Vacant Bivalve Boreholes Increase Invertebrate Species Richness in a Physically Harsh, Low Intertidal Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Organisms
2.2. Sampling
2.3. Data Analysis
3. Results
3.1. Invertebrate Species Composition and Richness in SAMPLEs from Petricola-Engineered and Unengineered Patches
3.2. Invertebrate Species Richness as a Function of Sampled Area
3.3. Invertebrate Species Composition in Petricola-Engineered Patches and Mussel Beds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bertness, M.D.; Hacker, S.D. Physical stress and positive associations among marsh plants. Am. Nat. 1994, 144, 363–372. [Google Scholar] [CrossRef]
- Crain, C.M.; Bertness, M.D. Ecosystem engineering across environmental gradients: Implications for conservation and management. BioScience 2006, 56, 211–218. [Google Scholar] [CrossRef]
- Badano, E.; Jones, C.; Cavieres, L.; Wright, J. Assessing impacts of ecosystem engineers on community organization: A general approach illustrated by effects of a high-Andean cushion plant. Oikos 2006, 115, 369–385. [Google Scholar] [CrossRef]
- Silliman, B.R.; Bertness, M.D.; Altieri, A.H.; Griffin, J.N.; Bazterrica, M.C.; Hidalgo, F.J.; Crain, C.M.; Reyna, M.V. Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PLoS ONE 2011, 6, e24502. [Google Scholar] [CrossRef] [PubMed]
- Bagur, M.; Gutiérrez, J.L.; Arribas, L.P.; Palomo, M.G. Complementary influences of co-occurring physical ecosystem engineers on species richness: Insights from a Patagonian rocky shore. Biodivers. Conserv. 2016, 25, 2787–2802. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
- Gálvez Bravo, L.; Belliure, J.; Rebollo, S. European rabbits as ecosystem engineers: Warrens increase lizard density and diversity. Biodivers. Conserv. 2009, 18, 869–885. [Google Scholar] [CrossRef]
- Bertness, M.D.; Leonard, G.H.; Levine, J.M.; Schmidt, P.R.; Ingraham, A.O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 1999, 80, 2711. [Google Scholar] [CrossRef]
- Castilla, J.; Lagos, N.; Cerda, M. Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Mar. Ecol. Prog. Ser. 2004, 268, 119–130. [Google Scholar] [CrossRef]
- Borthagaray, A.I.; Carranza, A. Mussels as ecosystem engineers: Their contribution to species richness in a rocky littoral community. Acta Oecol. 2007, 31, 243–250. [Google Scholar] [CrossRef]
- Foster, B.A. Desiccation as a factor in the intertidal zonation of barnacles. Mar. Biol. 1971, 8, 12–29. [Google Scholar] [CrossRef]
- Garrity, S.D. Some adaptations of gastropods to physical stress on a tropical rocky shore. Ecology 1984, 65, 559–574. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Helmuth, B.S.T. Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol. Oceanogr. 2003, 48, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- Teagle, H.; Hawkins, S.J.; Moore, P.J.; Smale, D.A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 2017, 492, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Bertness, M.D.; Crain, C.M.; Silliman, B.R.; Bazterrica, M.C.; Reyna, M.V.; Hildago, F.; Farina, J.K. The community structure of Western Atlantic Patagonian rocky shores. Ecol. Monogr. 2006, 76, 439–460. [Google Scholar] [CrossRef]
- Connell, J.H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 1961, 42, 710–723. [Google Scholar] [CrossRef]
- Connell, J.H. Community interactions on marine rocky intertidal shores. Annu. Rev. Ecol. Syst. 1972, 3, 169–192. [Google Scholar] [CrossRef]
- Dayton, P.K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 1971, 41, 351–389. [Google Scholar] [CrossRef]
- Bertness, M.D.; Leonard, G.H. The role of positive interactions in communities: Lessons from intertidal habitats. Ecology 1997, 78, 1976. [Google Scholar] [CrossRef]
- Coan, E.V. Recent species of the genus Petricola in the eastern Pacific (Bivalvia: Veneroidea). Veliger 1997, 40, 298–340. [Google Scholar]
- Bagur, M.; Gutiérrez, J.L.; Arribas, L.P.; Palomo, M.G. Endolithic invertebrate communities and bioerosion rates in southwestern Atlantic intertidal consolidated sediments. Mar. Biol. 2014, 161, 2279–2292. [Google Scholar] [CrossRef]
- Scarabino, F.; Zelaya, D.G.; Orensanz, J.M.; Ortega, L.; Defeo, O.; Schwindt, E.; Carranza, A.; Zaffaroni, J.C.; Martínez, G.; Scarabino, V. Cold, warm, temperate and brackish: Bivalve biodiversity in a complex oceanographic scenario (Uruguay, southwestern Atlantic). Am. Malacol. Bull. 2015, 33, 284–301. [Google Scholar] [CrossRef]
- Sunamura, T. Rocky coast processes: With special reference to the recession of soft rock cliffs. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Zavala, C.; Freije, H. Geología de los acantilados. In Las Mesetas Patagónicas que Caen al Mar: La Costa Rionegrina; Massera, R.F., Lew, J., Serra Pairano, G., Eds.; Gobierno de Río Negro: Viedma, Argentina, 2005; pp. 187–199. ISBN 987-22604-0-0. [Google Scholar]
- Andreis, R.R. Petrografía y Paleocorrientes de la Formación Río Negro (Tramo General Conesa—Boca del Río Negro). Ph.D. Thesis, Facultad de Ciencias Naturales y Museo, La Plata, Argentina, 1965; pp. 245–310. [Google Scholar]
