Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsalahi, W.; Trzeciak, A.M. Rhodium-catalyzed hydroformylation under green conditions: Aqueous/organic biphasic, “on water”, solventless and Rh nanoparticle based systems. Coord. Chem. Rev. 2021, 430, 213732. [Google Scholar] [CrossRef]
- Kohlpaintner, C.W.; Fischer, R.W.; Cornils, B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Appl. Catal. Gen. 2001, 221, 219–225. [Google Scholar] [CrossRef]
- Peng, Q. Aqueous Biphasic Hydroformylation of Higher Olefins Catalyzed by Rhodium Complexes with Amphiphilic Ligands of Sulfonated Triphenylphosphine Analog. Catal. Lett. 2003, 88, 219–225. [Google Scholar] [CrossRef]
- Modroño-Alonso, M.; Castro, W.; Lopez-Linares, F.; Rosales, M.; Baricelli, P.J. Aqueous-biphasic hydroformylation of 1-hexene catalyzed by the complex HCo(CO)[P(o-C6H4SO3Na)]3. J. Mex. Chem. Soc. 2017, 61, 128–137. [Google Scholar] [CrossRef]
- Matsinha, L.C.; Siangwata, S.; Smith, G.S.; Makhubela, B.C.E. Aqueous biphasic hydroformylation of olefins: From classical phosphine-containing systems to emerging strategies based on water-soluble nonphosphine ligands. Catal. Rev. 2019, 61, 111–133. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Pereira, J.C.; Rosales, M. Aqueous-biphasic catalysis: A technological alternative for the use of organometallic complexes in hydrogenation and hydroformylation reactions with possible industrial application. Catal. Today 2025, 443, 114969. [Google Scholar] [CrossRef]
- Kokkinos, N.C. Modeling and simulation of biphasic catalytic hydrogenation of a hydroformylated fuel. Int. J. Hydrogen Energy 2021, 46, 19731–19736. [Google Scholar] [CrossRef]
- Cornils, B. Bulk and fine chemicals via aqueous biphasic catalysis. J. Mol. Catal. Chem. 1999, 143, 1–10. [Google Scholar] [CrossRef]
- Escola, J.M.; Botas, J.A.; Vargas, C.; Bravo, M. Oxidation of heavy 1-olefins (C12=–C20=) with TBHP using a modified Wacker system. J. Catal. 2010, 270, 34–39. [Google Scholar] [CrossRef]
- Brink, G.-J.T.; Arends, I.W.C.E.; Papadogianakis, G.; Sheldon, R.A. Catalytic conversions in water: Part 13. Aerobic oxidation of olefins to methyl ketones catalysed by a water-soluble palladium complex—Mechanistic investigations. Appl. Catal. Gen. 2000, 194, 435–442. [Google Scholar] [CrossRef]
- Mac Leod, T.C.O.; Palaretti, V.; Barros, V.P.; Faria, A.L.; Silva, T.A.; Assis, M.D. Jacobsen catalyst immobilized on chitosan membrane as interface catalyst in organic/aqueous system for alkene oxidation. Appl. Catal. Gen. 2009, 361, 152–159. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Baricelli, D.; Lujano, E.; Melean, L.G.; Borusiak, M.; López-Linares, F.; Bastidas, L.J.; Rosales, M. Catalytic hydrogenation of olefins and their mixtures using HRh(CO)(TPPMS)3 complex in an aqueous biphasic medium. J. Mol. Catal. Chem. 2007, 271, 180–184. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Ascanio, T.; Lujano, E.; Melean, L.G.; Borusiak, M.; López-Linares, F.; Bastidas, L.J.; Rosales, M. Aqueous biphasic catalytic hydrogenation of olefins and olefin mixtures by the [Rh(μ-Pz)(CO)(TPPMS)]2 complex, Pz=pyrazolate, TPPMS=(C6H5)2P(C6H4SO3Na). J. Mol. Catal. Chem. 2007, 278, 107–111. [Google Scholar] [CrossRef]
- Parmar, D.U.; Bhatt, S.D.; Bajaj, H.C.; Jasra, R.V. Hydrogenation of alkenes and aromatic hydrocarbons using water-soluble RuCl2(TPPTS)3 in aqueous medium. J. Mol. Catal. Chem. 2003, 202, 9–15. [Google Scholar] [CrossRef]
- Kokkinos, N.C.; Nikolaou, N.; Psaroudakis, N.; Mertis, K.; Mitkidou, S.; Mitropoulos, A.C. Two-step conversion of LLCN olefins to strong anti-knocking alcohol mixtures catalysed by Rh, Ru/TPPTS complexes in aqueous media. Catal. Today 2015, 247, 132–138. [Google Scholar] [CrossRef]
- Debouttière, P.; Coppel, Y.; Denicourt-Nowicki, A.; Roucoux, A.; Chaudret, B.; Philippot, K. PTA-Stabilized Ruthenium and Platinum Nanoparticles: Characterization and Investigation in Aqueous Biphasic Hydrogenation Catalysis. Eur. J. Inorg. Chem. 2012, 2012, 1229–1236. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Jiang, J.; Jin, Z. Novel Aqueous/Organic Biphasic System for Thermoregulated Phase-Transfer Catalysis with Rhodium Nanoparticles. Chin. J. Catal. 2011, 32, 1133–1137. [Google Scholar] [CrossRef]
- Ogweno, A.O.; Ojwach, S.O.; Akerman, M.P. Cationic pyridyl(benzoazole) ruthenium(II) complexes: Efficient and recyclable catalysts in biphasic hydrogenation of alkenes and alkynes. Appl. Catal. Gen. 2014, 486, 250–258. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Rodríguez, G.; Rodríguez, M.; Lujano, E.; López-Linares, F. Synthesis, characterization and aqueous-biphase hydrogenation of olefins by the ruthenium complexes Ru(CO)3(TPPMS)2 and RuH2(CO)(TPPMS)3. Appl. Catal. Gen. 2003, 239, 25–34. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Jiang, J.; Jin, Z. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydrogenation in an aqueous/organic biphasic system. Catal. Commun. 2010, 11, 542–546. [Google Scholar] [CrossRef]
