The Influence of Different Preservation Protocols on the Teeth’s Osteoinductive Characteristics: An In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. A Comparative Analysis of the BMP-2 and COL-1 Expression in RT, Frozen, RIPA, and Fresh Tooth Samples
2.2. Evaluation of Mineralization Protein LIM-1 (LMP-1) and Transforming Growth Factor-β (TGF-β)
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Reagents
4.3. Measurement of BMP-2 and Collagen Type-I
4.4. Western Blot Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Marchi, R.J.; Leal, A.F.; Padilha, D.M.; Brondani, M.A. Vulnerability and the psychosocial aspects of tooth loss in old age: A Southern Brazilian study. J. Cross-Cult. Gerontol. 2012, 27, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.M.; Fiske, J.; Scott, B.; Radford, D.R. The emotional effects of tooth loss in a group of partially dentate people: A quantitative study. Eur. J. Prosthodont. Restor. Dent. 2001, 9, 53–57. [Google Scholar]
- Skomina, Z.; Kočevar, D.; Verdenik, M.; Hren, N.I. Older adults’ facial characteristics compared to young adults’ in correlation with edentulism: A cross sectional study. BMC Geriatr. 2022, 22, 503. [Google Scholar] [CrossRef]
- Rajaraman, V.; Ariga, P.; Dhanraj, M.; Jain, A. Effect of edentulism on general health and quality of life. Drug Invent. Today 2018, 10, 549–553. [Google Scholar]
- Walls, A.W.; Steele, J.G.; Sheiham, A.; Marcenes, W.; Moynihan, P.J. Oral health and nutrition in older people. J. Public Health Dent. 2000, 60, 304–307. [Google Scholar] [CrossRef]
- Carinci, F.; Arcelli, D.; Lo Muzio, L.; Francioso, F.; Valentini, D.; Evangelisti, R.; Volinia, S.; D’Angelo, A.; Meroni, G.; Zollo, M.; et al. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl. Res. 2007, 150, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Tranasi, M.; Sberna, M.T.; Zizzari, V.; D’Apolito, G.; Mastrangelo, F.; Salini, L.; Stuppia, L.; Tetè, S. Microarray evaluation of age-related changes in human dental pulp. J. Endod. 2009, 35, 1211–1217. [Google Scholar] [CrossRef]
- Araújo, M.G.; da Silva, J.C.C.; de Mendonça, A.F.; Lindhe, J. Ridge alterations following grafting of fresh extraction sockets in man. A randomized clinical trial. Clin. Oral Implant Res. 2015, 26, 407–412. [Google Scholar] [CrossRef]
- Araújo, M.G.; Lindhe, J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J. Clin. Periodontol. 2005, 32, 212–218. [Google Scholar] [CrossRef]
- Tan, W.L.; Wong, T.L.T.; Wong, M.C.M.; Lang, N.P. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin. Oral Implant Res. 2012, 23, 1–21. [Google Scholar] [CrossRef]
- Mastrangelo, F.; Quaresima, R.; Canullo, L.; Scarano, A.; Lo Muzio, L.; Piattelli, A. Effects of Novel Laser Dental Implant Microtopography on Human Osteoblast Proliferation and Bone Deposition. Int. J. Oral Maxillofac. Implants 2020, 35, 320–329. [Google Scholar] [CrossRef]
- Kao, S.T.; Scott, D.D. A Review of Bone Substitutes. Oral Maxillofac. Surg. Clin. N. Am. 2007, 19, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Mellonig, J.T. Alveolar Bone Induction: Autografts and Allografts. Dent. Clin. N. Am. 1980, 24, 719–737. [Google Scholar] [CrossRef] [PubMed]
- D’Alimonte, I.; Mastrangelo, F.; Giuliani, P.; Pierdomenico, L.; Marchisio, M.; Zuccarini, M.; Di Iorio, P.; Quaresima, R.; Caciagli, F.; Ciccarelli, R. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp. Stem Cells Dev. 2017, 26, 843–855. [Google Scholar] [CrossRef]
