Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects
Abstract
:1. Introduction
2. Pathogenesis of Epilepsy
2.1. Core Pathogenic Mechanisms in Epilepsy
- Abnormal Neuronal Discharges and Synchronization
- Bidirectional Regulation of Excitation–Inhibition Balance
- Molecular Basis of Channelopathies
2.2. Multifactorial Interaction Network in Epileptogenesis
- Epigenetic Modulation of Genetic Susceptibility
- Cascade Amplification of Neuroinflammation
- Vicious Cycle of Oxidative Stress and Metabolic Dysfunction
- Mechanistic Synergy
3. Classification of Common Antiepileptic Drugs (AEDs)
3.1. Historical Development Stages of AEDs
3.2. Classification of Common Antiepileptic Drugs
- 1.
- 2.
- 3.
- Reduction of glutamate-mediated excitatory neurotransmission: This targets α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA). Perampanel (AMPA receptor antagonist) is used for epilepsy but can cause dizziness, irritability, and psychiatric side effects [31,32]. Ketamine (NMDA receptor antagonist) is used for anesthesia and treatment-resistant depression, but has risks of abuse, dissociative effects, and cognitive concerns [33,34].
- 4.
- 5.
- 6.
- Multi-Target and Precision Therapies.Gene therapy: adeno-associated virus (AAV) vectors deliver the SCN1A gene in Dravet syndrome [42]. Metabolic–immune modulators: metformin improves mitochondrial function and suppresses NLRP3 inflammasome activation [43]. Transient receptor potential vanilloid 1 (TRPV1) modulators: cannabidiol (CBD) can enhance inhibitory microcircuits and acts via dual targeting of TRPV1/GPR55 [44].
- 7.
- Other mechanisms: these include inhibition of the Na+-K+-2Cl− cotransporter 1 (NKCC1) transporter, modulation of neuronal growth and plasticity, and lysosomal enzyme replacement therapy (e.g., cerliponase alfa, which treats neuronal ceroid lipofuscinosis type 2 (CLN2) related epilepsy by supplementing deficient lysosomal enzymes) [45,46,47].
4. Combination Therapy Strategies
4.1. Basic Principles of Combination Therapy for Epilepsy
4.1.1. Clinical Evidence
4.1.2. Advantages
4.1.3. Considerations
4.2. Strategies for Antiepileptic Drug Combinations in Different Epilepsy Types
4.2.1. Generalized Epilepsy
4.2.2. Focal Epilepsy
4.2.3. Refractory Epilepsy
4.3. Potential Risks of Combination Therapy
4.4. Future Research Directions and Development Trends
4.4.1. Personalized Treatment Plans Based on Molecular Mechanisms
4.4.2. Reducing Risks in Combination Therapy Through Dosage Form Optimization
4.4.3. New Combination Strategies and Novel Targets
4.4.4. Development of Dual- and Multi-Target Drugs
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J., Jr. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Nichols, M.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Brigo, F.; Lattanzi, S.; Blumcke, I. Adult epilepsy. Lancet 2023, 402, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Brodie, M.J.; Sills, G.J. Combining antiepileptic drugs—Rational polytherapy? Seizure 2011, 20, 369–375. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Xu, C.; Chen, Z.; Wang, Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol. Dis. 2023, 179, 106049. [Google Scholar] [CrossRef]
- Bertram, E.H. Neuronal circuits in epilepsy: Do they matter? Exp. Neurol. 2013, 244, 67–74. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef]
- Yuen, A.W.C.; Keezer, M.R.; Sander, J.W. Epilepsy is a neurological and a systemic disorder. Epilepsy Behav. E&B 2018, 78, 57–61. [Google Scholar]