- Wang, X.; Yu, F.; Xie, C.; Yu, S. Highly selective hydrogenation of α-pinene in aqueous medium using PVA-stabilized Ru nanoparticles. Mol. Catal. 2018, 444, 62–69. [Google Scholar] [CrossRef]
- Duval, M.; Navarre, S.; Sagorin, G.; Denicourt-Nowicki, A.; Roucoux, A. Multigram Scale-up of the Selective Hydrogenation of α-Pinene with Ruthenium Nanoparticles in Water. ACS Sustain. Chem. Eng. 2020, 8, 5985–5993. [Google Scholar] [CrossRef]
- Kotzabasakis, V.; Hadjichristidis, N.; Papadogianakis, G. Catalytic conversions in aqueous media: Part 3. Biphasic hydrogenation of polybutadiene catalyzed by Rh/TPPTS complexes in micellar systems. J. Mol. Catal. Chem. 2009, 304, 95–100. [Google Scholar] [CrossRef]
- Püschel, S.; Störtte, S.; Topphoff, J.; Vorholt, A.J.; Leitner, W. Green Process Design for Reductive Hydroformylation of Renewable Olefin Cuts for Drop-In Diesel Fuels. ChemSusChem 2021, 14, 5226–5234. [Google Scholar] [CrossRef]
- Joumaa, A.; Chen, S.; Vincendeau, S.; Gayet, F.; Poli, R.; Manoury, E. Rhodium-catalyzed aqueous biphasic hydrogenation of alkenes with amphiphilic phosphine-containing core-shell polymers. Mol. Catal. 2017, 438, 267–271. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, M.; Zhang, W.; Yang, L. Enhanced Pd-Catalyzed Hydrogenation of Olefins within Polymeric Microreactors under Organic/Aqueous Biphasic Conditions. Chem. Eur. J. 2009, 15, 3670–3673. [Google Scholar] [CrossRef]
- Suárez, T.; Fontal, B.; Reyes, M.; Bellandi, F.; Contreras, R.R.; Bahsas, A.; León, G.; Cancines, P.; Castillo, B. Catalytic hydrogenation of 1-hexene with RuCl2 (TPPMS)3 (DMSO), Part I: Aqueous biphasic system. React. Kinet. Catal. Lett. 2004, 82, 317–324. [Google Scholar] [CrossRef]
- Guerrero, M.; Than Chau, N.T.; Noel, S.; Denicourt-Nowicki, A.; Hapiot, F.; Roucoux, A.; Monflier, E.; Philippot, K. About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions. COC 2013, 17, 364–399. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Li, G.; Jiang, J.; Jin, Z. Thermoregulated phase-transfer cobalt catalyst for production of linear higher alcohols from C11–12 internal olefins in aqueous/organic biphasic system. Catal. Commun. 2014, 44, 54–56. [Google Scholar] [CrossRef]
- Herwig, J.; Fischer, R. Aqueous biphasic hydroformylation. In Rhodium Catalyzed Hydroformylation; Van Leeuwen, P.W.N.M., Claver, C., Eds.; Catalysis by Metal Complexes; Springer: Dordrecht, The Netherlands, 2000; Volume 22, pp. 189–202. ISBN 978-0-7923-6551-8. [Google Scholar]
- Chen, H.; Zheng, X.; Li, X. Hydroformylation of Olefins in Aqueous–Organic Biphasic Catalytic Systems. In Bridging Heterogeneous and Homogeneous Catalysis; Can, L., Yan, L., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 489–510. ISBN 978-3-527-33583-1. [Google Scholar]
- Kokkinos, N.C.; Kazou, E.; Lazaridou, A.; Papadopoulos, C.E.; Psaroudakis, N.; Mertis, K.; Nikolaou, N. A potential refinery process of light–light naphtha olefins conversion to valuable oxygenated products in aqueous media—Part 1: Biphasic hydroformylation. Fuel 2013, 104, 275–283. [Google Scholar] [CrossRef]
- Guanipa, Q.V.J.; Melean, L.G.; Alonzo, M.M.; Gonzalez, A.; Rosales, M.; Lopez-Linares, F.; Baricelli, P.J. Evaluation of the catalytic activity of the water-soluble organometallic complex [Rh(μ-Pz)(CO)(TPPTS)]2 in the hydroformylation of short-chain olefins in a refinery’s naphtha cut. Appl. Catal. Gen. 2009, 358, 21–25. [Google Scholar] [CrossRef]
- Suárez, T.; Fontal, B.; León, G.; Reyes, M.; Bellandi, F.; Contreras, R.R.; Cancines, P. Aqueous biphasic olefin hydroformylation catalyzed by water-soluble rhodium complexes. Transit. Met. Chem. 2006, 31, 974–976. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Segovia, K.; Lujano, E.; Modroño-Alonso, M.; López-Linares, F.; Sánchez-Delgado, R.A. Synthesis and characterization of [HRu(CO)(CH3CN)(TPPTS)3]BF4. J. Mol. Catal. Chem. 2006, 252, 70–75. [Google Scholar] [CrossRef]
- Alonso, M.M.; Guanipa, V.; Melean, L.G.; Rosales, M.; Gonzalez, A.; Baricelli, P.J. Catalytic activity of the RhH(CO)(TPPTS)3 precursor in the biphasic hydroformylation reaction of C5–C7 alkenes from a real naphtha cut. Appl. Catal. Gen. 2009, 358, 211–214. [Google Scholar] [CrossRef]
