Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy
Abstract
:1. Introduction
2. Liquid Biopsy Potential Biomarkers in PitNETs
2.1. Circulating Tumor Cells (CTCs)
2.2. Circulating Tumor DNA (ctDNA)
2.2.1. Genetic Alterations
2.2.2. Epigenetic Profile
2.3. Cell-Free RNA (cfRNA)
2.3.1. MicroRNA (miRNA)
2.3.2. Long Non-Coding RNA (lncRNA)
2.3.3. Circular RNA (circRNA)
2.4. Exosomes
3. Liquid Biopsy in Patients with Suspected PitNETs or in the Postoperative Follow-Up
4. Conclusions
Funding
Conflicts of Interest
References
- Dai, C.; Kang, J.; Liu, X.; Yao, Y.; Wang, H.; Wang, R. How to Classify and Define Pituitary Tumors: Recent Advances and Current Controversies. Front. Endocrinol. 2021, 12, 604644. [Google Scholar] [CrossRef]
- Raverot, G.; Ilie, M.D.; Lasolle, H.; Amodru, V.; Trouillas, J.; Castinetti, F.; Brue, T. Aggressive Pituitary Tumours and Pituitary Carcinomas. Nat. Rev. Endocrinol. 2021, 17, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, X. Molecular Network Basis of Invasive Pituitary Adenoma: A Review. Front. Endocrinol. 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, J.; Roy, P.; Sturm, N.; Dantony, E.; Cortet-Rudelli, C.; Viennet, G.; Bonneville, J.F.; Assaker, R.; Auger, C.; Brue, T.; et al. A New Prognostic Clinicopathological Classification of Pituitary Adenomas: A Multicentric Case-Control Study of 410 Patients with 8 Years Post-Operative Follow-Up. Acta Neuropathol. 2013, 126, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M.; The European Society of Endocrinology. European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. Eur. J. Endocrinol. 2018, 178, G1–G24. [Google Scholar] [CrossRef]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Faltermeier, C.M.; Magill, S.T.; Blevins, L.S.; Aghi, M.K. Molecular Biology of Pituitary Adenomas. Neurosurg. Clin. N. Am. 2019, 30, 391–400. [Google Scholar] [CrossRef]
- Mercado, M.; Melgar, V.; Salame, L.; Cuenca, D. Clinically Non-Functioning Pituitary Adenomas: Pathogenic, Diagnostic and Therapeutic Aspects. Endocrinol. Diabetes Nutr. 2017, 64, 384–395. [Google Scholar] [CrossRef]
- Di Ieva, A.; Rotondo, F.; Syro, L.V.; Cusimano, M.D.; Kovacs, K. Aggressive Pituitary Adenomas--Diagnosis and Emerging Treatments. Nat. Rev. Endocrinol. 2014, 10, 423–435. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef]
- Trouillas, J.; Jaffrain-Rea, M.L.; Vasiljevic, A.; Raverot, G.; Roncaroli, F.; Villa, C. How to Classify the Pituitary Neuroendocrine Tumors (PitNET)s in 2020. Cancers 2020, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Vasiljevic, A.; Jaffrain-Rea, M.L.; Ansorge, O.; Asioli, S.; Barresi, V.; Chinezu, L.; Gardiman, M.P.; Lania, A.; Lapshina, A.M.; et al. A Standardised Diagnostic Approach to Pituitary Neuroendocrine Tumours (PitNETs): A European Pituitary Pathology Group (EPPG) Proposal. Virchows Arch. 2019, 475, 687–692. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Sisodiya, S.; Kasherwal, V.; Khan, A.; Roy, B.; Goel, A.; Kumar, S.; Arif, N.; Tanwar, P.; Hussain, S. Liquid Biopsies: Emerging Role and Clinical Applications in Solid Tumours. Transl. Oncol. 2023, 35, 101716. [Google Scholar] [CrossRef] [PubMed]
- Corvigno, S.; Johnson, A.M.; Wong, K.K.; Cho, M.S.; Afshar-Kharghan, V.; Menter, D.G.; Sood, A.K. Novel Markers for Liquid Biopsies in Cancer Management: Circulating Platelets and Extracellular Vesicles. Mol. Cancer Ther. 2022, 21, 1067–1075. [Google Scholar] [CrossRef]
- Kurma, K.; Eslami-S, Z.; Alix-Panabières, C.; Cayrefourcq, L. Liquid Biopsy: Paving a New Avenue for Cancer Research. Cell Adhes. Migr. 2024, 18, 1–26. [Google Scholar] [CrossRef]
- Hua, G.; Yanjiao, H.; Qian, L.; Jichao, W.; Yazhuo, Z. Detection of Circulating Tumor Cells in Patients with Pituitary Tumors. BMC Cancer 2018, 18, 336. [Google Scholar] [CrossRef]
- Gossing, W.; Frohme, M.; Radke, L. Biomarkers for Liquid Biopsies of Pituitary Neuroendocrine Tumors. Biomedicines 2020, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, F.S.; Barauna, V.G.; Dos Santos, L.; Costa, G.; Vassallo, P.F.; Campos, L.C.G. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int. J. Mol. Sci. 2021, 22, 9110. [Google Scholar] [CrossRef]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.; Pretorius, P.J. A Historical and Evolutionary Perspective on the Biological Significance of Circulating DNA and Extracellular Vesicles. Cell Mol. Life Sci. 2016, 73, 4355–4381. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The Emerging Role of Cell-Free DNA as a Molecular Marker for Cancer Management. Biomol. Detect. Quantif. 2019, 17, 100087. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- Megnis, K.; Peculis, R.; Rovite, V.; Laksa, P.; Niedra, H.; Balcere, I.; Caune, O.; Breiksa, A.; Nazarovs, J.; Stukens, J.; et al. Evaluation of the Possibility to Detect Circulating Tumor DNA From Pituitary Adenoma. Front. Endocrinol. 2019, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Fontanilles, M.; Duran-Peña, A.; Idbaih, A. Liquid Biopsy in Primary Brain Tumors: Looking for Stardust! Curr. Neurol. Neurosci. Rep. 2018, 18, 13. [Google Scholar] [CrossRef]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ’t Veer, L.J.; Magbanua, M.J.M. Circulating Tumor Nucleic Acids: Biology, Release Mechanisms, and Clinical Relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Marrero-Rodríguez, D.; Taniguchi-Ponciano, K.; Kerbel, J.; Cano-Zaragoza, A.; Remba-Shapiro, I.; Silva-Román, G.; Vela-Patiño, S.; Andonegui-Elguera, S.; Valenzuela-Perez, A.; Mercado, M. The Hallmarks of Cancer… in Pituitary Tumors? Rev. Endocr. Metab. Disord. 2023, 24, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Yang, C.; Bao, X.; Wang, R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front. Endocrinol. 2020, 11, 596554. [Google Scholar] [CrossRef]