- Yukna, R.A. Synthetic bone grafts in periodontics. Periodontol. 2000 1993, 1, 92–99. [Google Scholar] [CrossRef]
- Orban, B.J. Orban’s Oral Histology and Embryology; Mosby: Charlotte, NC, USA, 1980; ISBN 978-0-8016-4609-6. [Google Scholar]
- Zhang, S.; Li, X.; Qi, Y.; Ma, X.; Qiao, S.; Cai, H.; Zhao, B.C.; Jiang, H.B.; Lee, E.-S. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng. Regen. Med. 2021, 18, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Lee, J.; Um, I.-W.; Kim, K.-W.; Murata, M.; Akazawa, T.; Mitsugi, M. Tooth-derived bone graft material. J. Korean Assoc. Oral Maxillofac. Surg. 2013, 39, 103–111. [Google Scholar] [CrossRef]
- Herford, A.S.; Boyne, P.J. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J. Oral Maxillofac. Surg. 2008, 66, 616–624. [Google Scholar] [CrossRef]
- Wu, M.; Wu, S.; Chen, W.; Li, Y.-P. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 2024, 34, 101–123. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Chen, Z.; Zhang, L. Immunohistochemical localization of LIM mineralization protein 1 in pulp-dentin complex of human teeth with normal and pathologic conditions. J. Endod. 2008, 34, 143–147. [Google Scholar] [CrossRef]
- Pajor, K.; Pajchel, L.; Kolmas, J. Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review. Materials 2019, 12, 2683. [Google Scholar] [CrossRef] [PubMed]
- Gual-Vaques, P.; Polis-Yanes, C.; Estrugo-Devesa, A.; Ayuso-Montero, R.; Mari-Roig, A.; Lopez-Lopez, J. Autogenous teeth used for bone grafting: A systematic review. Med. Oral Patol. Oral Cirugía Bucal 2017, 23, e112. [Google Scholar] [CrossRef] [PubMed]
- Karfeld-Sulzer, L.S.; Weber, F.E. Biomaterial development for oral and maxillofacial bone regeneration. J. Korean Assoc. Oral Maxillofac. Surg. 2012, 38, 264. [Google Scholar] [CrossRef]
- Gupta, P.S.; Punde, P.A.; Nilesh, K.; Patil, P.B.; Chouradiya, S.; Mahalle, R.H. Socket Preservation Using Autogenous Bone Graft and Dentin Autograft after Surgical Removal of Impacted Mandibular third Molar—A Split-Mouth Study Design. Dent. Med. Res. 2022, 10, 16. [Google Scholar] [CrossRef]
- Minetti, E.; Celko, M.; Contessi, M.; Carini, F.; Gambardella, U.; Giacometti, E.; Santillana, J.; Beca Campoy, T.; Schmitz, J.H.; Libertucci, M.; et al. Implants Survival Rate in Regenerated Sites with Innovative Graft Biomaterials: 1 Year Follow-Up. Materials 2021, 14, 5292. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E.; Giacometti, E.; Gambardella, U.; Contessi, M.; Ballini, A.; Marenzi, G.; Celko, M.; Mastrangelo, F. Alveolar Socket Preservation with Different Autologous Graft Materials: Preliminary Results of a Multicenter Pilot Study in Human. Materials 2020, 13, 1153. [Google Scholar] [CrossRef] [PubMed]
- Ceraulo, S.; Viscardi, D.; Casto, C.; Carini, F.; Biagi, R. Grafting for apposition of autologous biomaterial in the edentulous maxillary area with the tooth transformer technique. A case report. J. Osseointegration 2023, 15, 217–220. [Google Scholar] [CrossRef]
- Franceschelli, S.; Lagioia, R.; De Cecco, F.; Minetti, E.; Ballini, A.; Panella, V.; Speranza, L.; Grilli, A.; Mastrangelo, F. Biological Evaluation of the Osteoinductive Potential of Dry Teeth after Chemical Demineralization Treatment Using the Tooth Transformer Device. Biomolecules 2023, 13, 1727. [Google Scholar] [CrossRef]