- Borrmann, T.; Roesky, H.W.; Ritter, U. Biphasic hydroformylation of olefins using a novel water soluble rhodium polyethylene glycolate catalyst. J. Mol. Catal. Chem. 2000, 153, 31–48. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Alonso, M.M.; Rosales, M. Kinetic and Mechanisms of the Aqueous-Biphasic Hydroformylation of Olefins Contained in Naphtha Cuts Catalyzed by RhH(CO)(TPPTS)3 [TPPTS: Tri(sodium m-sulfonated-phenyl)phosphine]. Catal. Lett. 2018, 148, 1150–1161. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; Jin, Z. Thermoregulated Liquid/Liquid Biphasic Catalysis and Its Application. Catal. Surv. Asia 2004, 8, 119–126. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Melean, L.G.; Alonso, M.M.; Rodríguez, A.; Rosales, M.; González, Á. Advances in the aqueous-phase hydroformylation of olefins from a refinery naphtha cut: The effect of monoethanolamine in the catalytic activity of the Rh/TPPTS system. Catal. Today 2015, 247, 124–131. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Lujano, E.; Modroño, M.; Marrero, A.C.; García, Y.M.; Fuentes, A.; Sánchez-Delgado, R.A. Rhodium-catalyzed hydroformylation of C6 alkenes and alkene mixtures—A comparative study in homogeneous and aqueous-biphasic media using PPh3, TPPTS and TPPMS ligands. J. Organomet. Chem. 2004, 689, 3782–3792. [Google Scholar] [CrossRef]
- Baricelli, P.J.; Lujano, E.; Rodríguez, M.; Fuentes, A.; Sánchez-Delgado, R.A. Synthesis and characterization of Ru(H)2(CO)(TPPMS)3 and catalytic properties in the aqueous-biphasic hydroformylation of olefins. Appl. Catal. Gen. 2004, 263, 187–191. [Google Scholar] [CrossRef]
- Baricelli, P.J.; López-Linares, F.; Rivera, S.; Melean, L.G.; Guanipa, V.; Rodriguez, P.; Rodriguez, M.; Rosales, M. Influence of the addition of thiophenes on the catalytic activity of the rhodium binuclear complex [Rh(CO)(μ-Pz)(TPPTS)]2 during the biphasic hydroformylation of 1-hexene. J. Mol. Catal. Chem. 2008, 291, 12–16. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Jiang, J.; Jin, Z. Hydroformylation of Higher Olefins by Thermoregulated Phase-Transfer Catalysis with Rhodium Nanoparticles. Chin. J. Catal. 2010, 31, 1191–1194. [Google Scholar] [CrossRef]
- Zhao, J.; Yi, J.; Yang, C.; Wan, K.; Duan, X.; Tang, S.; Fu, H.; Zheng, X.; Yuan, M.; Li, R.; et al. A Novel Strategy of Homogeneous Catalysis and Highly Efficient Recycling of Aqueous Catalyst for the Hydroformylation of Higher Olefins Based on a Simple Methanol/Water Mixed Solvent. Catal. Lett. 2021, 151, 1273–1281. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Chen, J.; Cheng, P.; Li, X. Synergistic effect of TPPTS and TPPDS on the regioselectivity of olefin hydroformylation in two-phase catalytic system. Catal. Today 2002, 74, 131–135. [Google Scholar] [CrossRef]
- Peng, Q.; Liao, X.; Yuan, Y. Micelle effect of disulfonated cetyldiphenyl phosphine in biphasic hydroformylation of higher olefins. Catal. Commun. 2004, 5, 447–451. [Google Scholar] [CrossRef]
- Hejun, Z.; Yunjie, D.; Fu, Y.; Li, Y.; Jianmin, X.; Hongmei, Y.; Liwu, L. Water/Oil Biphasic Hydroformylation of Higher Olefins over TPPTS-Rh/SiO2 Catalyst. Energy Chem. 2004, 13, 87. [Google Scholar]
- Desset, S.L.; Reader, S.W.; Cole-Hamilton, D.J. Aqueous-biphasic hydroformylation of alkenes promoted by “weak” surfactants. Green. Chem. 2009, 11, 630. [Google Scholar] [CrossRef]
- Matsinha, L.C.; Mapolie, S.F.; Smith, G.S. Recoverable and recyclable water-soluble sulphonated salicylaldimine Rh(I) complexes for 1-octene hydroformylation in aqueous biphasic media. Dalton Trans. 2015, 44, 1240–1248. [Google Scholar] [CrossRef]
- Hager, E.B.; Makhubela, B.C.E.; Smith, G.S. Aqueous-phase hydroformylation of 1-octene using hydrophilic sulfonate salicylaldimine dendrimers. Dalton Trans. 2012, 41, 13927. [Google Scholar] [CrossRef]
- Schrimpf, M.; Graefe, P.A.; Holl, A.; Vorholt, A.J.; Leitner, W. Effect of Liquid–Liquid Interfacial Area on Biphasic Catalysis Exemplified by Hydroformylation. ACS Catal. 2022, 12, 7850–7861. [Google Scholar] [CrossRef]
- Naße, K.E.; Heinen, F.S.; Pawlowsky, N.; Schrimpf, M.; Monflier, E.; Tilloy, S.; Leitner, W.; Vorholt, A.J. The role of cyclodextrins in the acceleration of the reaction rate in a biphasic hydroformylations. Chem. Eng. J. 2024, 497, 154114. [Google Scholar] [CrossRef]
- Siangwata, S.; Goosen, N.J.; Smith, G.S. Aqueous olefin hydroformylation using water-soluble mono- and trinuclear N,O-chelate rhodium(I)-aryl ether precatalysts. Appl. Catal. Gen. 2020, 603, 117736. [Google Scholar] [CrossRef]
- Lobry, E.; Cardozo, A.F.; Barthe, L.; Blanco, J.-F.; Delmas, H.; Chen, S.; Gayet, F.; Zhang, X.; Lansalot, M.; D’Agosto, F.; et al. Core phosphine-functionalized amphiphilic nanogels as catalytic nanoreactors for aqueous biphasic hydroformylation. J. Catal. 2016, 342, 164–172. [Google Scholar] [CrossRef]