- Spada, A.; Mantovani, G.; Lania, A.G.; Treppiedi, D.; Mangili, F.; Catalano, R.; Carosi, G.; Sala, E.; Peverelli, E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022, 112, 15–33. [Google Scholar] [CrossRef]
- Vamvoukaki, R.; Chrysoulaki, M.; Betsi, G.; Xekouki, P. Pituitary Tumorigenesis-Implications for Management. Medicina 2023, 59, 812. [Google Scholar] [CrossRef]
- Peculis, R.; Niedra, H.; Rovite, V. Large Scale Molecular Studies of Pituitary Neuroendocrine Tumors: Novel Markers, Mechanisms and Translational Perspectives. Cancers 2021, 13, 1395. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, C.; Song, J.; Zhang, Y.; Chen, J.; Song, Z.; Shou, X.; Ma, Z.; Peng, H.; Jian, X.; et al. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am. J. Hum. Genet. 2017, 100, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, W.; Li, Z.; Wang, H.; Gao, H.; Zhang, Y. Impact of SLC20A1 on the Wnt/Β-catenin Signaling Pathway in Somatotroph Adenomas. Mol. Med. Rep. 2019, 20, 3276–3284. [Google Scholar] [CrossRef]
- Wei, D.; Yiyuan, C.; Qian, L.; Jianhua, L.; Yazhuo, Z.; Hua, G. The Absence of PRDM2 Involved the Tumorigenesis of Somatotroph Adenomas through Regulating C-Myc. Gene 2020, 737, 144456. [Google Scholar] [CrossRef] [PubMed]
- Venegas-Moreno, E.; Vazquez-Borrego, M.C.; Dios, E.; Gros-Herguido, N.; Flores-Martinez, A.; Rivero-Cortés, E.; Madrazo-Atutxa, A.; Japón, M.A.; Luque, R.M.; Castaño, J.P.; et al. Association between Dopamine and Somatostatin Receptor Expression and Pharmacological Response to Somatostatin Analogues in Acromegaly. J. Cell Mol. Med. 2018, 22, 1640–1649. [Google Scholar] [CrossRef]
- Islam, M.T.; Chen, F.; Chen, H. The Oncogenic Role of Ubiquitin Specific Peptidase (USP8) and Its Signaling Pathways Targeting for Cancer Therapeutics. Arch. Biochem. Biophys. 2021, 701, 108811. [Google Scholar] [CrossRef] [PubMed]
- Castellnou, S.; Vasiljevic, A.; Lapras, V.; Raverot, V.; Alix, E.; Borson-Chazot, F.; Jouanneau, E.; Raverot, G.; Lasolle, H. SST5 Expression and USP8 Mutation in Functioning and Silent Corticotroph Pituitary Tumors. Endocr. Connect. 2020, 9, 243–253. [Google Scholar] [CrossRef]
- Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of Recurrent USP48 and BRAF Mutations in Cushing’s Disease. Nat. Commun. 2018, 9, 3171. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Simon, J.; Albani, A.; Tang, S.; Roeber, S.; Assié, G.; Deutschbein, T.; Fassnacht, M.; Gadelha, M.R.; Hermus, A.R.; et al. TP53 Mutations in Functional Corticotroph Tumors Are Linked to Invasion and Worse Clinical Outcome. Acta Neuropathol. Commun. 2022, 10, 139. [Google Scholar] [CrossRef]
- Li, C.; Xie, W.; Rosenblum, J.S.; Zhou, J.; Guo, J.; Miao, Y.; Shen, Y.; Wang, H.; Gong, L.; Li, M.; et al. Somatic SF3B1 Hotspot Mutation in Prolactinomas. Nat. Commun. 2020, 11, 2506. [Google Scholar] [CrossRef]
- Fedele, M.; Palmieri, D.; Fusco, A. HMGA2: A Pituitary Tumour Subtype-Specific Oncogene? Mol. Cell Endocrinol. 2010, 326, 19–24. [Google Scholar] [CrossRef]
- Portovedo, S.; Gaido, N.; de Almeida Nunes, B.; Nascimento, A.G.; Rocha, A.; Magalhães, M.; Nascimento, G.C.; Pires de Carvalho, D.; Soares, P.; Takiya, C.; et al. Differential Expression of HMGA1 and HMGA2 in Pituitary Neuroendocrine Tumors. Mol. Cell Endocrinol. 2019, 490, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Murat, C.B.; Braga, P.B.; Fortes, M.A.; Bronstein, M.D.; Corrêa-Giannella, M.L.; Giorgi, R.R. Mutation and Genomic Amplification of the PIK3CA Proto-Oncogene in Pituitary Adenomas. Braz. J. Med. Biol. Res. 2012, 45, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jiang, X.; Shen, Y.; Li, M.; Ma, H.; Xing, M.; Lu, Y. Frequent Mutations and Amplifications of the PIK3CA Gene in Pituitary Tumors. Endocr. Relat. Cancer 2009, 16, 301–310. [Google Scholar] [CrossRef]
- Lasolle, H.; Elsensohn, M.H.; Wierinckx, A.; Alix, E.; Bonnefille, C.; Vasiljevic, A.; Cortet, C.; Decoudier, B.; Sturm, N.; Gaillard, S.; et al. Chromosomal Instability in the Prediction of Pituitary Neuroendocrine Tumors Prognosis. Acta Neuropathol. Commun. 2020, 8, 190. [Google Scholar] [CrossRef]
- Møller, M.W.; Nortvig, M.J.; Andersen, M.S.; Poulsen, F.R. DNA Methylation in Pituitary Adenomas: A Scoping Review. Int. J. Mol. Sci. 2025, 26, 531. [Google Scholar] [CrossRef]
- Herrgott, G.A.; Asmaro, K.P.; Wells, M.; Sabedot, T.S.; Malta, T.M.; Mosella, M.S.; Nelson, K.; Scarpace, L.; Barnholtz-Sloan, J.S.; Sloan, A.E.; et al. Detection of Tumor-Specific DNA Methylation Markers in the Blood of Patients with Pituitary Neuroendocrine Tumors. Neuro Oncol. 2022, 24, 1126–1139. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.S.; Wang, E.L.; Xu, W.F.; Yamada, S.; Yoshimoto, K.; Qian, Z.R.; Shi, L.; Liu, L.L.; Li, X.H. Overexpression of DNA (Cytosine-5)-Methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-Methyltransferase 3A (DNMT3A) Is Associated with Aggressive Behavior and Hypermethylation of Tumor Suppressor Genes in Human Pituitary Adenomas. Med. Sci. Monit. 2018, 24, 4841–4850. [Google Scholar] [CrossRef]
- Revill, K.; Dudley, K.J.; Clayton, R.N.; McNicol, A.M.; Farrell, W.E. Loss of Neuronatin Expression Is Associated with Promoter Hypermethylation in Pituitary Adenoma. Endocr. Relat. Cancer 2009, 16, 537–548. [Google Scholar] [CrossRef]
- Qian, Z.R.; Sano, T.; Yoshimoto, K.; Asa, S.L.; Yamada, S.; Mizusawa, N.; Kudo, E. Tumor-Specific Downregulation and Methylation of the CDH13 (H-Cadherin) and CDH1 (E-Cadherin) Genes Correlate with Aggressiveness of Human Pituitary Adenomas. Mod. Pathol. 2007, 20, 1269–1277. [Google Scholar] [CrossRef]