- Hu, T.; Zhang, J.; Wang, J.; Sha, L.; Xia, Y.; Ortyl, T.C.; Tian, X.; Chen, L. Advances in Epilepsy: Mechanisms, Clinical Trials, and Drug Therapies. J. Med. Chem. 2023, 66, 4434–4467. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Lin, Z.; Wen, S.; Jiang, Y. Potassium channels and epilepsy. Acta Neurol. Scand. 2022, 146, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Sumadewi, K.T.; Harkitasari, S.; Tjandra, D.C. Biomolecular mechanisms of epileptic seizures and epilepsy: A review. Acta Epileptol. 2023, 5, 1–22. [Google Scholar] [CrossRef]
- Rho, J.M.; White, H.S. Brief history of anti-seizure drug development. Epilepsia Open 2018, 3, 114–119. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, W.; Wang, X.; Geng, K.; Wang, W.; Li, Y.; Chen, Y.; Xie, H. Physiologically based pharmacokinetic models for predicting lamotrigine exposure and dose optimization in pediatric patients receiving combination therapy with carbamazepine or valproic acid. Pharmacotherapy 2024, 44, 291–299. [Google Scholar] [CrossRef]
- Hagemann, A.; Klimpel, D.; Schmitter, E.; Bien, C.G.; Dufaux, B.; May, T.W.; Brandt, C. Validation of Conversion Factors for Therapeutic Drug Monitoring of Lacosamide, Lamotrigine, and Levetiracetam in Dried Capillary Blood. Ther. Drug Monit. 2022, 3, 34–45. [Google Scholar] [CrossRef]
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: Impact and future perspectives. Lancet Neurol. 2020, 19, 544–556. [Google Scholar] [CrossRef]
- Kobow, K.; Blümcke, I. Epigenetics in epilepsy. Neurosci. Lett. 2018, 667, 40–46. [Google Scholar] [CrossRef]
- Main, M.J.; Cryan, J.E.; Dupere, J.R.; Cox, B.; Clare, J.J.; Burbidge, S.A. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol. Pharmacol. 2000, 58, 253–262. [Google Scholar] [CrossRef]
- Courtney, K.R.; Etter, E.F. Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur. J. Pharmacol. 1983, 88, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Ravizza, T.; Bedner, P.; Aronica, E.; Steinhäuser, C.; Boison, D. Astrocytes in the initiation and progression of epilepsy. Nat. Rev. Neurol. 2022, 18, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Sills, G.J.; Brodie, M.J. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol. Ther. 2001, 90, 21–34. [Google Scholar] [CrossRef]
- Subbarao, B.S.; Silverman, A.; Eapen, B.C. Seizure Medications. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Song, Y.; Gao, M.; Wei, B.; Huang, X.; Yang, Z.; Zou, J.; Guo, Y. Mitochondrial ferritin alleviates ferroptosis in a kainic acid-induced mouse epilepsy model by regulating iron homeostasis: Involvement of nuclear factor erythroid 2-related factor 2. CNS Neurosci. Ther. 2024, 30, e14663. [Google Scholar] [CrossRef] [PubMed]
- Czapiński, P.; Blaszczyk, B.; Czuczwar, S.J. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 2005, 5, 3–14. [Google Scholar] [CrossRef]
- Angehagen, M.; Ben-Menachem, E.; Rönnbäck, L.; Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res. 2003, 28, 333–340. [Google Scholar] [CrossRef]
- Ragsdale, D.S.; Avoli, M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res. Rev. 1998, 26, 16–28. [Google Scholar] [CrossRef]
- Stefani, A.; Spadoni, F.; Bernardi, G. Voltage-activated calcium channels: Targets of antiepileptic drug therapy? Epilepsia 1997, 38, 959–965. [Google Scholar] [CrossRef]
- Wallace, S.J. Newer antiepileptic drugs: Advantages and disadvantages. Brain Dev. 2001, 23, 277–283. [Google Scholar] [CrossRef]