- Chen, S.; Cardozo, A.F.; Julcour, C.; Blanco, J.-F.; Barthe, L.; Gayet, F.; Lansalot, M.; D’Agosto, F.; Delmas, H.; Manoury, E.; et al. Amphiphilic core-cross-linked micelles functionalized with bis(4-methoxyphenyl)phenylphosphine as catalytic nanoreactors for biphasic hydroformylation. Polymer 2015, 72, 327–335. [Google Scholar] [CrossRef]
- Ramarou, D.S.; Makhubela, B.C.E.; Smith, G.S. Synthesis of Rh(I) alkylated-PTA complexes as catalyst precursors in the aqueous-biphasic hydroformylation of 1-octene. J. Organomet. Chem. 2018, 870, 23–31. [Google Scholar] [CrossRef]
- Warmeling, H.; Hafki, D.; Von Söhnen, T.; Vorholt, A.J. Kinetic investigation of lean aqueous hydroformylation—An engineer’s view on homogeneous catalysis. Chem. Eng. J. 2017, 326, 298–307. [Google Scholar] [CrossRef]
- Obrecht, L.; Kamer, P.C.J.; Laan, W. Alternative approaches for the aqueous–organic biphasic hydroformylation of higher alkenes. Catal. Sci. Technol. 2013, 3, 541–551. [Google Scholar] [CrossRef]
- Warmeling, H.; Schneider, A.-C.; Vorholt, A.J. Considerations on film reactivity in the aqueous biphasic hydroformylation. AIChE J. 2018, 64, 161–171. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, J.; Wang, Y.; Jiang, J.; Jin, Z. Aqueous/organic biphasic hydroformylation of 1-octene catalyzed by Co2(CO)8 /Ph2P(CH2CH2O)nMe. Appl. Organom. Chemis 2012, 26, 718–721. [Google Scholar] [CrossRef]
- Kunna, K.; Müller, C.; Loos, J.; Vogt, D. Aqueous-Phase Hydroformylation of 1-Octene: Styrene Latices as Phase-Transfer Agents. Angew. Chem. Int. Ed. 2006, 45, 7289–7292. [Google Scholar] [CrossRef]
- Joumaa, A.; Gayet, F.; Garcia-Suarez, E.J.; Himmelstrup, J.; Riisager, A.; Poli, R.; Manoury, E. Synthesis of Nixantphos Core-Functionalized Amphiphilic Nanoreactors and Application to Rhodium-Catalyzed Aqueous Biphasic 1-Octene Hydroformylation. Polymers 2020, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Warmeling, H.; Janz, D.; Peters, M.; Vorholt, A.J. Acceleration of lean aqueous hydroformylation in an innovative jet loop reactor concept. Chem. Eng. J. 2017, 330, 585–595. [Google Scholar] [CrossRef]
- Bischoff, S.; Kant, M. Efficient Catalysts for the Two-Phase Hydroformylation of Long-Chain α-Olefins. Ind. Eng. Chem. Res. 2000, 39, 4908–4913. [Google Scholar] [CrossRef]
- Wei, J.-Z.; Lang, J.-W.; Fu, H.-Y.; Li, R.-X.; Zheng, X.-L.; Yuan, M.-L.; Chen, H. Aqueous biphasic hydroformylation of higher alkenes and highly efficient catalyst recycling in the presence of a polar low boiling solvent. Transit. Met. Chem. 2016, 41, 599–603. [Google Scholar] [CrossRef]
- Miyagawa, C.C.; Kupka, J.; Schumpe, A. Rhodium-catalyzed hydroformylation of 1-octene in micro-emulsions and micellar media. J. Mol. Catal. Chem. 2005, 234, 9–17. [Google Scholar] [CrossRef]
- Nowothnick, H.; Rost, A.; Hamerla, T.; Schomäcker, R.; Müller, C.; Vogt, D. Comparison of phase transfer agents in the aqueous biphasic hydroformylation of higher alkenes. Catal. Sci. Technol. 2013, 3, 600–605. [Google Scholar] [CrossRef]
- Hapiot, F.; Bricout, H.; Tilloy, S.; Monflier, E. Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors. In Hydroformylation for Organic Synthesis; Taddei, M., Mann, A., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 342, pp. 49–78. ISBN 978-3-642-45058-7. [Google Scholar]
- Leblond, J.; Potier, J.; Menuel, S.; Bricout, H.; Machut-Binkowski, C.; Landy, D.; Tilloy, S.; Monflier, E.; Hapiot, F. Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catal. Sci. Technol. 2017, 7, 3823–3830. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, J.; Wang, Y.; Cheng, F.; Jin, Z. Thermoregulated phase transfer ligands and catalysis XVIII: Synthesis of N,N-dipolyoxyethylene-substituted-2-(diphenylphosphino)phenylamine (PEO–DPPPA) and the catalytic activity of its rhodium complex in the aqueous–organic biphasic hydroformylation of 1-decene. J. Mol. Catal. Chem. 2003, 198, 23–27. [Google Scholar] [CrossRef]
- Elard, M.; Denis, J.; Ferreira, M.; Bricout, H.; Landy, D.; Tilloy, S.; Monflier, E. Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species? Catal. Today 2015, 247, 47–54. [Google Scholar] [CrossRef]
- Pagar, N.S.; Deshpande, R.M. Kinetics of 1-decene hydroformylation in an aqueous biphasic medium using a water-soluble Rh-sulfoxantphos catalyst in the presence of a cosolvent. Int. J. Chem. Kinet. 2021, 53, 333–344. [Google Scholar] [CrossRef]