- Simpson, D.J.; Clayton, R.N.; Farrell, W.E. Preferential Loss of Death Associated Protein Kinase Expression in Invasive Pituitary Tumours Is Associated with Either CpG Island Methylation or Homozygous Deletion. Oncogene 2002, 21, 1217–1224. [Google Scholar] [CrossRef]
- Jotanovic, J.; Boldt, H.B.; Burton, M.; Andersen, M.S.; Bengtsson, D.; Bontell, T.O.; Ekman, B.; Engström, B.E.; Feldt-Rasmussen, U.; Heck, A.; et al. Genome-Wide Methylation Profiling Differentiates Benign from Aggressive and Metastatic Pituitary Neuroendocrine Tumors. Acta Neuropathol. 2024, 148, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, H.; Danila, D.C.; Johnson, S.R.; Zhou, Y.; Swearingen, B.; Klibanski, A. Loss of Expression of GADD45 Gamma, a Growth Inhibitory Gene, in Human Pituitary Adenomas: Implications for Tumorigenesis. J. Clin. Endocrinol. Metab. 2002, 87, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Righi, A.; Jin, L.; Zhang, S.; Stilling, G.; Scheithauer, B.W.; Kovacs, K.; Lloyd, R.V. Identification and Consequences of Galectin-3 Expression in Pituitary Tumors. Mol. Cell Endocrinol. 2010, 326, 8–14. [Google Scholar] [CrossRef]
- Qian, Z.R.; Sano, T.; Yoshimoto, K.; Yamada, S.; Ishizuka, A.; Mizusawa, N.; Horiguchi, H.; Hirokawa, M.; Asa, S.L. Inactivation of RASSF1A Tumor Suppressor Gene by Aberrant Promoter Hypermethylation in Human Pituitary Adenomas. Lab. Investig. 2005, 85, 464–473. [Google Scholar] [CrossRef]
- Araki, T.; Tone, Y.; Yamamoto, M.; Kameda, H.; Ben-Shlomo, A.; Yamada, S.; Takeshita, A.; Kawakami, Y.; Tone, M.; Melmed, S. Two Distinctive POMC Promoters Modify Gene Expression in Cushing Disease. J. Clin. Endocrinol. Metab. 2021, 106, e3346–e3363. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, S. Epigenetic Control in Pituitary Tumors. Endocr. J. 2008, 55, 951–957. [Google Scholar] [CrossRef]
- Seemann, N.; Kuhn, D.; Wrocklage, C.; Keyvani, K.; Hackl, W.; Buchfelder, M.; Fahlbusch, R.; Paulus, W. CDKN2A/P16 Inactivation Is Related to Pituitary Adenoma Type and Size. J. Pathol. 2001, 193, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Pease, M.; Ling, C.; Mack, W.J.; Wang, K.; Zada, G. The Role of Epigenetic Modification in Tumorigenesis and Progression of Pituitary Adenomas: A Systematic Review of the Literature. PLoS ONE 2013, 8, e82619. [Google Scholar] [CrossRef]
- Feng, J.; Hong, L.; Wu, Y.; Li, C.; Wan, H.; Li, G.; Sun, Y.; Yu, S.; Chittiboina, P.; Montgomery, B.; et al. Identification of a Subtype-Specific ENC1 Gene Related to Invasiveness in Human Pituitary Null Cell Adenoma and Oncocytomas. J. Neurooncol. 2014, 119, 307–315. [Google Scholar] [CrossRef]
- Cheng, S.; Li, C.; Xie, W.; Miao, Y.; Guo, J.; Wang, J.; Zhang, Y. Integrated Analysis of DNA Methylation and mRNA Expression Profiles to Identify Key Genes Involved in the Regrowth of Clinically Non-Functioning Pituitary Adenoma. Aging 2020, 12, 2408–2427. [Google Scholar] [CrossRef]
- Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, L.; Lanza, M.; Pandolfi, P.P. Coding, or Non-Coding, That Is the Question. Cell Res. 2024, 34, 609–629. [Google Scholar] [CrossRef]
- Wu, W.; Cao, L.; Jia, Y.; Xiao, Y.; Zhang, X.; Gui, S. Emerging Roles of miRNA, lncRNA, circRNA, and Their Cross-Talk in Pituitary Adenoma. Cells 2022, 11, 2920. [Google Scholar] [CrossRef]
- Donati, S.; Aurilia, C.; Palmini, G.; Miglietta, F.; Falsetti, I.; Iantomasi, T.; Brandi, M.L. MicroRNAs as Potential Biomarkers in Pituitary Adenomas. Noncoding RNA 2021, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Toden, S.; Zumwalt, T.J.; Goel, A. Non-Coding RNAs and Potential Therapeutic Targeting in Cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, C.; Zhao, Y.; Wang, Q.; Guo, J.; Ye, B.; Yu, G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int. J. Mol. Sci. 2022, 23, 11389. [Google Scholar] [CrossRef]
- El-Daly, S.M.; Gouhar, S.A.; Abd Elmageed, Z.Y. Circulating microRNAs as Reliable Tumor Biomarkers: Opportunities and Challenges Facing Clinical Application. J. Pharmacol. Exp. Ther. 2023, 384, 35–51. [Google Scholar] [CrossRef]
- Clayton, R.N.; Farrell, W.E. Pituitary Tumour Clonality Revisited. Front. Horm. Res. 2004, 32, 186–204. [Google Scholar] [CrossRef]
- Bottoni, A.; Piccin, D.; Tagliati, F.; Luchin, A.; Zatelli, M.C.; degli Uberti, E.C. miR-15a and miR-16-1 down-Regulation in Pituitary Adenomas. J. Cell Physiol. 2005, 204, 280–285. [Google Scholar] [CrossRef]
- Alnaaim, S.A.; Al-Kuraishy, H.M.; Zailaie, M.M.; Alexiou, A.; Papadakis, M.; Saad, H.M.; Batiha, G.E. The Potential Link between Acromegaly and Risk of Acute Ischemic Stroke in Patients with Pituitary Adenoma: A New Perspective. Acta Neurol. Belg. 2024, 124, 755–766. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, Y.; Fan, F.; Zeng, Y.; Li, C.; Zhou, G.; Hu, Z.; Zhang, L.; Liu, Z. Exosomal Hsa-miR-21-5p Derived from Growth Hormone-Secreting Pituitary Adenoma Promotes Abnormal Bone Formation in Acromegaly. Transl. Res. 2020, 215, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Belaya, Z.; Grebennikova, T.; Melnichenko, G.; Nikitin, A.; Solodovnikov, A.; Brovkina, O.; Grigoriev, A.; Rozhinskaya, L.; Lutsenko, A.; Dedov, I. Effects of Active Acromegaly on Bone mRNA and microRNA Expression Patterns. Eur. J. Endocrinol. 2018, 178, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, H.; Hekimler Öztürk, K.; Torus, B. Circulating miR-29c-3p Is Downregulated in Patients with Acromegaly. Turk. J. Med. Sci. 2021, 51, 2081–2086. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Feng, J.; Li, Z.; Liu, Q.; Lv, P.; Wang, F.; Gao, H.; Zhang, Y. Identification of Serum miRNA-423-5p Expression Signature in Somatotroph Adenomas. Int. J. Endocrinol. 2019, 2019, 8516858. [Google Scholar] [CrossRef]