- Minetti, E.; Palermo, A.; Ferrante, F.; Schmitz, J.H.; Lung Ho, H.K.; Dih Hann, S.N.; Giacometti, E.; Gambardella, U.; Contessi, M.; Celko, M.; et al. Autologous Tooth Graft after Endodontical Treated Used for Socket Preservation: A Multicenter Clinical Study. Appl. Sci. 2019, 9, 5396. [Google Scholar] [CrossRef]
- Patruno, A.; Pesce, M.; Grilli, A.; Speranza, L.; Franceschelli, S.; De Lutiis, M.A.; Vianale, G.; Costantini, E.; Amerio, P.; Muraro, R.; et al. mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes. PLoS ONE 2015, 10, e0139644. [Google Scholar] [CrossRef]
- Fiske, J.; Davis, D.M.; Frances, C.; Gelbier, S. The emotional effects of tooth loss in edentulous people. Br. Dent. J. 1998, 184, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Vignoletti, F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent. Mater. 2015, 31, 640–647. [Google Scholar] [CrossRef]
- Chiapasco, M.; Casentini, P.; Zaniboni, M. Bone augmentation procedures in implant dentistry. Int. J. Oral Maxillofac. Implant 2009, 24, 237–259. [Google Scholar]
- Nasr, H.F.; Aichelmann-Reidy, M.E.; Yukna, R.A. Bone and bone substitutes. Periodontol. 2000 1999, 19, 74–86. [Google Scholar] [CrossRef]
- Minetti, E.; Gianfreda, F.; Bollero, P.; Annicchiarico, C.; Daniele, M.; Padula, R.; Mastrangelo, F. Comparative Histological Analysis of Dentine-Derived Tooth Grafts in Maxillary vs Mandibular Socket Preservation: A Retrospective Study of 178 Cases. Dent. J. 2024, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Monica, D.; Minetti, E.; Ballini, A.; Gianfreda, F.; Bollero, P.; Cicciù, M.; Mastrangelo, F. Innovative Alveolar Ridge Preservation Surgical Technique with Immediate Dental Implant Placement: A Retrospective Case Report of 1-Year Follow-Up. Eur. J. Dent. 2024, 18, 408–414. [Google Scholar] [CrossRef]
- Friedlaender, G.E.; Horowitz, M.C. Immune responses to osteochondral allografts: Nature and significance. Orthopedics 1992, 15, 1171–1175. [Google Scholar] [CrossRef]
- Block, M.S. The Processing of Xenografts Will Result in Different Clinical Responses. J. Oral Maxillofac. Surg. 2019, 77, 690–697. [Google Scholar] [CrossRef]
- Jensen, S.S.; Broggini, N.; Hjørting-Hansen, E.; Schenk, R.; Buser, D. Bone healing and graft resorption of autograft, anorganic bovine bone and β-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implant Res. 2006, 17, 237–243. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, J.K.; Kim, K.-W.; Um, I.-W.; Murata, M.; Kim, Y.-K.; Lee, J.K.; Kim, K.-W.; Um, I.-W.; Murata, M. Healing Mechanism and Clinical Application of Autogenous Tooth Bone Graft Material. Adv. Biomater. Sci. Biomed. Appl. 2013. Available online: https://www.intechopen.com/chapters/43832 (accessed on 12 April 2024).
- Kim, Y.-K.; Kim, S.-G.; Yun, P.-Y.; Yeo, I.-S.; Jin, S.-C.; Oh, J.-S.; Kim, H.-J.; Yu, S.-K.; Lee, S.-Y.; Kim, J.-S.; et al. Autogenous teeth used for bone grafting: A comparison with traditional grafting materials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, e39–e45. [Google Scholar] [CrossRef]