- Sieffert, N.; Wipff, G. Importance of Interfacial Adsorption in the Biphasic Hydroformylation of Higher Olefins Promoted by Cyclodextrins: A Molecular Dynamics Study at the Decene/Water Interface. Chem. A Eur. J. 2007, 13, 1978–1990. [Google Scholar] [CrossRef] [PubMed]
- Künnemann, K.U.; Schurm, L.; Lange, D.; Seidensticker, T.; Tilloy, S.; Monflier, E.; Vogt, D.; Dreimann, J.M. Continuous hydroformylation of 1-decene in an aqueous biphasic system enabled by methylated cyclodextrins. Green. Chem. 2020, 22, 3809–3819. [Google Scholar] [CrossRef]
- Legrand, F.-X.; Sauthier, M.; Flahaut, C.; Hachani, J.; Elfakir, C.; Fourmentin, S.; Tilloy, S.; Monflier, E. Aqueous hydroformylation reaction mediated by randomly methylated β-cyclodextrin: How substitution degree influences catalytic activity and selectivity. J. Mol. Catal. Chem. 2009, 303, 72–77. [Google Scholar] [CrossRef]
- Benatmane, M.; Cousin, K.; Laggoune, N.; Menuel, S.; Monflier, E.; Woisel, P.; Hapiot, F.; Potier, J. Pillar5arenes as Supramolecular Hosts in Aqueous Biphasic Rhodium-Catalyzed Hydroformylation of Long Alkyl-chain Alkenes. ChemCatChem 2018, 10, 5306–5313. [Google Scholar] [CrossRef]
- Ji, Z.J.; Jiang, J.Y.; Wang, Y.H. A novel thermoregulated phosphine ligand used for the Rh-catalyzed hydroformylation of mixed C11–12 olefins in aqueous/organic biphasic system. Chin. Chem. Lett. 2010, 21, 515–518. [Google Scholar] [CrossRef]
- Fu, H.; Li, M.; Chen, J.; Zhang, R.; Jiang, W.; Yuan, M.; Chen, H.; Li, X. Application of a new amphiphilic phosphine in the aqueous biphasic catalytic hydroformylation of long chain olefins. J. Mol. Catal. Chem. 2008, 292, 21–27. [Google Scholar] [CrossRef]
- Fu, H.; Li, M.; Chen, H.; Li, X. Higher olefin hydroformylation in organic/aqueous biphasic system accelerated by double long-chain cationic surfactants. J. Mol. Catal. Chem. 2006, 259, 156–160. [Google Scholar] [CrossRef]
- Cocq, A.; Bricout, H.; Djedaïni-Pilard, F.; Tilloy, S.; Monflier, E. Rhodium-Catalyzed Aqueous Biphasic Olefin Hydroformylation Promoted by Amphiphilic Cyclodextrins. Catalysts 2020, 10, 56. [Google Scholar] [CrossRef]
- Fu, H.; Li, M.; Mao, H.; Lin, Q.; Yuan, M.; Li, X.; Chen, H. Aqueous biphasic catalytic hydroformylation of higher olefins: Promotion effect of cationic gemini and trimeric surfactants. Catal. Commun. 2008, 9, 1539–1544. [Google Scholar] [CrossRef]
- Six, N.; Guerriero, A.; Landy, D.; Peruzzini, M.; Gonsalvi, L.; Hapiot, F.; Monflier, E. Supramolecularly controlled surface activity of an amphiphilic ligand. Application to aqueous biphasic hydroformylation of higher olefins. Catal. Sci. Technol. 2011, 1, 1347. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; He, Y.; Li, Y.; Li, M.; Li, X. Long chain olefin hydroformylation in biphasic catalytic system—How the reaction is accelerated. Appl. Catal. Gen. 2003, 242, 85–88. [Google Scholar] [CrossRef]
- Wang, X.; Fu, H.Y.; Li, X.; Chen, H. Hydroformylation of high olefin in biphasic catalytic system: Effect of electronic and steric factor of phosphine ligands. Catal. Commun. 2004, 5, 739–741. [Google Scholar] [CrossRef]
- Li, M.; Fu, H.; Yang, M.; Zheng, H.; He, Y.; Chen, H.; Li, X. Micellar effect of cationic gemini surfactants on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene. J. Mol. Catal. Chem. 2005, 235, 130–136. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Chen, H.; He, Y.; Li, X. Studies on 1-dodecene hydroformylation in biphasic catalytic system containing mixed micelle. J. Mol. Catal. Chem. 2003, 194, 13–17. [Google Scholar] [CrossRef]
- Yang, C.; Bi, X.; Mao, Z.-S. Effect of reaction engineering factors on biphasic hydroformylation of 1-dodecene catalyzed by water-soluble rhodium complex. J. Mol. Catal. Chem. 2002, 187, 35–46. [Google Scholar] [CrossRef]
- Parmar, D. Hydroformylation of 1-hexene catalyzed by water soluble CoCl2(TPPTS)2 in biphasic medium. J. Mol. Catal. Chem. 2004, 211, 83–87. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Bajaj, H.C.; Bricout, H.; Monflier, E. Biphasic hydroformylation of 1-octene catalyzed by cobalt complex of trisulfonated tris(biphenyl)phosphine. Appl. Catal. Gen. 2012, 413, 273–279. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Parmar, D.U.; Bajaj, H.C.; Jasra, R.V. CoCl2(TPPTS)2 catalyzed hydroformylation of 1-octene and 1-decene in the presence of surfactant and co-solvents in a biphasic medium. J. Mol. Catal. Chem. 2008, 282, 99–106. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Parmar, J.N.; Jasra, R.V.; Bajaj, H.C.; Monflier, E. Cobalt catalyzed hydroformylation of higher olefins in the presence of chemically modified cyclodextrins. Catal. Commun. 2009, 10, 1808–1812. [Google Scholar] [CrossRef]