- Bogner, E.M.; Daly, A.F.; Gulde, S.; Karhu, A.; Irmler, M.; Beckers, J.; Mohr, H.; Beckers, A.; Pellegata, N.S. miR-34a Is Upregulated in AIP-Mutated Somatotropinomas and Promotes Octreotide Resistance. Int. J. Cancer 2020, 147, 3523–3538. [Google Scholar] [CrossRef]
- Daly, A.F.; Tichomirowa, M.A.; Petrossians, P.; Heliövaara, E.; Jaffrain-Rea, M.L.; Barlier, A.; Naves, L.A.; Ebeling, T.; Karhu, A.; Raappana, A.; et al. Clinical Characteristics and Therapeutic Responses in Patients with Germ-Line AIP Mutations and Pituitary Adenomas: An International Collaborative Study. J. Clin. Endocrinol. Metab. 2010, 95, E373–E383. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Jing, G.; Jichao, W.; Xiaohui, L.; Fang, Q.; Hua, G.; Yazhou, M.; Zhang, Y. MiR-137’s Tumor Suppression on Prolactinomas by Targeting MITF and Modulating Wnt Signaling Pathway. J. Clin. Endocrinol. Metab. 2019, 104, 6391–6402. [Google Scholar] [CrossRef]
- Zhao, P.; Cheng, J.; Li, B.; Nie, D.; Li, C.; Gui, S.; Wang, H.; Zhang, Y. Up-Regulation of the Expressions of MiR-149-5p and MiR-99a-3p in Exosome Inhibits the Progress of Pituitary Adenomas. Cell Biol. Toxicol. 2021, 37, 633–651. [Google Scholar] [CrossRef]
- Rad, S.G.; Orang, F.N.; Shadbad, M.A. MicroRNA Networks in Prolactinoma Tumorigenesis: A Scoping Review. Cancer Cell Int. 2024, 24, 418. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Y.; Xie, W.; Li, Q.; Zhang, Y.; Ren, B.; Cai, L.; Cheng, Y.; Tang, H.; Su, Z.; et al. The Long Noncoding RNA-H19/miRNA-93a/ATG7 Axis Regulates the Sensitivity of Pituitary Adenomas to Dopamine Agonists. Mol. Cell Endocrinol. 2020, 518, 111033. [Google Scholar] [CrossRef]
- Belaya, Z.; Khandaeva, P.; Nonn, L.; Nikitin, A.; Solodovnikov, A.; Sitkin, I.; Grigoriev, A.; Pikunov, M.; Lapshina, A.; Rozhinskaya, L.; et al. Circulating Plasma microRNA to Differentiate Cushing’s Disease From Ectopic ACTH Syndrome. Front. Endocrinol. 2020, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Gu, C.; Yang, Y.; Xue, J.; Sun, Y.; Jian, F.; Chen, D.; Bian, L.; Sun, Q. TSP-1 Is Downregulated and Inversely Correlates with miR-449c Expression in Cushing’s Disease. J. Cell Mol. Med. 2019, 23, 4097–4110. [Google Scholar] [CrossRef]
- Perge, P.; Decmann, Á.; Pezzani, R.; Bancos, I.; Fassina, A.; Luconi, M.; Canu, L.; Tóth, M.; Boscaro, M.; Patócs, A.; et al. Analysis of Circulating Extracellular Vesicle-Associated microRNAs in Cortisol-Producing Adrenocortical Tumors. Endocrine 2018, 59, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Yang, J.; Wang, G.; Wang, C.; Zhang, H. Bioinformatic Analysis of Gene Expression Profiles of Pituitary Gonadotroph Adenomas. Oncol. Lett. 2018, 15, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.T.; Lee, I.N.; Huang, C.; Huang, H.C.; Wu, Y.P.; Chong, Z.Y.; Chen, J.C. ADAM17 Confers Temozolomide Resistance in Human Glioblastoma Cells and miR-145 Regulates Its Expression. Int. J. Mol. Sci. 2023, 24, 7703. [Google Scholar] [CrossRef]
- Whitelaw, B.C. How and When to Use Temozolomide to Treat Aggressive Pituitary Tumours. Endocr. Relat. Cancer 2019, 26, R545–R552. [Google Scholar] [CrossRef] [PubMed]
- Beylerli, O.; Beeraka, N.M.; Gareev, I.; Pavlov, V.; Yang, G.; Liang, Y.; Aliev, G. MiRNAs as Noninvasive Biomarkers and Therapeutic Agents of Pituitary Adenomas. Int. J. Mol. Sci. 2020, 21, 7287. [Google Scholar] [CrossRef]
- Németh, K.; Darvasi, O.; Likó, I.; Szücs, N.; Czirják, S.; Reiniger, L.; Szabó, B.; Krokker, L.; Pállinger, É.; Igaz, P.; et al. Comprehensive Analysis of Circulating miRNAs in the Plasma of Patients With Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 4151–4168. [Google Scholar] [CrossRef]
- Boresowicz, J.; Kober, P.; Rusetska, N.; Maksymowicz, M.; Paziewska, A.; Dąbrowska, M.; Zeber-Lubecka, N.; Kunicki, J.; Bonicki, W.; Ostrowski, J.; et al. The Search of miRNA Related to Invasive Growth of Nonfunctioning Gonadotropic Pituitary Tumors. Int. J. Endocrinol. 2020, 2020, 3730657. [Google Scholar] [CrossRef]
- Duan, J.; Lu, G.; Li, Y.; Zhou, S.; Zhou, D.; Tao, H. miR-137 Functions as a Tumor Suppressor Gene in Pituitary Adenoma by Targeting AKT2. Int. J.Clin. Exp. Pathol. 2019, 12, 1557–1564. [Google Scholar]
- Elston, M.S.; Gill, A.J.; Conaglen, J.V.; Clarkson, A.; Shaw, J.M.; Law, A.J.; Cook, R.J.; Little, N.S.; Clifton-Bligh, R.J.; Robinson, B.G.; et al. Wnt Pathway Inhibitors Are Strongly Down-Regulated in Pituitary Tumors. Endocrinology 2008, 149, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Qian, L.; Jing, G.; Jie, F.; Xiaosong, S.; Chunhui, L.; Yangfang, L.; Guilin, L.; Gao, H.; Yazhuo, Z. Aberrant Expression of the sFRP and WIF1 Genes in Invasive Non-Functioning Pituitary Adenomas. Mol. Cell Endocrinol. 2018, 474, 168–175. [Google Scholar] [CrossRef]
- Du, Q.; Hu, B.; Feng, Y.; Wang, Z.; Wang, X.; Zhu, D.; Zhu, Y.; Jiang, X.; Wang, H. circOMA1-Mediated miR-145-5p Suppresses Tumor Growth of Nonfunctioning Pituitary Adenomas by Targeting TPT1. J. Clin. Endocrinol. Metab. 2019, 104, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
- Gilyazova, I.; Asadullina, D.; Kagirova, E.; Sikka, R.; Mustafin, A.; Ivanova, E.; Bakhtiyarova, K.; Gilyazova, G.; Gupta, S.; Khusnutdinova, E.; et al. MiRNA-146a—A Key Player in Immunity and Diseases. Int. J. Mol. Sci. 2023, 24, 12767. [Google Scholar] [CrossRef]
- Zacharjasz, J.; Sztachera, M.; Smuszkiewicz, M.; Piwecka, M. Micromanaging the Neuroendocrine System—A Review on miR-7 and the Other Physiologically Relevant miRNAs in the Hypothalamic-Pituitary Axis. FEBS Lett. 2024, 598, 1557–1575. [Google Scholar] [CrossRef]
