulation involves: mechanical stretch (NFκB), XBP1 (UPR), secretin levels, TRPV4 signaling, PlGF (releasing VEGF from sVEGFR-1), ANG II, high salt. | XBP1 linked to VEGF-A regulation. •PGE1 induces VEGF-1 via cAMP pathway. |
Link to Endothelial Dysfunction/NO | Implied in models (e.g., reduced NO in secretin KO) and general vascular remodeling context. | Elevated VEGF correlated with markers of endothelial damage (vWf, sFlt-1). •Impaired VEGF-NO relationship observed in untreated hypertensive patients. |
Genetic Factors | Primarily studied via knockout/transgenic models (e.g., Secretin KO, VEGFR-1 deficiency, VEGF-B overexpression, TRPV4 KO). | Focus on polymorphisms, e.g., VEGF rs3025039 associated with reduced VEGF activity and potentially lower atherosclerosis risk in specific hypertensive populations. |
Volume of Research | Extensive data available from numerous studies exploring various facets of the pathway. | Relatively few studies compared to animal research. •Text explicitly highlights the disparity and the need for more human-focused research. |
Research Gaps/Limitations | •Extensive animal data elucidate the dynamic, tissue-specific, and isoform-specific regulation of VEGF/VEGFR signaling in hypertensive remodeling, yet these models may not fully recapitulate human pathophysiology. | •Fewer studies are available; existing data show conflicting trends in VEGF expression. •More research is needed to clarify receptor-specific roles, the interplay with endothelial mediators (e.g., NO, vWf, sFlt-1), and the genetic determinants of VEGF activity in hypertensive myocardium. |
Feature | Animal Studies | Human Studies |
---|---|---|
eNOS Function and Expression | •eNOS is cardioprotective: its expression supports vasodilation, neoangiogenesis, and helps maintain myocardial remodeling, which prevents severe hypertrophy. •eNOS (–/–) mice show reduced arteriolar density, altered Ca2+ handling, and changes in K+ channel predominance in ventricular cardiomyocytes. | •eNOS-derived NO is critical for relaxing vascular smooth muscle via cGMP-dependent protein kinase, thereby maintaining blood pressure. •Hypertensive patients exhibit deficient NO-mediated vasodilation in the brachial, renal, and coronary arteries, with overall reduced NO production (lower urinary and plasma nitrate levels). |
eNOS Uncoupling and Interventions | eNOS uncoupling (observed in ANG II-challenged mice and pressure overload models) leads to superoxide production and contributes to AH. •Supplementation with tetrahydrobiopterin (BH4;) and vitamin C can prevent eNOS uncoupling by reducing reactive oxygen species. | Although not directly evaluated by gene deletion models, impaired NO bioavailability in EH patients (and altered L-arginine transport) suggests that eNOS dysfunction plays a role in endothelial dysfunction. L-arginine supplementation improves endothelial function. |
nNOS Expression and Role | •Hypoxia increases vascular nNOS expression and activity (though its role in hypertensive myocardium needs further investigation). •ANG II upregulates nNOS in isolated LV cardiomyocytes and in ANG II-induced hypertensive rats; nNOS expression is higher in the LV than in the RV of SHRs. •nNOS contributes to myocardial relaxation via reduced NADPH oxidase activity. | •nNOS helps maintain systemic vascular resistance and blood pressure through NO and H2O2 production. •In hypertensive patients, alterations in nNOS expression/activity may contribute to diminished counteraction of ANG II-mediated vascular contractility, especially under increased oxidative stress. |
iNOS Upregulation and Effects | •Upregulation of iNOS leads to excessive NO production, which can interact with superoxide to form peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. •iNOS upregulation may reduce eNOS-derived NO, leading to further oxidative stress. •Genetic ablation or pharmacologic inhibition of iNOS in animal models often improves cardiac contractile function and reduces hypertrophy despite not significantly altering blood pressure. | •In humans, the overproduction of NO via iNOS is implicated in nitrosative stress and endothelial dysfunction in AH. •Pharmacologic interventions that selectively inhibit iNOS (e.g., aminoguanidine) or reduce oxidative stress have shown improvements in vascular responses in hypertensive subjects, indicating a potential compensatory or protective role when iNOS is modulated. |
Overall Impact on Oxidative/Nitrosative Stress | •eNOS uncoupling and iNOS overactivity contribute to superoxide generation and nitrosative stress, exacerbating myocardial remodeling in AH. •Interventions (BH4;, vitamin C) targeting these pathways help preserve endothelial function. NOS inhibition increases myocardial oxidative stress [174]. •eNOS uncoupling produces ROS [172]. •iNOS contributes to peroxynitrite formation, nitrosative stress, and endothelial dysfunction [177,184]. •iNOS deletion may improve function via reduced oxidative stress [180]. •iNOS upregulation promotes sympathoexcitation via oxidative stress [182]. | •Hypertensive patients typically exhibit decreased NO bioavailability, increased free radical production, and heightened oxidative stress, all contributing to endothelial dysfunction and impaired vascular responses. Hypertensive individuals typically exhibit decreased NO, elevated free radicals, and increased oxidative stress [194]. •Increased oxidative stress reduces nNOS activity in hypertensive conditions [196,197]. |