- Ferreira, M.; Bricout, H.; Roth, T.F.H.; Seidensticker, T.; Tilloy, S.; Monflier, E. Aqueous biphasic hydroformylation and hydroaminomethylation assisted by cyclodextrins: From benchtop to industrial perspective. Catal. Today 2024, 442, 114951. [Google Scholar] [CrossRef]
- Künnemann, K.U.; Weber, D.; Becquet, C.; Tilloy, S.; Monflier, E.; Seidensticker, T.; Vogt, D. Aqueous Biphasic Hydroaminomethylation Enabled by Methylated Cyclodextrins: Sensitivity Analysis for Transfer into a Continuous Process. ACS Sustain. Chem. Eng. 2021, 9, 273–283. [Google Scholar] [CrossRef]
- Suárez, T.; Fontal, B.; Zambrano, G.; Reyes, M.; Bellandi, F.; Contreras, R.R.; Diaz, J.C.; Cancines, P.; Fonseca, Y.; Romero, I. Hydroformylation reactions of the trans-Mo(CO)4(p-C5NH4SO3NA)2 complex in biphasic medium. React. Kinet. Catal. Lett. 2008, 94, 27–34. [Google Scholar] [CrossRef]
- Gao, S.; Xi, Z. Reaction-Controlled Phase-Transfer Catalysis for Epoxidation of Olefins. In Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis; Elsevier: Amsterdam, The Netherlands, 2008; pp. 429–447. ISBN 978-0-444-53188-9. [Google Scholar]
- Gao, J.; Chen, Y.; Han, B.; Feng, Z.; Li, C.; Zhou, N.; Gao, S.; Xi, Z. A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene. J. Mol. Catal. Chem. 2004, 210, 197–204. [Google Scholar] [CrossRef]
- Campestrini, S.; Tonellato, U. Highly efficient cascade-oxygen-transfer from H2O2 to olefins mediated by halogenated carbonyl compounds and metalloporphyrins. J. Mol. Catal. Chem. 2001, 171, 37–42. [Google Scholar] [CrossRef]
- Schmidt, F.; Cokoja, M. Supramolecular concepts for the biphasic epoxidation of olefins using aqueous hydrogen peroxide. Green. Chem. 2021, 23, 708–722. [Google Scholar] [CrossRef]
- Mahamat Ahmat, Y.; Kaliaguine, S. Epoxidation of limonene and pinenes by dimethyldioxirane in microemulsions. Catal. Today 2023, 407, 146–155. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Xu, Y.; Li, W.; Niu, M.; Jiang, J.; Jin, Z. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydroaminomethylation of olefins. Catal. Commun. 2013, 34, 73–77. [Google Scholar] [CrossRef]
- Behr, A.; Becker, M.; Reyer, S. A highly efficient method for the hydroaminomethylation of long-chain alkenes under aqueous, biphasic conditions. Tetrahedron Lett. 2010, 51, 2438–2441. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Luo, M.M.; Li, Y.Z.; Chen, H.; Li, X.J. The catalytic hydroaminomethylation of long chain alkenes with dimethylamine in aqueous–organic two-phase system. Appl. Catal. Gen. 2004, 272, 151–155. [Google Scholar] [CrossRef]
- Faßbach, T.A.; Sommer, F.O.; Vorholt, A.J. Hydroaminomethylation in Aqueous Solvent Systems—An Efficient Pathway to Highly Functionalized Amines. Adv. Synth. Catal. 2018, 360, 1473–1482. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Luo, M.; Chen, H.; Li, X. Hydroaminomethylation of high alkenes with dual-metal catalysts in aqueous/organic biphasic system. Arkivoc 2008, 2008, 165–174. [Google Scholar] [CrossRef]
- Albarella, L.; Musumeci, D.; Sica, D. Reactions of 1,5-Dienes with Ruthenium Tetraoxide: Stereoselective Synthesis of Tetrahydrofurandiols. Eur. J. Org. Chem. 2001, 2001, 997–1003. [Google Scholar] [CrossRef]
- Akiri, S.O.; Ojwach, S.O. Structural studies and applications of water soluble (phenoxy)imine palladium(II) complexes as catalysts in biphasic methoxycarbonylation of 1-hexene. J. Organomet. Chem. 2021, 942, 121812. [Google Scholar] [CrossRef]
- Bauers, F.M.; Chowdhry, M.M.; Mecking, S. Catalytic Polymerization of Ethylene in Aqueous Emulsion with a Simple in Situ Catalyst. Macromolecules 2003, 36, 6711–6715. [Google Scholar] [CrossRef]
- Kuntz, E.G.; Godard, G.; Basset, J.M.; Vittori, O.M. Nickel(0)-TPPTS-Cyanide Complex in Water. An Efficient and Flexible Catalyst for the Isomerisation of Olefinic Compounds at Room Temperature. Oil Gas. Sci. Technol.—Rev. IFP 2007, 62, 781–785. [Google Scholar] [CrossRef]
Substrate | Products | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|---|
C12–C20 olefins | 2-methyl ketones | PdCl2 | Oxidant: tert-butyl-hydroperoxide Temperature: 80 °C Time: 2–7 h Stirring: 300 rpm | n-paraffins | 90–95% (Conversion) | [9] |
Terminal C6 Olefins | 2-alkanones | PhenS*Pd(OAc)2 | Oxidant: O2, Temperature: 100 °C Pressure: 30 bar | NaOAc, NaOH | >99% (Selectivity), 99% (Yield) | [10] |
C8 olefins | cyclooctene oxide and styrene oxidants | Mn(salen)-Chit | Oxidants: m-CPBA, t-BuOOH, H2O2 Temperature: 25 °C Time: 24 h | - | 3–39% (Yield), 12–160 h−1 (TOF) | [11] |
Substrate | Products | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|---|