- Niedra, H.; Peculis, R.; Litvina, H.D.; Megnis, K.; Mandrika, I.; Balcere, I.; Romanovs, M.; Steina, L.; Stukens, J.; Breiksa, A.; et al. Genome Wide Analysis of Circulating miRNAs in Growth Hormone Secreting Pituitary Neuroendocrine Tumor Patients’ Plasma. Front. Oncol. 2022, 12, 894317. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Imani, S.; Wu, M.Y.; Wu, R.C. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers 2023, 15, 4723. [Google Scholar] [CrossRef]
- Liang, S.; Chen, L.; Huang, H.; Zhi, D. The Experimental Study of miRNA in Pituitary Adenomas. Turk. Neurosurg. 2013, 23, 721–727. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, E.L.; Zhou, H.M.; Yoshimoto, K.; Qian, Z.R. MicroRNAs in Human Pituitary Adenomas. Int. J. Endocrinol. 2014, 2014, 435171. [Google Scholar] [CrossRef]
- Butz, H.; Likó, I.; Czirják, S.; Igaz, P.; Khan, M.M.; Zivkovic, V.; Bálint, K.; Korbonits, M.; Rácz, K.; Patócs, A. Down-Regulation of Wee1 Kinase by a Specific Subset of microRNA in Human Sporadic Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2010, 95, E181–E191. [Google Scholar] [CrossRef]
- García-Martínez, A.; Fuentes-Fayos, A.C.; Fajardo, C.; Lamas, C.; Cámara, R.; López-Muñoz, B.; Aranda, I.; Luque, R.M.; Picó, A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. J. Clin. Med. 2020, 9, 1838. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.W.; Li, Y.L.; Hou, Y.J.; Xu, Z.D.; Li, Y.Z.; Chang, J.Y. MicroRNA-543 Promotes Cell Invasion and Impedes Apoptosis in Pituitary Adenoma via Activating the Wnt/β-Catenin Pathway by Negative Regulation of Smad7. Biosci. Biotechnol. Biochem. 2019, 83, 1035–1044. [Google Scholar] [CrossRef]
- Gutschner, T.; Diederichs, S. The Hallmarks of Cancer: A Long Non-Coding RNA Point of View. RNA Biol. 2012, 9, 703–719. [Google Scholar] [CrossRef]
- George, T.P.; Subramanian, S.; Supriya, M.H. A Brief Review of Noncoding RNA. Egypt. J. Med. Hum. Genet. 2024, 25, 98. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Qi, Z.; Huang, C.; Zhang, N.; Zhang, W.; Li, Y.; Qiu, M.; Fang, Q.; Hui, G. Genome-Wide Identification of lncRNAs and mRNAs Differentially Expressed in Non-Functioning Pituitary Adenoma and Construction of an lncRNA-mRNA Co-Expression Network. Biol. Open 2019, 8, bio037127. [Google Scholar] [CrossRef]
- Mezzomo, L.C.; Gonzales, P.H.; Pesce, F.G.; Kretzmann Filho, N.; Ferreira, N.P.; Oliveira, M.C.; Kohek, M.B. Expression of Cell Growth Negative Regulators MEG3 and GADD45γ Is Lost in Most Sporadic Human Pituitary Adenomas. Pituitary 2012, 15, 420–427. [Google Scholar] [CrossRef]
- Gejman, R.; Batista, D.L.; Zhong, Y.; Zhou, Y.; Zhang, X.; Swearingen, B.; Stratakis, C.A.; Hedley-Whyte, E.T.; Klibanski, A. Selective Loss of MEG3 Expression and Intergenic Differentially Methylated Region Hypermethylation in the MEG3/DLK1 Locus in Human Clinically Nonfunctioning Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2008, 93, 4119–4125. [Google Scholar] [CrossRef]
- Zhao, J.; Dahle, D.; Zhou, Y.; Zhang, X.; Klibanski, A. Hypermethylation of the Promoter Region Is Associated with the Loss of MEG3 Gene Expression in Human Pituitary Tumors. J. Clin. Endocrinol. Metab. 2005, 90, 2179–2186. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Liu, C.; Yu, S.; Zhang, Y. Expression of the Long Non-Coding RNAs MEG3, HOTAIR, and MALAT-1 in Non-Functioning Pituitary Adenomas and Their Relationship to Tumor Behavior. Pituitary 2015, 18, 42–47. [Google Scholar] [CrossRef]
- Lu, T.; Yu, C.; Ni, H.; Liang, W.; Yan, H.; Jin, W. Expression of the Long Non-Coding RNA H19 and MALAT-1 in Growth Hormone-Secreting Pituitary Adenomas and Its Relationship to Tumor Behavior. Int. J. Dev. Neurosci. 2018, 67, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.R.; Yan, L.; Liu, Y.T.; Cao, L.; Guo, Y.H.; Zhang, Y.; Yao, H.; Cai, L.; Shang, H.B.; Rui, W.W.; et al. Inhibition of mTORC1 by lncRNA H19 via Disrupting 4E-BP1/Raptor Interaction in Pituitary Tumours. Nat. Commun. 2018, 9, 4624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.T.; Tang, H.; Xie, W.Q.; Yao, H.; Gu, W.T.; Zheng, Y.Z.; Shang, H.B.; Wang, Y.; Wei, Y.X.; et al. Exosome-Transmitted lncRNA H19 Inhibits the Growth of Pituitary Adenoma. J. Clin. Endocrinol. Metab. 2019, 104, 6345–6356. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, D.; Mussnich, P.; Sepe, R.; Raia, M.; Del Vecchio, L.; Cappabianca, P.; Pellecchia, S.; Petrosino, S.; Saggio, S.; Solari, D.; et al. RPSAP52 lncRNA Is Overexpressed in Pituitary Tumors and Promotes Cell Proliferation by Acting as miRNA Sponge for HMGA Proteins. J. Mol. Med. 2019, 97, 1019–1032. [Google Scholar] [CrossRef]
- Wang, C.; Tan, C.; Wen, Y.; Zhang, D.; Li, G.; Chang, L.; Su, J.; Wang, X. FOXP1-Induced lncRNA CLRN1-AS1 Acts as a Tumor Suppressor in Pituitary Prolactinoma by Repressing the Autophagy via Inactivating Wnt/β-Catenin Signaling Pathway. Cell Death Dis. 2019, 10, 499. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Abbasi, F.; Nicknam, A.; Hussen, B.M.; Eslami, S.; Akbari Dilmaghani, N.; Taheri, M.; Sharifi, G. Dysregulation of PVT1 and NEAT1 lncRNAs in Pituitary Adenomas. Pathol. Res. Pract. 2023, 248, 154573. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.; Cui, H. Long Noncoding RNA CCAT2 Is Activated by E2F1 and Exerts Oncogenic Properties by Interacting with PTTG1 in Pituitary Adenomas. Am. J. Cancer Res. 2018, 8, 245–255. [Google Scholar]
- Sanchez, A.; Lhuillier, J.; Grosjean, G.; Ayadi, L.; Maenner, S. The Long Non-Coding RNA ANRIL in Cancers. Cancers 2023, 15, 4160. [Google Scholar] [CrossRef]