- Paul, G.Y.; Yeh, P.G.; Spruyt, K.; DelRosso, L.M.; Walters, A.S. A Narrative Review of the Lesser Known Medications for Treatment of Restless Legs Syndrome and Pathogenetic Implications for Their Use. Tremor Other Hyperkinetic Mov. 2023, 13, 191–194. [Google Scholar]
- Cheli, M.; Dinoto, A.; Biaduzzini, F.; Tomaselli, M.; Mazzon, G.; Roman-Pognuz, E.; Manganotti, P. Super refractory post-traumatic status epilepticus treated with combining perampanel and ketamine. J. Neurol. Sci. 2021, 429, 341–353. [Google Scholar] [CrossRef]
- Manganotti, P.; Cheli, M.; Dinoto, A.; Biaduzzini, F.; Tomaselli, M.; Mazzon, G.; Meletti, S. Combining perampanel and ketamine in super refractory post-traumatic status epilepticus: A case report. Seizure: Eur. J. Epilepsy 2021, 89, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, F.; Assiri, M.A.; Mohany, M.; Imran, I.; Javaid, S.; Rasool, M.F.; Alamri, F.F. Coadministration of Ketamine and Perampanel Improves Behavioral Function and Reduces Inflammation in Acute Traumatic Brain Injury Mouse Model. BioMed Res. Int. 2020, 2020, 34–56. [Google Scholar] [CrossRef] [PubMed]
- Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA 2004, 101, 9861–9866. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Rajan, A.K.; Chhabra, M.; Kashyap, A. Levetiracetam and cutaneous adverse reactions: A systematic review of descriptive studies. Seizure 2020, 75, 101–109. [Google Scholar] [CrossRef]
- Briggs, D.E.; French, J.A. Levetiracetam safety profiles and tolerability in epilepsy patients. Expert Opin. Drug Saf. 2004, 3, 415–424. [Google Scholar] [CrossRef]
- Reiss, W.G.; Oles, K.S. Acetazolamide in the treatment of seizures. Ann. Pharmacother. 1996, 30, 514–519. [Google Scholar] [CrossRef]
- Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother. 2019, 19, 913–925. [Google Scholar] [CrossRef]
- Howlett, S.A. Renal failure associated with acetazolamide therapy for glaucoma. South. Med. J. 1975, 68, 504–506. [Google Scholar] [CrossRef]
- Arena, C.; Bizzoca, M.E.; Caponio, V.C.A.; Troiano, G.; Zhurakivska, K.; Leuci, S.; Muzio, L.L. Everolimus therapy and side-effects: A systematic review and meta-analysis. Int. J. Oncol. 2021, 59, 54. [Google Scholar] [CrossRef]
- Mullagulova, A.I.; Timechko, E.E.; Solovyeva, V.V.; Yakimov, A.M.; Ibrahim, A.; Dmitrenko, D.D.; Sufianov, A.A.; Sufianova, G.Z.; Rizvanov, A.A. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int. J. Mol. Sci. 2024, 25, 12081. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sarangi, S.C.; Singh, S.; Tripathi, M. A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022, 101, 253–261. [Google Scholar] [CrossRef]
- Gaston, T.E.; Szaflarski, J.P. Cannabis for the Treatment of Epilepsy: An Update. Curr. Neurol. Neurosci. Rep. 2018, 18, 73. [Google Scholar] [CrossRef]
- Stafstrom, C.E. Mechanisms of action of antiepileptic drugs: The search for synergy. Curr. Opin. Neurol. 2010, 23, 157–163. [Google Scholar] [CrossRef]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- CADTH. Common Drug Reviews, Clinical Review Report: Cerliponase Alfa (Brineura): (Biomarin Pharmaceutical (Canada) Inc), Indication: For the Treatment of Neuronal Ceroid Lipofuscinosis Type 2 (CLN2) Disease, Also Known as Tripeptidyl Peptidase 1 (TPP1) Deficiency; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2019. [Google Scholar]
- Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Chadwick, D.; Guerreiro, C.; Kalviainen, R.; Mattson, R.; Perucca, E.; Tomson, T. ILAE treatment guidelines: Evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 2006, 47, 1094–1120. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, S.E.; Lee, B.I. Antiepileptic Drug Therapy in Patients with Drug-Resistant Epilepsy. J. Epilepsy Res. 2019, 9, 14–26. [Google Scholar] [CrossRef]
- Peng, Q.; Ma, M.; Gu, X.; Hu, Y.; Zhou, B. Evaluation of Factors Impacting the Efficacy of Single or Combination Therapies of Valproic Acid, Carbamazepine, and Oxcarbazepine: A Longitudinal Observation Study. Front. Pharmacol. 2021, 12, 641512. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Effectiveness of first antiepileptic drug. Epilepsia 2001, 42, 1255–1260. [Google Scholar] [CrossRef]
- Sander, J.W. The use of antiepileptic drugs—Principles and practice. Epilepsia 2004, 6, 28–34. [Google Scholar] [CrossRef]
- Hachad, H.; Ragueneau-Majlessi, I.; Levy, R.H. New antiepileptic drugs: Review on drug interactions. Ther. Drug Monit. 2002, 24, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Sirmagul, B.; Atli, O.; Ilgin, S. The effect of combination therapy on the plasma concentrations of traditional antiepileptics: A retrospective study. Hum. Exp. Toxicol. 2012, 31, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Perucca, P.; Gilliam, F.G. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012, 11, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Meador, K.J. Adverse effects of antiepileptic drugs. Acta Neurol. Scand. 2005, 112, 30–35. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Lhatoo, S.D. CNS adverse events associated with antiepileptic drugs. CNS Drugs 2008, 22, 739–760. [Google Scholar] [CrossRef]
- Greenwood, R.S. Adverse effects of antiepileptic drugs. Epilepsia 2000, 41, S42–S52. [Google Scholar] [CrossRef]
- Tatum, W.O. Antiepileptic drugs: Adverse effects and drug interactions. Continuum 2010, 16, 136–158. [Google Scholar] [CrossRef]
- Landmark, C.J.; Johannessen, S.I.; Tomson, T. Host factors affecting antiepileptic drug delivery-pharmacokinetic variability. Adv. Drug Deliv. Rev. 2012, 64, 896–910. [Google Scholar] [CrossRef]
- Ray, L.A.; Grodin, E.N.; Baskerville, W.A.; Donato, S.; Cruz, A.; Montoya, A.K. Identifying responders to gabapentin for the treatment of alcohol use disorder: An exploratory machine learning approach. Alcohol Alcohol. 2025, 60, agaf010. [Google Scholar]
- Zaccara, G.; Perucca, E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014, 16, 409–431. [Google Scholar] [CrossRef]
- Patsalos, P.N.; Perucca, E. Clinically important drug interactions in epilepsy: Interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003, 2, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.J.Y.; Goh, C.; Leong, C.S.A.; Ng, K.Y.; Bakhtiar, A. Evaluation of potential drug-drug interactions with medical cannabis. Clin. Transl. Sci. 2024, 17, e13812. [Google Scholar] [CrossRef] [PubMed]
- Shakhatreh, L.; Janmohamed, M.; Baker, A.A.; Willard, A.; Laing, J.; Rychkova, M.; Chen, Z.; Kwan, P.; O'Brien, T.J.; Perucca, P. Interictal and seizure-onset EEG patterns in malformations of cortical development: A systematic review. Neurobiol. Dis. 2022, 174, 105863. [Google Scholar] [CrossRef] [PubMed]
- Nevitt, S.J.; Sudell, M.; Cividini, S.; Marson, A.G.; Smith, C.T. Antiepileptic drug monotherapy for epilepsy: A network meta-analysis of individual participant data. Cochrane Database Syst. Rev. 2022, 2022, CD011412. [Google Scholar]