C4–C8 olefins | C4–C8 alkanes, and alcohols derived from hydroformylated olefins | HRh(CO)(TPPMS)3, Rh(μ-Pz)(CO)(TPPMS)]2, RuCl2(TPPTS)3, RhH(CO)(TPPTS)3 | Temperature: 70–150 °C Time: 1–24 h Pressure: 9.8–98.7 atm H2 | ZnCl2, NaCl | 18.81–100% (Conversion), 91–100% (Selectivity), 78–95% (Yield). | [12,13,14,15] |
C5–C10 olefins | C5–C10 alkanes, alcohols derived from hydroformylated olefins and ethylbenzene derived from styrene | Raney Ni, [Rh(COD)Cl]2, palladium nanoparticles (immobilized within the walls of hollow polymeric microspheres), RuCl2(TPPMS)3(DMSO), PVP stabilized Rh nanoparticles | Temperature: 25–120 °C Time: 1–22 h Pressure: 0.99–34 atm H2 Stirring: 1600–2000 rpm | Catalytic nanoreactors (TPP@CCM1 or TPP@CCM2), electrolytes | 34–100% (Conversion), 86–95% (Selectivity), 90–99% (Yield) | [24,25,26,27,28] |
C6–C12 olefins | C6–C12 alcohols derived from hydroformylated olefins | Co/Ph2P(CH2CH2O)nCH3, Co/nBuPhP(CH2CH2O)nCH3, Ru/PTA, Pt/PTA, Rh nanoparticles/Ph2P(CH2CH2O)22CH3, [η6-(2-phenoxyethanol)RuCl(NH)]Cl, [η6-(2-phenoxyethanol)RuCl(S)]Cl, [η6-(2-phenoxyethanol)RuCl(O)]Cl, Ru(CO)3(TPPMS)2 (I), RuH2(CO)(TPPMS)3 (II) | Temperature: 20–100 °C Time: 1–8 h Pressure: 1–27.6 atm H2 Stirring: 500–630 rpm | - | 41–100% (Conversion), 92–100% (Selectivity) | [16,17,18,19,29] |
C7–C18 olefins | C7–C18 alkenes | Rh nanoparticles/Ph2P(CH2CH2O)16CH3 (thermoregulated) | Temperature: 60 °C Time: 1–2 h Pressure: 9.8 atm H2 | - | 87–100% (Conversion), 500–2000 h−1 (TOF) | [20] |
Alfa-pinene | Cis and trans pinane | Rh nanoparticles/PVA, Ru nanoparticles stabilized by ammonium surfacants | Temperature: 25–70 °C Time: 1–3 h Pressure: 9.8–19.7 atm H2 | - | 96–99.9% (Conversion), 98.9–99% (Selectivity) | [21,22] |
Polybutadiene | Hydrogenated polybutadiene | Rh/TPPTS | Temperature: 100 °C Time: 20–30 min Pressure: 19.7 atm H2 pH: 7 | Cationic DTAC and Brij-35 | 255–1245 h−1 (TOF) | [23] |
Substrate | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|
C2–C4 olefins | Rh/TPPTS, HRh(CO)(TPPTS)3 | Temperature: 65–130 °C Pressure: 14.8–49.3 atm syngas pH: 5–6 | - | 92.5–99% (Selectivity) | [30,31] |
C3–C7 olefins | RhH(CO)(TPPTS)3, [Rh(m-Pz)(CO)(TPPTS)]2, trans-Mo(CO)4(p-PySO3Na)2, RhCl(CO)(TPPMS)2, RhCl(CO)(TPPDS)2, RhCl(CO)(TPPTS)2, [HRu(CO)(CH3CN)(TPPTS)3]BF4 | Temperature: 50–150 °C Time: 3–72 h Pressure: 13.8–98.7 atm syngas Stirring: 760–1200 rpm | - | 40–100% (Conversion), 8–50% (Selectivity), 3–95% (Yield) | [32,33,34,35,95] |
C5–C12 | RhH(CO)(TPPTS)3, rhodium polyethylene glycolate, (RhH(CO)(TPPTS)3, Rh/PETPP, RhH(CO)(TPPTS)3 | Temperature: 40–130 °C Time: 0.66–200 h Pressure: 39.5–118.4 atm syngas Stirring: 600–760 rpm | Monoethanolamine (MEA) | 17–99% (Conversion), 98% (Selectivity), 72–95.5% (Yield) | [36,37,38,39,40] |
C6 olefins | CoCl2(TPPTS)2, RhH(CO)(TPPTS)3, RhH(CO)(TPPTS)3, H2Ru(CO)(TPPMS)3, [Rh(CO)(μ-Pz)(TPPTS)]2 | Temperature: 69.8–100 °C Time: 3–26 h Pressure: 17.2–88.8 atm syngas Stirring: 600–760 rpm | - | 87–100% (Conversion), 68% (Selectivity), 90% (Yield) | [41,42,43,89] |
C6–C12 olefins | Ph2P(CH2CH2O)16CH3, HRh(CO)(TPPTS)3, RhCl(CO)(TPPTS)2 modified with TPPDS, Rh(acac)(CO)2 with TPPTS/TPPDS/CDPPDS, TPPTS-Rh/SiO2, [Rh(acac)(CO)2] and TPPTS, Rh(acac)(CO)2 and water-soluble phosphine ligands, [RhH(CO)(TPPTS)3], [Rh(μ-Pz)(CO)(m-TPPTS)]2 | Temperature: 70–120 °C Time: 0.5–200 h Pressure: 9.9–69.1 atm syngas Stirring: 760–1200 rpm | CTAB, [OctMim]Br | 24.3–99.5% (Conversion), 57.9–95.7% (Selectivity), 93–97% (Yield), 8.95–11.88 (TON), 10–1614 h−1 (TOF) | [3,6,44,45,46,47,48,49] |
C8 olefins | [Rh(sulphsal-X-R)(COD)], CoCl2(BiphTS)2, [RhCl(COD)]2, Rh(acac)(CO)2/TPPTS, mononuclear Rh(I)-salicylaldimine complex (9), trinuclear Rh(I)-salicylaldimine complex (10), rhodium complex ([Rh(acac)(CO)2]) embedded in phosphine-functionalized amphiphilic nanogels (TPP@NG), [Rh(acac)(CO)2] coordinated to BMOPPP ligands within the hydrophobic core of CCM, BMOPPP-functionalized micelles synthesized via RAFT polymerization, rhodium(I)-based mono-, di-, and trinuclear PTA complexes, CO-modified analogs, [Rh(cod)Cl]2/TPPTS, Rh/TPPTS, [Rh(cod)Cl]2/TPPTS, Ph2P(CH2CH2O)ₙMe, [Rh(acac)(CO)2]/TPPTS, Rh-nixantphos@CCM, [Rh(cod)Cl]2/TPPTS | Temperature: 75–180 °C Time: 3–20 h Pressure: 19.7–88.8 atm syngas Stirring: 300–2750 rpm pH: 5.5 | CTAB, RAME-β-CD, AC-WV, cyclodextrins, nonionic latex, anionic latex (sodium 4-vinylbenzylsulfonate), cationic latex (4-vinylbenzyltrimethylammonium tetrafluoroborate) | 98–99% (Conversion), 49–99% (Selectivity), 8–98.5% (Yield), 365 (TON), 4.6–742 h−1 (TOF) | [50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,90] |