- Beylerli, O.; Khasanov, D.; Gareev, I.; Valitov, E.; Sokhatskii, A.; Wang, C.; Pavlov, V.; Khasanova, G.; Ahmad, A. Differential Non-Coding RNAs Expression Profiles of Invasive and Non-Invasive Pituitary Adenomas. Noncoding RNA Res. 2021, 6, 115–122. [Google Scholar] [CrossRef]
- Li, J.; Qian, Y.; Zhang, C.; Wang, W.; Qiao, Y.; Song, H.; Li, L.; Guo, J.; Lu, D.; Deng, X. LncRNA LINC00473 Is Involved in the Progression of Invasive Pituitary Adenoma by Upregulating KMT5A via ceRNA-Mediated miR-502-3p Evasion. Cell Death Dis. 2021, 12, 580. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, F.; Fan, H.; Wang, H.; Wang, Q.; Yang, J.; Song, T. Long Non-Coding RNA TUG1/microRNA-187-3p/TESC Axis Modulates Progression of Pituitary Adenoma via Regulating the NF-κB Signaling Pathway. Cell Death Dis. 2021, 12, 524. [Google Scholar] [CrossRef]
- Lu, G.; Duan, J.; Zhou, D. Long-Noncoding RNA IFNG-AS1 Exerts Oncogenic Properties by Interacting with Epithelial Splicing Regulatory Protein 2 (ESRP2) in Pituitary Adenomas. Pathol. Res. Pract. 2018, 214, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, C.; Xie, W.; Wang, Z.; Gao, H.; Cao, L.; Hao, L.; Zhang, Y. Long Non-Coding RNA C5orf66-AS1 is Downregulated in Pituitary Null Cell Adenomas and Is Associated with Their Invasiveness. Oncol. Rep. 2017, 38, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Butz, H. Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors-Two Sides of the Same Coin. Int. J. Mol. Sci. 2022, 23, 5122. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Chen, L.L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, W.; Feng, Q.; Hao, B.; Cheng, C.; Cheng, Y.; Li, Y.; Fan, X.; Chen, Z. Comprehensive Circular RNA Profiling Reveals That Hsa_circ_0001368 Is Involved in Growth Hormone-Secreting Pituitary Adenoma Development. Brain Res. Bull. 2020, 161, 65–77. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Du, Q.; Bian, P.; Chen, Y.; Liu, Z.; Zheng, J.; Sai, K.; Mou, Y.; Chen, Z.; et al. CircVPS13C Promotes Pituitary Adenoma Growth by Decreasing the Stability of IFITM1 mRNA via Interacting with RRBP1. Oncogene 2022, 41, 1550–1562. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Miao, Y.; Shen, Y.; Li, M.; Gong, L.; Wang, H.; He, Y.; Gao, H.; Liu, Q.; et al. A two-circRNA Signature Predicts Tumour Recurrence in Clinical Non-functioning Pituitary Adenoma. Oncol. Rep. 2019, 41, 113–124. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Wan, D.; Ma, Q.; Liu, Q.; Li, J.; Li, Z.; Gao, Y.; Jiang, G.; Ma, L.; et al. Circular RNA In Invasive and Recurrent Clinical Nonfunctioning Pituitary Adenomas: Expression Profiles and Bioinformatic Analysis. World Neurosurg. 2018, 117, e371–e386. [Google Scholar] [CrossRef]
- Hu, T.Y.; Zhu, Q.X.; Duan, Q.Y.; Jin, X.Y.; Wu, R. CircABCB10 Promotes the Proliferation and Migration of Lung Cancer Cells through Down-Regulating microRNA-217 Expression. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6157–6165. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, N.; Zhang, S.; Zhou, P.; Lv, L.; Richard, S.A.; Ma, W.; Chen, C.; Wang, X.; Huang, S.; et al. Differential Circular RNA Expression Profiles of Invasive and Non-Invasive Non-Functioning Pituitary Adenomas: A Microarray Analysis. Med. Baltim. 2019, 98, e16148. [Google Scholar] [CrossRef]
- Lisiewicz, P.; Szelachowska, M.; Krętowski, A.J.; Siewko, K. The Prospective Roles of Exosomes in Pituitary Tumors. Front. Endocrinol. 2024, 15, 1482756. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, X.; Liu, C.; Zhao, Y. Extracellular Vesicles in Cancers: Mechanisms, Biomarkers, and Therapeutic Strategies. MedComm 2024, 5, e70009. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.S.; Cao, K.C.; Bao, X.J.; Yu, J. Identification of CDK6 and RHOU in Serum Exosome as Biomarkers for the Invasiveness of Non-Functioning Pituitary Adenoma. Chin. Med. Sci. J. 2019, 34, 168–176. [Google Scholar] [CrossRef]
- Lyu, L.; Li, H.; Chen, C.; Yu, Y.; Wang, L.; Yin, S.; Hu, Y.; Jiang, S.; Ye, F.; Zhou, P. Exosomal miRNA Profiling Is a Potential Screening Route for Non-Functional Pituitary Adenoma. Front. Cell Dev. Biol. 2021, 9, 771354. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhu, D.; Li, W.; Zhang, G.; Zhang, H.; Peng, Q. Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation. Mol. Neurobiol. 2025, 62, 2212–2229. [Google Scholar] [CrossRef]
- Wan, H.; Gao, X.; Yang, Z.; Wei, L.; Qu, Y.; Liu, Q. Exosomal CircMFN2 Enhances the Progression of Pituitary Adenoma via the MiR-146a-3p/TRAF6/NF-κB Pathway. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2025, 86, 135–147. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.; Kang, X.; Liu, P.; Qian, L.; Shi, Y.; Osman, R.A.; Yang, Z.; Zhang, G. EMT-Related Markers in Serum Exosomes Are Potential Diagnostic Biomarkers for Invasive Pituitary Adenomas. Neuropsychiatr. Dis. Treat. 2021, 17, 3769–3780. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Bao, X.; Feng, M.; Xing, B.; Lian, W.; Yao, Y.; Wang, R. Diagnosis of Invasive Non-Functional Pituitary Adenomas Using Exosomal Biomarkers. Clin. Chim. Acta 2022, 529, 25–33. [Google Scholar] [CrossRef]
Biomarker | General Characteristics | Diagnostic Advantages | Diagnostic Limitations | Prognostic Advantages | Prognostic Limitations | Therapeutic Potential | Therapeutic Challenges |
---|---|---|---|---|---|---|---|
CTCs | Rare in PitNETs; detached tumor cells in blood; difficult to isolate due to EMT. | Potential early biomarker; detectable even in benign tumors. | Extremely rare; phenotypic changes impair detection. | May indicate metastatic potential if found. | Unclear utility; more studies needed. | Theoretically enables monitoring response to treatment. | No established protocols; research phase. |