- Sarhan, E.M.; Walker, M.C.; Selai, C. Evidence for efficacy of combination of antiepileptic drugs in treatment of epilepsy. J. Neurol. Res. 2016, 5, 267–276. [Google Scholar] [CrossRef]
- Aneja, S.; Sharma, S. Newer anti-epileptic drugs. Indian Pediatr. 2013, 50, 1033–1040. [Google Scholar] [CrossRef]
- Mäkinen, J.; Rainesalo, S.; Raitanen, J.; Peltola, J. The effect of newer antiepileptic drugs in combination therapy. Epilepsy Res. 2017, 132, 15–20. [Google Scholar] [CrossRef]
- Löscher, W.; Schmidt, D. New Horizons in the development of antiepileptic drugs: Innovative strategies. Epilepsy Res. 2006, 69, 183–272. [Google Scholar] [CrossRef]
- Stjerna, S.; Huber-Mollema, Y.; Tomson, T.; Perucca, E.; Battino, D.; Craig, J.; Gaily, E. Response to Letter on “Cognitive outcomes after fetal exposure to carbamazepine, lamotrigine, valproate or levetiracetam monotherapy: Data from the EURAP neurocognitive extension protocol”. Epilepsy Behav. 2024, 160, 243–246. [Google Scholar] [CrossRef]
- Howard, P.; Twycross, R.; Shuster, J.; Mihalyo, M.; Rémi, J.; Wilcock, A. Anti-epileptic drugs. J. Pain Symptom Manag. 2011, 42, 788–804. [Google Scholar] [CrossRef]
- Taing, K.D.; O’Brien, T.J.; Williams, D.A.; French, C.R. Anti-Epileptic Drug Combination Efficacy in an In Vitro Seizure Model—Phenytoin and Valproate, Lamotrigine and Valproate. PLoS ONE 2017, 12, e0169974. [Google Scholar] [CrossRef] [PubMed]
- Absar Neyan, A.; Ajans Samuel, J.; Amirtha Varshini, M.K.M.; Mohan Kumar, M. Factors influencing withdrawal of anti-epileptic drugs and management of recurrent seizure: A systematic review. Int. J. Sci. Res. Arch. 2024, 23, 419–425. [Google Scholar] [CrossRef]
- Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. reviews. Drug Discov. 2013, 12, 757–776. [Google Scholar] [CrossRef] [PubMed]
- Mattson, R.H. Efficacy and adverse effects of established and new antiepileptic drugs. Epilepsia 1995, 36 (Suppl. S2), S13–S26. [Google Scholar] [CrossRef]
- Park, S.P.; Kwon, S.H. Cognitive effects of antiepileptic drugs. J. Clin. Neurol. 2008, 4, 99–106. [Google Scholar] [CrossRef]
- Buck, D.; Jacoby, A.; Baker, G.A.; Chadwick, D.W. Factors influencing compliance with antiepileptic drug regimes. Seizure 1997, 6, 87–93. [Google Scholar] [CrossRef]
- Vecht, C.; Royer-Perron, L.; Houillier, C.; Huberfeld, G. Seizures and Anticonvulsants in Brain Tumours: Frequency, Mechanisms and Anti-Epileptic Management. Curr. Pharm. Des. 2017, 23, 6464–6487. [Google Scholar] [CrossRef]
- Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A Survey of the Structures of US FDA Approved Combination Drugs. J. Med. Chem. 2019, 62, 4265–4311. [Google Scholar] [CrossRef]
- Leach, J.P. Antiepileptic drugs: Safety in numbers? Seizure 2000, 9, 170–178. [Google Scholar] [CrossRef]
- Dalkara, S.; Karakurt, A. Recent progress in anticonvulsant drug research: Strategies for anticonvulsant drug development and applications of antiepileptic drugs for non-epileptic central nervous system disorders. Curr. Top. Med. Chem. 2012, 12, 1033–1071. [Google Scholar] [CrossRef]
- van Breemen, M.S.; Rijsman, R.M.; Taphoorn, M.J.; Walchenbach, R.; Zwinkels, H.; Vecht, C.J. Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J. Neurol. 2009, 256, 1519–1526. [Google Scholar] [CrossRef]