C8–C14 olefins | CoCl2(TPPTS)2, Rh/Ph2P-(CH2)10-PO3Na2, Rh/Ph2P-(CH2)12-PO3Na2), Rh/TPPTS, HRh(CO)(TPPTS)3, [Rh(acac)(CO)2] combined with SulfoXantPhos, CoCl2(TPPTS)2, Rh(acac)(CO)2/TPPTS | Temperature: 80–140 °C Time: 2–10 h Pressure: 19.7–78.9 atm syngas Stirring: 600–100 rpm | CTAB, Lutensol® ON 70 (C10E7, non-ionic amphiphile), nonionic surfacants (Marlophen NP 9), Polymer latices, RAME-β-CD | 75–98% (Conversion), 40–98% (Selectivity), 71.6–88% (Yield), 65–5046 h−1 (TOF) | [65,66,67,68,69,91,92] |
C10 olefins | Rh/β-cyclodextrin-based phosphane ligand, PEO–DPPPA/Rh, Rh(acac)(CO)2/M1NPS, Rh(acac)(CO)2/D2NPS, Rh(CO)2(acac)/2,7-bis(SO3Na)-xantphos, [RhH(CO)(TPPTS)2]6−, Rh/TPPTS, Rh/sulfoxantphos, [Rh(acac)(CO)2]/TPPTS | Temperature: 76.8–130 °C Time: 3–240 h Pressure: 40.8–50 atm syngas Stirring: 500–1500 rpm | RAME-β-CD, 2,6-dimethyl-β-CD | 99.5–100% (Conversion), 93–97% (Selectivity), 39–99% (Yield) | [70,71,72,73,74,75,76] |
C10–C18 olefins | Rh(CO)2(acac)/TPPTS, Rh/Ph2P(CH2CH2O)22CH3, RhCl(CO)(TPPTS)2, Rh(acac)(CO)2/TPPTS, RhCl(CO)(TPPTS)2, Rh(acac)(CO)2/1-(4-tert-butylbenzyl)-1-azonia-3,5-diaza-7-phosphaadamantyl bromide | Temperature: 80–120 °C Time: 1–6 h Pressure: 19.7–49.3 atm syngas Stirring: 400–1500 rpm | PEG-substituded pillar[5]arene, DLCS, OS-CDs, β-CD-(OSG–Me)1, cationic gemini and trimeric surfactants, RAME-β-CD, native β-CD | 72–100% (Conversion), 51–95% (Selectivity), 94% (Yield), 157–1111 h−1 (TOF) | [77,78,79,80,81,82,83] |
C12 olefins | RhCl(CO)(TPPTS)2, RhCl(CO)(2-MOTPPTS)2, RhCl(CO)(4-MOTPPTS)2, [Rh(acac)(CO)2], Rh/TPPTS, RhCl(CO)(TPPTS)2 | Temperature: 80–130 °C Time: 2–6 h Pressure: 9.9–49.3 atm syngas Stirring: 0–1000 rpm | CTAB, cyclodextrins, RAME-β-CD, Gemini surfactants (cationic) with varying spacers, CPB, SDS, DBS, Triton X-100, Brij 35, 1-pentanol, 1-heptanol | 8–94% (Conversion), 81.8–90% (Selectivity), 94% (Yield), 883–1200 h−1 (TOF) | [1,84,85,86,87,88] |
Substrate | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|
C3–C6 olefins | [p-C5H5NC16H33]3[PW4O16], [C5H5N(CH2)15CH3]3[PW4O16], Mn(TDCPP)Cl and Iron porphyrins | Oxidant: H2O2 Temperature: 25–65 °C Time: 1–4 h | Hexafluoroacetone hydrate (HFAH) | 90–99% (Conversion), 99.5% (Selectivity) | [96,97,98] |
C6–C8 olefins | Polyoxometalate (POM) derivatives | Oxidant: H2O2 Temperature: 70 °C Time: 4 h | - | 95% (Conversion), 87–95% (Selectivity) | [99] |
Terpenes (Limonene + alfa-pinene) | Dimethyldioxirane (DMDO) generated in situ from oxone (potassium peroxymonosulfate) and acetone | Oxidant: Oxone Temperature: 25 °C Time: 45–90 min | - | 100% (Conversion), 99–100% (Yield) | [100] |
Substrate | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|
C6–C12 olefins | Rh nanoparticles/Ph2P(CH2CH2O)16CH3, [Rh(cod)Cl]2 combined with Na-TPPTS, RhCl(CO)(TPPTS)2, [Rh(cod)Cl]2/Sulfoxantphos, RhCl(CO)(TPPTS)2 | Temperature: 100–130 °C Time: 4–6 h Pressure: 29.6–59.2 atm syngas or CO2 or CO:H2 | Morpholine salts, CTAB | 80.1–99% (Conversion), 51.4–98% (Selectivity) | [101,102,103,104,105] |
C10–C16 olefins | Rh/TPPTS, Rh/Sulfoxantphos, Rh(acac)(CO)2, combined with the ligand SulfoXantphos | Temperature: 80–125 °C Time: 30 h Pressure: 29.6–49.3 atm syngas | RAME-β-CD | 80% (Selectivity) | [93,94] |
Substrate | Reaction | Products | Catalyst | Conditions | Additives | Catalytic Activity | References |
---|---|---|---|---|---|---|---|
1,5-dienes | Cyclization | cis-Tetrahydrofuran derivatives | RuO2·2H2O | Oxidant: NaIO4 Temperature: 25 °C Time: Few min | - | 37–50% (Selectivity) | [106] |
1-hexene | Methoxycarbonylation | Esters | Water-soluble palladium(II) complexes with phenoxyimine ligands | Temperature: 90 °C Time: 20 h Pressure: 59.2 atm CO | - | 92% (Conversion), 92% (Yield) | [107] |
Ethylene | Polymerization | Linear semicrystalline polyethylene | P∧O-chelated nickel(II) complex | Temperature: 50–70 °C Pressure: 39.5 atm | - | - | [108] |
C4 olefins | Isomerization | Butenes | Nickel(0)–TPPTS–cyanide complex | Temperature: 0–20 °C Time: 15 min to 1 h pH: 9.5 | NaBH4 | 3600 h−1 (TOF) | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chira, A.; Kokkinos, N.C. Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 4028. https://doi.org/10.3390/ijms26094028
Chira A, Kokkinos NC. Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(9):4028. https://doi.org/10.3390/ijms26094028
Chicago/Turabian StyleChira, Angeliki, and Nikolaos C. Kokkinos. 2025. "Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review" International Journal of Molecular Sciences 26, no. 9: 4028. https://doi.org/10.3390/ijms26094028
APA StyleChira, A., & Kokkinos, N. C. (2025). Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review. International Journal of Molecular Sciences, 26(9), 4028. https://doi.org/10.3390/ijms26094028