ctDNA | Short half-life; reflects tumor’s genetic/epigenetic profile; allows real-time monitoring. | Allows non-invasive genetic profiling; dynamic tracking. | Low concentration in benign tumors; technical challenges in detection. | Reflects tumor burden and heterogeneity; correlates with progression. | Limited clinical data; interpretation variability. | Changes post-treatment can indicate therapy efficacy. | Not validated in PitNET clinical practice. |
cfRNA | Includes coding and non-coding RNAs (miRNA, lncRNA, circRNA); high stability in fluids. | Highly stable; specific expression profiles in subtypes. | Complex processing; not yet standard in clinical use. | Subtype-specific expression; potential to indicate aggression. | Role in prognosis still under investigation. | Can reveal resistance mechanisms (e.g., miR-93 in cabergoline resistance). | Many targets not yet clinically actionable. |
Exosomes | Extracellular vesicles; carry nucleic acids, proteins; reflect tumor status and origin. | Easy to isolate; rich in specific biomarkers (e.g., miR, mRNA). | Requires advanced isolation methods; technical complexity. | Altered profiles (e.g., miR-486-5p) associated with recurrence risk. | Lack of standardization; needs validation. | Therapeutic targets (e.g., exosomal miR, mRNA) identified in resistant tumors. | Experimental stage; more validation required. |
Genetic Alteration/Syndrome | Clinicopathological Characteristics |
---|---|
MEN1 mutation (MEN1 syndrome) | Associated with functional tumors; more invasive, aggressive, drug-resistant. |
CDKN1B mutation (MEN4 syndrome) | MEN1-like phenotype; loss of cell cycle control, aggressive tumor behavior. |
PRKAR1A mutation (Carney Complex) | Leads to GH-secreting tumors; linked to cAMP pathway activation and somatotroph tumorigenesis. |
SDHx/SDHAF2 mutations (3PAs syndrome) | Commonly PRL/GH-secreting or NF-PitNETs; aggressive with poor therapeutic response. |
DICER1 mutation (DICER1 syndrome) | Leads to rare tumors like pituitary blastoma in infancy; high aggressiveness. |
GPR101 duplication (X-LAG syndrome) | Early-onset GH/PRL-secreting tumors or hyperplasia; poor response to therapy. |
AIP mutation (FIPA syndrome) | Aggressive GH-secreting tumors; treatment-resistant; early-onset. |
GNAS mutation | Somatotroph tumors; increased cAMP and GH; smaller, less invasive, better SSA (somatostatin analogue) response. |
PTTG1 overexpression | Associated with increased proliferation and aggressiveness in various subtypes. |
STAT3 overexpression | GH hypersecretion; treatment resistance; aggressive behavior. |
CDH23 mutation | Somatotroph tumors; impaired adhesion; Wnt pathway involvement. |
SLC20A1 overexpression | Correlates with tumor size, recurrence, invasiveness in GH tumors. |
PRDM2 loss | Loss linked to GH tumorigenesis; affects c-Myc regulation. |
USP8 mutation | Corticotroph tumors; smaller size, higher ACTH; increased recurrence but better surgical outcome. |
USP48 mutation | Increases ACTH via NF-κB pathway; linked to corticotroph tumor progression. |
BRAF mutation | Activates POMC transcription; corticotroph tumors; ACTH overproduction. |
TP53 mutation | Found in aggressive corticotroph tumors; poor prognosis. |
SF3B1 mutation | Prolactinomas; aberrant splicing affecting estrogen signaling; tumorigenic. |
HMGA1/HMGA2 overexpression | Overexpression in invasive GH and PRL tumors; chromatin regulation. |
PIK3CA mutation | Promotes invasiveness; activates PI3K/Akt pathway in various PitNET subtypes. |
Genetic Alteration/Syndrome | Associated PitNET Subtype | Clinicopathological Characteristics |
---|---|---|
GNAS mutation | Somatotroph | Increased cAMP and GH; smaller, less invasive; better response to SSAs. |
PTTG1 overexpression | Somatotroph | Linked to proliferation; aggressive tumors. |
STAT3 overexpression | Somatotroph | Leads to GH hypersecretion and therapy resistance. |
CDH23 mutation | Somatotroph | Impaired cell adhesion; Wnt pathway deregulation. |
SLC20A1 overexpression | Somatotroph | Correlated with tumor size, invasiveness, and recurrence. |
PRDM2 loss | Somatotroph | Loss affects c-Myc regulation; involved in tumorigenesis. |
USP8 mutation | Corticotroph | ACTH excess; better surgical remission but higher recurrence. |
USP48 mutation | Corticotroph | Promotes ACTH via NF-κB; progressive corticotroph tumors. |
BRAF mutation | Corticotroph | Activates ACTH transcription; associated with corticotroph tumors. |
TP53 mutation | Corticotroph | Linked with poor outcomes; aggressive corticotroph tumors. |
SF3B1 mutation | Prolactinoma | Aberrant splicing; drives estrogen pathway in prolactinomas. |
MEN1 mutation | Various (familial) | Aggressive, drug-resistant tumors in familial cases. |
CDKN1B mutation | Various (familial) | Loss of cell cycle control; MEN1-like phenotype. |
PRKAR1A mutation | GH-secreting | Activates cAMP pathway; GH-producing tumors. |
SDHx/SDHAF2 mutations | PRL/GH-secreting or NF-PitNET | Aggressive, treatment-resistant; PRL or GH tumors. |
DICER1 mutation | Pituitary blastoma | Rare aggressive tumor in infants; pituitary blastoma. |
GPR101 duplication | GH/PRL-secreting or hyperplasia | Early-onset GH/PRL tumors; poor therapeutic response. |
AIP mutation | GH-secreting | Early-onset, aggressive GH tumors; SSA resistance. |
PIK3CA mutation | Multiple (ACTH, PRL, NF) | Increased invasiveness via PI3K/Akt; multiple subtypes. |
HMGA1/HMGA2 overexpression | GH and PRL PitNETs | Chromatin remodeling; overexpression in invasive GH and PRL tumors. |