- Walia, K.S.; Khan, E.A.; Ko, D.H.; Raza, S.S.; Khan, Y.N. Side effects of antiepileptics—A review. Pain Pract. Off. J. World Inst. Pain 2004, 4, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D.; Hakimian, S. Pharmacokinetic Factors to Consider in the Selection of Antiseizure Drugs for Older Patients with Epilepsy. Drugs Aging 2018, 35, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.K.; Clausen, R.P.; Larsson, O.M.; Krogsgaard-Larsen, P.; Schousboe, A.; White, H.S. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J. Neurochem. 2009, 1 (Suppl. S109), 139–144. [Google Scholar] [CrossRef]
- Borowicz, K.K.; Kamiński, R.; Gasior, M.; Kleinrok, Z.; Czuczwar, S.J. Influence of melatonin upon the protective action of conventional anti-epileptic drugs against maximal electroshock in mice. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 1999, 9, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Benassi, S.K.; Alves, J.; Guidoreni, C.G.; Massant, C.G.; Queiroz, C.M.; Garrido-Sanabria, E.; Loduca, R.D.S.; Susemihl, M.A.; Paiva, W.S.; de Andrade, A.F.; et al. Two decades of research towards a potential first anti-epileptic drug. Seizure 2021, 90, 99–109. [Google Scholar] [CrossRef]
- Ashli, R.A.J.V.; Athira, J.; Krishnaveni, K.; Sambath, K.R. Study of utilization pattern and drug interactions of anti-epileptic drugs in a private hospital. Asian J. Pharm. Clin. Res. 2014, 7, 164–166. [Google Scholar]
- Mula, M.; Sander, J.W. Negative effects of antiepileptic drugs on mood in patients with epilepsy. Drug Saf. 2007, 30, 555–567. [Google Scholar] [CrossRef]
- Wolfe, J.F.; Greenwood, T.D.; Mulheron, J.M. Recent trends in the development of new anti-epileptic drugs. Expert Opin. Ther. Pat. 1998, 8, 361–381. [Google Scholar] [CrossRef]
- Corrales-Hernández, M.G.; Villarroel-Hagemann, S.K.; Mendoza-Rodelo, I.E.; Palacios-Sánchez, L.; Gaviria-Carrillo, M.; Buitrago-Ricaurte, N.; Espinosa-Lugo, S.; Calderon-Ospina, C.A.; Rodríguez-Quintana, J.H. Development of Antiepileptic Drugs throughout History: From Serendipity to Artificial Intelligence. Biomedicines 2023, 11, 1632. [Google Scholar] [CrossRef]
- Moreira-Silva, D.; Cunha-Rodrigues, M.C.; Speck, A.E.; Pandolfo, P. Cognitive stimulants: From caffeine to cannabinoids—Current and future perspectives. Front. Behav. Neurosci. 2025, 19, 1547970. [Google Scholar] [CrossRef] [PubMed]
- Griffith Brookles, C.; Ruffini, S.; Anselmino, M. Insights in cardiac rhythmology 2023. Front. Cardiovasc. Med. 2023, 12, 1542308. [Google Scholar]
- Donzelli, C. Strategie di Prevenzione Della Dipendenza da Benzodiazepine Nell'adolescente: Revisione di Letteratura; University of Padova: Padova, Italy, 2024. [Google Scholar]
- Odhiambo, M.A.; Kaingu, G.K.; Mumbo, M.; Kipper, K.; Sander, J.W.; Newton, C.R.J.C.; Kariuki, S.M. The association of polytherapy and psychiatric comorbidity in epilepsy. Epilepsy Behav. 2025, 163, 110215. [Google Scholar] [CrossRef]
- Löscher, W. Drug Combinations for Antiepileptogenesis. In Jasper’s Basic Mechanisms of the Epilepsies; Noebels, J.L., Avoli, M., Rogawski, M.A., Vezzani, A., Delgado-Escueta, A.V., Eds.; Oxford University Press: New York, NY, USA, 2024; pp. 1402–1418. [Google Scholar]
- Mangiardi, M.; Pezzella, F.R.; Cruciani, A.; Alessiani, M.; Anticoli, S. Long-Term Safety and Efficacy of Lacosamide Combined with NOACs in Post-Stroke Epilepsy and Atrial Fibrillation: A Prospective Longitudinal Study. J. Pers. Med. 2024, 14, 1125. [Google Scholar] [CrossRef]