- Hollinger, J.; Mark, D.E.; Bach, D.E.; Reddi, A.H.; Seyfer, A.E. Calvarial bone regeneration using osteogenin. J. Oral Maxillofac. Surg. 1989, 47, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.M.; Wong, J.M.-L.; Crowley, C.; Khan, W.S. Preclinical and clinical studies on the use of growth factors for bone repair: A systematic review. Curr. Stem Cell Res. Ther. 2013, 8, 260–268. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wurtz, T.; Wang, C.J.; Kuo, Y.R.; Yang, K.D.; Huang, H.C.; Wang, F.S. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J. Orthop. Res. 2004, 22, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Kim, S.-G.; Byeon, J.-H.; Lee, H.-J.; Um, I.-U.; Lim, S.-C.; Kim, S.-Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhu, H.; Huang, D. Autogenous DDM versus Bio-Oss granules in GBR for immediate implantation in periodontal postextraction sites: A prospective clinical study. Clin. Implant Dent. Relat. Res. 2018, 20, 923–928. [Google Scholar] [CrossRef]
- Gomes, M.F.; Valva, V.N.; Vieira, E.M.M.; Giannasi, L.C.; Salgado, M.A.C.; Vilela-Goulart, M.G. Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: Biochemical, radiographic, and histological analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 255–266. [Google Scholar] [CrossRef]
- Boden, S.D.; Liu, Y.; Hair, G.A.; Helms, J.A.; Hu, D.; Racine, M.; Nanes, M.S.; Titus, L. LMP-1, A LIM-Domain Protein, Mediates BMP-6 Effects on Bone Formation. Endocrinology 1998, 139, 5125–5134. [Google Scholar] [CrossRef]
- Pan, H.; Li, X.; Wang, J.; Zhang, K.; Yang, H.; Li, Z.; Zheng, Z.; Liu, H. LIM Mineralization Protein-1 Enhances Bone Morphogenetic Protein-2–Mediated Osteogenesis Through Activation of ERK1/2 MAPK Pathway and Upregulation of Runx2 Transactivity. J. Bone Miner. Res. 2015, 30, 1523–1535. [Google Scholar] [CrossRef]
- Franceschi, R.T.; Xiao, G.; Jiang, D.; Gopalakrishnan, R.; Yang, S.; Reith, E. Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation. Connect. Tissue Res. 2003, 44, 109–116. [Google Scholar] [CrossRef]
RT Tooth Samples | Tooth | Extraction Date | TT Treatment Date | Sex and Age of the Patient | Extraction Indication | Sample Weight (g) |
---|---|---|---|---|---|---|
1 | 3.1 | 14 January 2022 | 15 December 2022 | M 37 y/o | Fracture | 0.498 |
2 | 2.4 | 14 January 2022 | 15 December 2022 | F 64 y/o | Periodontitis | 0.689 |
3 | 3.7 | 14 January 2022 | 15 December 2022 | F 58 y/o | Periodontitis | 1.396 |
4 | 4.6 | 7 February 2022 | 15 December 2022 | M 47 y/o | Caries | 0.730 |
5 | 2.6 | 7 February 2022 | 15 December 2022 | F 65 y/o | Caries | 1.324 |
6 | 1.7 | 16 February 2022 | 16 December 2022 | F 67 y/o | Periodontitis | 1.051 |
7 | 2.6 | 16 February 2022 | 16 December 2022 | M 34 y/o | Caries | 0.376 |
8 | 1.5 | 16 February 2022 | 16 December 2022 | M 39 y/o | Fracture | 1.117 |
9 | 2.5 | 3 March 2022 | 16 December 2022 | F 73 y/o | Periodontitis | 0.181 |
10 | 3.8 | 3 March 2022 | 16 December 2022 | M 24 y/o | Pericoronitis | 1.387 |
Frozen Tooth Samples | Tooth | Extraction Date | TT Treatment Date | Sex and Age of the Patient | Extraction Indication | Sample Weight (g) |
---|---|---|---|---|---|---|
11 | 4.5 | 15 November 2023 | 23 January 2024 | M 55 y/o | Caries | 0.728 |
12 | 3.4 | 15 November 2023 | 23 January 2024 | F 65 y/o | Caries | 0.380 |
13 | 1.5 | 23 November 2023 | 23 January 2024 | M 67 y/o | Periodontitis | 0.910 |
14 | 3.8 | 5 December 2023 | 23 January 2024 | F 24 y/o | Pericoronitis | 0.831 |
15 | 3.8 | 11 December 2023 | 23 January 2024 | F 54 y/o | Caries | 0.378 |
16 | 4.8 | 15 December 2023 | 23 January 2024 | M 22 y/o | Pericoronitis | 0.689 |
17 | 1.1 | 18 December 2023 | 23 January 2024 | M 72 y/o | Periodontitis | 0.460 |
18 | 2.2 | 19 December 2023 | 23 January 2024 | F 66 y/o | Periodontitis | 0.391 |