Epigenetic Alteration | Associated PitNET Subtype | Clinicopathological Characteristics |
---|---|---|
NNAT hypermethylation | Various subtypes | Loss of proliferation inhibition; found in ~70% of PitNETs. |
CDH13/CDH1 hypermethylation | Various subtypes | Loss of adhesion; associated with tumor aggressiveness. |
DAPK gene silencing | Various (invasive tumors) | Linked to apoptosis evasion; more aggressive biological behavior. |
GADD45g loss | Somatotroph/PRL-secreting | Loss of tumor suppressor gene; promotes growth in GH and PRL tumors. |
LGALS3 methylation | PRL-secreting | Oncogene activity; regulates migration, adhesion, and apoptosis. |
RASSF1A hypermethylation | All subtypes (especially aggressive) | Correlated with high Ki-67 and aggressiveness. |
POMC promoter demethylation | Corticotroph | Correlates with ACTH overproduction; USP8-mutant corticotrophs. |
FGFR2 methylation/MAGE-3 hypomethylation | Corticotroph | FGFR2 silenced (tumor suppressor); MAGE-3 overexpressed (oncogene). |
TSP-1 downregulation (via miR-449c) | Corticotroph | TSP-1 suppresses proliferation; inhibited by miR-449c in Cushing’s disease. |
CDKN2A promoter methylation | Gonadotroph, lactotroph, null cell PAs | Inactivation of p16 pathway; promotes proliferation and progression. |
MEG3 hypermethylation | Non-functioning | Loss of tumor suppressor; linked to progression and poor prognosis. |
ENC1 methylation | Non-functioning | Lower expression in invasive NFPAs; indicates aggressive behavior. |
FAM90A1 and ING2 methylation | Non-functioning | Linked to recurrence risk in NF-PitNETs. |
cfRNAs | Associated PitNET Subtype | Clinicopathological Characteristics |
---|---|---|
miR-21 (exosomal) | Somatotroph | Promotes osteoblast proliferation in acromegaly; marker for disease activity. |
miR-29c-3p | Somatotroph | Lower in uncontrolled acromegaly; potential monitoring marker. |
miR-423-5p | Somatotroph | Reduces GH secretion; inhibits proliferation and migration in GH-secreting tumors. |
miR-34a | Various | Tumor suppressor; downregulated in aggressive tumors. |
miR-93 | Prolactinoma | Mediates cabergoline resistance; regulates autophagy via ATG7. |
miR-137 | Prolactinoma/Non-functioning | Downregulates Wnt pathway; loss promotes invasiveness. |
miR-9 | Various | Promotes EMT; linked to aggressive phenotype. |
miR-145-5p | Non-functioning/ACTH | Downregulation linked to invasiveness; potential TMZ sensitizer. |
miR-122-5p | Corticotroph | Correlated with ACTH and treatment response in corticotroph tumors. |
miR-486-5p (exosomal) | Non-functioning | Predicts recurrence in NF-PitNETs; MAPK pathway regulation. |
miR-320a | Somatotroph | Downregulated in somatotrophs; marker of disease progression. |
miR-143-3p | Gonadotroph | Reduced post-surgery; correlates with tumor behavior. |
lncRNA MEG3 | Non-functioning | Tumor suppressor; hypermethylated in NFPAs; loss linked to progression. |
lncRNA HOTAIR | Non-functioning | Oncogenic role; upregulated in invasive NFPAs. |
lncRNA H19 | Prolactinoma/Somatotroph | Suppresses proliferation and enhances DA sensitivity; biomarker and target. |
lncRNA RPSAP52 | GH/PRL-secreting | Sponges miR-15a/16; promotes HMGA2; overexpressed in GH/PRL tumors. |
lncRNA CLRN1-AS1 | Prolactinoma | Suppresses Wnt pathway; acts as a tumor suppressor. |
lncRNA THBS1 | Corticotroph | Suppresses TSP-1; involved in Cushing’s disease progression. |
lncRNA ANRIL | Invasive PitNET | Marker of invasiveness; elevated in invasive PitNETs. |
lncRNA LINC00473 | Invasive PitNET | Promotes proliferation via cyclin D1/CDK2; invasive tumors. |
circOMA1 | Non-functioning | Sponges miR-145-5p; promotes invasion in NFPAs. |
circVPS13C | Non-functioning | Upregulated in high-risk NFPAs; downregulated post-op. |
hsa_circ_0000066/hsa_circ_0069707 | Non-functioning | Two-circRNA signature predicts recurrence. |
hsa_circRNA_102597 | Non-functioning | Downregulated in invasive tumors; potential severity marker. |
Exosome Biomarker/Component | Associated PitNET Subtype | Clinicopathological Significance |
---|---|---|
Exosomal mRNA: CDK6 | Non-functioning | Upregulated in invasive NF-PitNETs; cell cycle regulator. |
Exosomal mRNA: RHOU | Non-functioning | Upregulated in invasive NF-PitNETs; involved in cytoskeletal remodeling. |
Exosomal mRNA: SPIRE2 | Non-functioning | Linked to invasive behavior; actin nucleation function. |
Exosomal miR-486-5p | Non-functioning | Most competent predictive biomarker for progression/recurrence; targets MAPK pathways. |
Exosomal miR-423-5p | Somatotroph | Downregulated in somatotroph tumors; regulates GH and cell proliferation. |
Exosomal miR-652-3p_R+1 | Non-functioning | Altered in NF-PitNETs; potential diagnostic marker. |
Exosomal miR-1180-3p | Non-functioning | Altered in NF-PitNETs; prognostic significance unclear. |
Exosomal miR-151a-5p | Non-functioning | Altered in NF-PitNETs; contributes to the exosomal signature. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tataranu, L.G. Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy. Int. J. Mol. Sci. 2025, 26, 4058. https://doi.org/10.3390/ijms26094058
Tataranu LG. Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy. International Journal of Molecular Sciences. 2025; 26(9):4058. https://doi.org/10.3390/ijms26094058
Chicago/Turabian StyleTataranu, Ligia Gabriela. 2025. "Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy" International Journal of Molecular Sciences 26, no. 9: 4058. https://doi.org/10.3390/ijms26094058
APA StyleTataranu, L. G. (2025). Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy. International Journal of Molecular Sciences, 26(9), 4058. https://doi.org/10.3390/ijms26094058