Genetic and Biochemical Associations | •Animal models are primarily used to delineate mechanistic pathways (e.g., the effects of gene deletion or pharmacologic inhibition) rather than genetic polymorphisms. | •Genetic polymorphisms in the eNOS gene (e.g., Glu298Asp and intron 4a/b variants) are associated with essential hypertension (EH) and altered NO-mediated vasodilation. •Family history and genetic predisposition in humans further affect NO pathway efficiency and response to vasodilatory stimuli. |
Target/Pathway | Available Therapies | Experimental/Future Approaches |
---|---|---|
Capillary Density (CD) | • Chronic antihypertensive treatments (e.g., captopril) • Agents such as aspirin, methylprednisolone, and moxonidine (used post-infarction with observed improvements in capillary density) | • Strategies aimed at directly enhancing capillary regeneration and neovascularization (research focused on morphological evaluation as an efficacy indicator) |
Cardiac Fibrosis | • RAAS inhibitors (e.g., losartan) that lower blood pressure and reduce ECM expansion • Anti-hypertensive drugs with secondary anti–TGF-β effects | • Colchicine (shown to reduce fibrosis in animal models) • MAPK/p38 inhibitors (with caution due to roles in scar integrity) • Calcium signaling modulators targeting channels (TRPC, Orai1) and calcineurin • Inhibitors of collagen cross-linking via LOX enzymes • Modulation of FGF signaling (FGF21 agonists, FGF23 antagonists, FGFR4 inhibitors) • Anti-inflammatory approaches (e.g., targeting MCP-1 or macrophage activity) |
Mast Cell Activation | • Drugs targeting mast cell activation (currently in clinical trials for related disorders) • Histamine receptor antagonists (notably, H2 blockers have been associated with lower heart failure risk) | • Inhibitors of IgE-FcɛRI interactions • Chymase inhibitors (reduce ANG II formation and histamine release) • Tryptase inhibitors (potentially reduce fibroblast activation and fibrosis) • Anti-IgE therapies (e.g., omalizumab) targeting novel IgE–mast cell–IL-6 pathways • Anti-cytokine strategies addressing mast cell–derived IL-6, TNF-α, and TGF-β |
Apelin/APLNR System | • Direct administration of native apelin peptides (e.g., [Pyr1]apelin-13) showing acute vasodilatory and antihypertensive effects • Exercise, which physiologically modulates apelin/APLNR expression | • Modified peptide analogues with enhanced stability to overcome short plasma half-life • Non-peptidic small molecule agonists (e.g., MM07, CMF-019, BMS-986224) • Development of biased agonists that selectively activate protective Gαi signaling while minimizing β-arrestin-mediated desensitization |
VEGF/VEGFR Pathway | • Perindopril (shown to restore VEGF levels and support myocardial angiogenesis) • Trimetazidine (TMZ) promotes VEGF-A expression via Akt-HSF1-VEGF signaling • Exercise training enhances VEGF expression and NO bioavailability | • Combination therapeutic approaches that balance VEGF promotion with antihypertensive treatments to counteract the pro-hypertensive effects seen with VEGF inhibitors (VEGFIs) • Novel strategies to mitigate VEGFI-associated hypertension in cancer therapies |
NO/NOS Signaling | • Established NO donors (organic nitrates such as isosorbide dinitrate; sodium nitroprusside for emergencies, L-arginine supplementation (improves endothelial NO production), Vitamin C (maintains BH4; bioavailability and prevents eNOS uncoupling) • Statins, ACE inhibitors, ARBs (which enhance eNOS activity and bioavailability, Lacidipine—calcium channel blocker reducing oxidative stress) • PDE5 inhibitors (sildenafil, tadalafil) and dietary nitrate/nitrite supplementation • sGC stimulators (e.g., riociguat) and activators (e.g., vericiguat) | • Novel NO delivery systems (e.g., biomaterial-based platforms, metal-nitrosyl complexes) • Cofactor supplementation strategies using BH4 or precursors like sepiapterin to restore eNOS coupling (limited by chemical instability) and sepiapterin (a more stable BH4; precursor via the salvage pathway. • Specific eNOS activators (e.g., AVE3085) • Isoform-selective modulators for nNOS and iNOS, aiming to harness protective effects without compromising other physiological roles; Nitrite administration; Selective iNOS inhibitors; Antioxidant therapies targeting NOS dysfunction • Advanced sGC activators that function independently of NO, and further refinement in modulating downstream cGMP signaling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaydarski, L.; Petrova, K.; Stanchev, S.; Pelinkov, D.; Iliev, A.; Dimitrova, I.N.; Kirkov, V.; Landzhov, B.; Stamenov, N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 4022. https://doi.org/10.3390/ijms26094022
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. International Journal of Molecular Sciences. 2025; 26(9):4022. https://doi.org/10.3390/ijms26094022
Chicago/Turabian StyleGaydarski, Lyubomir, Kristina Petrova, Stancho Stanchev, Dimitar Pelinkov, Alexandar Iliev, Iva N. Dimitrova, Vidin Kirkov, Boycho Landzhov, and Nikola Stamenov. 2025. "Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications" International Journal of Molecular Sciences 26, no. 9: 4022. https://doi.org/10.3390/ijms26094022
APA StyleGaydarski, L., Petrova, K., Stanchev, S., Pelinkov, D., Iliev, A., Dimitrova, I. N., Kirkov, V., Landzhov, B., & Stamenov, N. (2025). Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. International Journal of Molecular Sciences, 26(9), 4022. https://doi.org/10.3390/ijms26094022