- Dasgupta, S.; Brodsky, J.; Widdershoven, J. Paediatric vestibular disorders—A focussed diagnostic approach for best management outcomes. Front. Neurol. 2025, 15, 1532327. [Google Scholar] [CrossRef]
- Lai, J.; Thang, C.J.; Garate, D.; Golovko, G.; Wilkerson, M.G.; Barbieri, J.S. Acne is associated with an increased risk of stress fractures: A population-based cohort study. J. Am. Acad. Dermatol. 2024, 92, 904–906. [Google Scholar] [CrossRef]
- Vossel, K.; Ranasinghe, K.G.; Beagle, A.J.; La, A.; Ah Pook, K.; Castro, M.; Mizuiri, D.; Honma, S.M.; Venkateswaran, N.; Koestler, M.; et al. Effect of Levetiracetam on Cognition in Patients With Alzheimer Disease With and Without Epileptiform Activity: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 1345–1354. [Google Scholar] [CrossRef]
- Snyder, H.E.; Jain, P.; RamachandranNair, R.; Jones, K.C.; Whitney, R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes 2024, 15, 266. [Google Scholar] [CrossRef]
- Rubio, C.; Gatica, F.; Uribe, E.; Ochoa, E.; Campos, V.; Rubio-Osornio, M. Molecular and Genetic Mechanisms of Neurotoxicity During Anti-seizure Medications Use. Rev. De Investig. Clin. Organo Hosp. Enfermedades Nutr. 2023, 75, 11–12. [Google Scholar] [CrossRef]
- Husna, M.; Kurniawan, S.N. Biomolecular Mechanism of Anti Epileptic Drugs. MNJ Malang Neurol. J. 2018, 4, 38–45. [Google Scholar] [CrossRef]
- Abaza, M.S.; Bahman, A.M.; Al-Attiyah, R.J. Valproic acid, an anti-epileptic drug and a histone deacetylase inhibitor, in combination with proteasome inhibitors exerts antiproliferative, pro-apoptotic and chemosensitizing effects in human colorectal cancer cells: Underlying molecular mechanisms. Int. J. Mol. Med. 2014, 34, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Castro, P.J.; Rodríguez-Uranga, J.J.; Cabezudo-García, P.; García-Martín, G.; Romero-Godoy, J.; Estivill-Torrús, G.; Ciano-Petersen, N.L.; Oliver, B.; Ortega-Pinazo, J.; López-Moreno, Y.; et al. Cenobamate and Clobazam Combination as Personalized Medicine in Autoimmune-Associated Epilepsy with Anti-Gad65 Antibodies. Neurol.® Neuroimmunol. Neuroinflamm. 2023, 10, e200151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, L.; Yang, H.; Wang, D.; Liu, R.; Shan, T.; Xia, X. Ketogenic therapy towards precision medicine for brain diseases. Front. Nutr. 2024, 11, 1266690. [Google Scholar] [CrossRef]
- Giannotta, G.; Ruggiero, M.; Trabacca, A. Chronobiology in Paediatric Neurological and Neuropsychiatric Disorders: Harmonizing Care with Biological Clocks. J. Clin. Med. 2024, 13, 7737. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Combination therapy in epilepsy: When and what to use. Drugs 2006, 66, 1817–1829. [Google Scholar] [CrossRef]
- Perucca, E.; Beghi, E.; Dulac, O.; Shorvon, S.; Tomson, T. Assessing risk to benefit ratio in antiepileptic drug therapy. Epilepsy Res. 2000, 41, 107–139. [Google Scholar] [CrossRef]
- Perucca, E.; Dulac, O.; Shorvon, S.; Tomson, T. Harnessing the clinical potential of antiepileptic drug therapy: Dosage optimization. CNS Drugs 2001, 15, 609–621. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Liu, Y.; Miao, S.; Liu, X.; Wang, Z.; Zhou, H. Pharmacodynamic Components and Molecular Mechanism of Gastrodia Elata Blume for Treating Hypertension: Absorbed Components, Network Pharmacology, and Molecular Docking. J. Ethnopharmacol. 2025, 345, 119583. [Google Scholar] [CrossRef]