19 | 3.5 | 3 May 2024 | 16 May 2024 | M 51 y/o | Periodontitis | 0.470 |
20 | 4.4 | 3 May 2024 | 16 May 2024 | M 61 y/o | Periodontitis | 0.520 |
RIPA Tooth Samples | Tooth | Extraction Date | TT Treatment Date | Sex and Age of the Patient | Extraction Indication | Sample Weight (g) |
---|---|---|---|---|---|---|
21 | 1.6 | 3 November 2023 | 06 November 2023 | M 62 y/o | Caries | 0.657 |
22 | 3.2 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.393 |
23 | 4.1 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.547 |
24 | 4.2 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.438 |
25 | 3.1 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.491 |
26 | 3.5 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.492 |
27 | 4.3 | 17 November 2023 | 20 November 2023 | F 73 y/o | Remediation | 0.318 |
28 | 1.8 | 17 November 2023 | 20 November 2023 | M 75 y/o | Periodontitis | 1.272 |
29 | 3.8 | 16 May 2024 | 20 May 2024 | M 25 y/o | Pericoronitis | 0.440 |
30 | 1.2 | 16 May 2024 | 20 May 2024 | M 66 y/o | Periodontitis | 0.820 |
Fresh Tooth Samples | Tooth | Extraction Date | TT Treatment Date | Sex and Age of the Patient | Extraction Indication | Sample Weight (g) |
---|---|---|---|---|---|---|
31 | 2.5 | 16 May 2024 | 16 May 2024 | F 68 y/o | Periodontitis | 0.860 |
32 | 2.4 | 12 July 2024 | 12 July 2024 | M 71 y/o | Remediation | 0.450 |
33 | 2.5 | 12 July 2024 | 12 July 2024 | M 71 y/o | Remediation | 0.550 |
34 | 2.6 | 12 July 2024 | 12 July 2024 | M 71 y/o | Remediation | 0.290 |
35 | 1.6 | 12 July 2024 | 12 July 2024 | F 66 y/o | Caries | 0.550 |
36 | 3.5 | 12 July 2024 | 12 July 2024 | M 61 y/o | Remediation | 0.270 |
37 | 3.6 | 12 July 2024 | 12 July 2024 | M 61 y/o | Remediation | 0.320 |
38 | 2.5 | 12 July 2024 | 12 July 2024 | F 57 y/o | Periodontitis | 1.034 |
39 | 2.2 | 12 July 2024 | 12 July 2024 | M 17 y/o | Fracture | 0.763 |
40 | 4.4 | 12 July 2024 | 12 July 2024 | M 74 y/o | Periodontitis | 0.485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrangelo, F.; Franceschelli, S.; Annicchiarico, C.; Annicchiarico, A.; Bizzoca, M.E.; De Cecco, F.; Gioia, R.L.; Cervino, G.; Pesce, M. The Influence of Different Preservation Protocols on the Teeth’s Osteoinductive Characteristics: An In Vitro Study. Int. J. Mol. Sci. 2025, 26, 4044. https://doi.org/10.3390/ijms26094044
Mastrangelo F, Franceschelli S, Annicchiarico C, Annicchiarico A, Bizzoca ME, De Cecco F, Gioia RL, Cervino G, Pesce M. The Influence of Different Preservation Protocols on the Teeth’s Osteoinductive Characteristics: An In Vitro Study. International Journal of Molecular Sciences. 2025; 26(9):4044. https://doi.org/10.3390/ijms26094044
Chicago/Turabian StyleMastrangelo, Filiberto, Sara Franceschelli, Ciro Annicchiarico, Alice Annicchiarico, Maria Elena Bizzoca, Federica De Cecco, Rosalba La Gioia, Gabriele Cervino, and Mirko Pesce. 2025. "The Influence of Different Preservation Protocols on the Teeth’s Osteoinductive Characteristics: An In Vitro Study" International Journal of Molecular Sciences 26, no. 9: 4044. https://doi.org/10.3390/ijms26094044
APA StyleMastrangelo, F., Franceschelli, S., Annicchiarico, C., Annicchiarico, A., Bizzoca, M. E., De Cecco, F., Gioia, R. L., Cervino, G., & Pesce, M. (2025). The Influence of Different Preservation Protocols on the Teeth’s Osteoinductive Characteristics: An In Vitro Study. International Journal of Molecular Sciences, 26(9), 4044. https://doi.org/10.3390/ijms26094044