- Alothman, L.; Alhadlaq, E.; Alhussain, A.; Alabdulkarim, A.; Sari, Y.; AlSharari, S.D. New Pharmacological Insight into Etanercept and Pregabalin in Allodynia and Nociception: Behavioral Studies in a Murine Neuropathic Pain Model. Brain Sci. 2024, 14, 1145. [Google Scholar] [CrossRef]
- Walker, M.C. Drug repurposing in status epilepticus. Epilepsy Behav. E&B 2024, 161, 110109. [Google Scholar]
- Martinez, E. Excitation-Inhibition Balance in Neurodevelopmental Disorders: Towards a Network-Level Neurophysiology Approach to Improve Diagnosis and Treatment. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2024. [Google Scholar]
- Palmieri, M.; Evins, A.I.; Pesce, A.; Frati, A.; Bernardo, A. Editorial: Advances in neuroanatomy. Front. Med. 2024, 11, 1481303. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs with Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front. Pharmacol. 2021, 12, 730257. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Klein, P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol. Ther. 2022, 229, 107934. [Google Scholar] [CrossRef]
- Strac, D.S.; Pivac, N.; Smolders, I.J.; Fogel, W.A.; De Deurwaerdere, P.; Di Giovanni, G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front. Neurosci. 2016, 10, 492. [Google Scholar] [CrossRef]
- Kumari, S.; Mishra, C.B.; Tiwari, M. Polypharmacological Drugs in the Treatment of Epilepsy: The Comprehensive Review of Marketed and New Emerging Molecules. Curr. Pharm. Des. 2016, 22, 3212–3225. [Google Scholar] [CrossRef]
- Talevi, A. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open 2022, 7 (Suppl. S1), S133–S141. [Google Scholar] [CrossRef]
- French, J.A.; Porter, R.J.; Perucca, E.; Brodie, M.J.; Rogawski, M.A.; Pimstone, S.; Aycardi, E.; Harden, C.; Qian, J.; Rosenblut, C.L.; et al. Beatch, Efficacy and Safety sof XEN1101, a Novel Potassium Channel Opener, in Adults with Focal Epilepsy: A Phase 2b Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1145–1154. [Google Scholar] [CrossRef]
Types of Epilepsy | Combinations of Different Mechanisms | Reduced Drug Interactions | Reduced Adverse Drug Reactions |
---|---|---|---|
Generalized Epilepsy | Lacosamide + Sodium Valproate *** [67] | Levetiracetam + Topiramate **** [68] | Lacosamide + Levetiracetam *** [69] |
Focal Epilepsy | Carbamazepine + Sodium Valproate ** [70] | - | - |
Refractory Epilepsy | Lamotrigine+ Levetiracetam **** [71] | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, X.; Deng, M.; Luo, Q.; Yang, C.; Gu, Z.; Lin, S.; Luo, Y.; Chen, L.; Li, Y.; et al. Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects. Int. J. Mol. Sci. 2025, 26, 4035. https://doi.org/10.3390/ijms26094035
Li C, Wang X, Deng M, Luo Q, Yang C, Gu Z, Lin S, Luo Y, Chen L, Li Y, et al. Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects. International Journal of Molecular Sciences. 2025; 26(9):4035. https://doi.org/10.3390/ijms26094035
Chicago/Turabian StyleLi, Cunjiang, Xingyu Wang, Mingzhenlong Deng, Qinggen Luo, Chaoxing Yang, Zhicheng Gu, Shuxian Lin, Yongxiang Luo, Lei Chen, Yan Li, and et al. 2025. "Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects" International Journal of Molecular Sciences 26, no. 9: 4035. https://doi.org/10.3390/ijms26094035
APA StyleLi, C., Wang, X., Deng, M., Luo, Q., Yang, C., Gu, Z., Lin, S., Luo, Y., Chen, L., Li, Y., & He, B. (2025). Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects. International Journal of Molecular Sciences, 26(9), 4035. https://doi.org/10.3390/ijms26094035