- Arribas, L.P.; Gutiérrez, J.L.; Bagur, M.; Soria, S.A.; Penchazadeh, P.E.; Palomo, M.G. Variations in aggregate descriptors of rocky shore communities: A test of synchrony across spatial scales. Mar. Biol. 2019, 166, 44. [Google Scholar] [CrossRef]
- Arribas, L.P.; Bagur, M.; Klein, E.; Penchaszadeh, P.E.; Palomo, M.G. Geographic distribution of two mussel species and associated assemblages along the northern Argentinean coast. Aquat. Biol. 2013, 18, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Arribas, L.P.; Bagur, M.; Gutiérrez, J.L.; Palomo, M.G. Matching spatial scales of variation in mussel recruitment and adult densities across southwestern Atlantic rocky shores. J. Sea Res. 2015, 95, 16–21. [Google Scholar] [CrossRef]
- Trovant, B.; Orensanz, J.L.; Ruzzante, D.E.; Stotz, W.; Basso, N.G. Scorched mussels (Bivalvia: Mytilidae: Brachidontinae) from the temperate coasts of South America: Phylogenetic relationships, trans-Pacific connections and the footprints of Quaternary glaciations. Mol. Phylogenet. Evol. 2015, 82, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Trenhaile, A.S.; Kanyaya, J.I. The role of wave erosion on sloping and horizontal shore platforms in macro-and mesotidal environments. J. Coast. Res. 2007, 298–309. [Google Scholar] [CrossRef]
- Dickson, M.E.; Pentney, R. Micro-seismic measurements of cliff motion under wave impact and implications for the development of near-horizontal shore platforms. Geomorphology 2012, 151, 27–38. [Google Scholar] [CrossRef]
- Paine, R.T. Food web complexity and species diversity. Am. Nat. 1966, 100, 65–75. [Google Scholar] [CrossRef]
- Breitburg, D.L. Residual effects of grazing: Inhibition of competitor recruitment by encrusting coralline algae. Ecology 1984, 65, 1136–1143. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial scaling in ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.-Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. 2013. Available online: http://purl.oclc.org/estimates (accessed on 30 January 2019).
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; pp. 128–129. ISBN 0-13-081542-x. [Google Scholar]
- Chao, A. Non–parametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Almeida-Neto, M.; Guimarães, P.; Guimarães, P.R., Jr.; Loyola, R.D.; Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 2008, 117, 1227–1239. [Google Scholar] [CrossRef]
- Guimarães, P.R., Jr.; Guimarães, P. Improving the analyses of nestedness for large sets of matrices. Environ. Model. Softw. 2006, 21, 1512–1513. [Google Scholar] [CrossRef]
- Menge, B.A.; Lubchenco, J. Community organization in temperate and tropical rocky intertidal habitats: Prey refuges in relation to consumer pressure gradients. Ecol. Monogr. 1981, 51, 429–450. [Google Scholar] [CrossRef]
- Pinn, E.H.; Thompson, R.C.; Hawkins, S.J. Piddocks (Mollusca: Bivalvia: Pholadidae) increase topographical complexity and species diversity in the intertidal. Mar. Ecol. Prog. Ser. 2008, 355, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Hendy, I.W.; Michie, L.; Taylor, B.W. Habitat creation and biodiversity maintenance in mangrove forests: Teredinid bivalves as ecosystem engineers. PeerJ 2014, 2, e591. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.W. The role of Penitella penita (Conrad 1837) (Family Pholadidae) as eroders along the Pacific coast of North America. Ecology 1968, 49, 156–159. [Google Scholar] [CrossRef]
- Hutchings, P.A. Biological destruction of coral reefs, a review. Coral Reefs 1986, 4, 239–252. [Google Scholar] [CrossRef]
- Horonjeff, R.; Patrick, D. Action of marine borers and protective measures against attack. Coast. Eng. Proc. 1951, 1, 8. [Google Scholar] [CrossRef]
Species | Taxa 1 | Adhesion 2 | Unengineered | Petricola-Engineered | Mussel-Engineered |
---|---|---|---|---|---|
Parabunodactys imperfecta | CnA | YES | X | X | |
Acotylea indet. | P | NO | X | ||
Lumbrineris sp. | AP | NO | X | X | |
Perinereis sp. | AP | NO | X | X | |
Syllis gracilis | AP | NO | X | X | |
Syllis prolixa | AP | NO | X | X | |
Cirratulidae | AP | NO | X | ||
Protoarcinella uncinata | AP | NO | X | X | |
Platynereis sp. | AP | NO | X | ||
Boccardia polybranchia | AP | NO | X | ||
Capitella capitata? | AP | NO | X | ||
Nereididae (Allita?) | AP | NO | X | ||
Brachidontes rodriguezii | MB | YES | X | X | X |
Petricola lapicida | MB | NO | X | ||
Mytilus edulis | MB | YES | X | ||
Plaxiphora aurata | MP | YES | X | ||
Siphonaria lessoni | MG | YES | X | ||
Themiste alutacea | S | NO | X | ||
Nemertea indet. | N | NO | X | X | |
Chironomidae indet. | ID | YES | X | X | X |
Balanus glandula | CrCi | YES | X | X | X |
Copepoda indet. | CrCo | NO | X | ||
Hyale grandicornis | CrA | NO | X | ||
Melitidae indet. | CrA | NO | X | ||
Ampithoidae indet. | CrA | NO | X | ||
Corophiidae indet. | CrA | NO | X | X | X |
Exosphaeroma sp. | CrI | NO | X | X | X |
Tanais sp. | CrT | NO | X | X | |
Cyrtograpsus altimanus | CrD | NO | X | X | |
Platyxanthus crenulatus | CrD | NO | X | ||
Total | 7 | 20 | 22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagur, M.; Gutiérrez, J.L.; Arribas, L.P.; Palomo, M.G. Vacant Bivalve Boreholes Increase Invertebrate Species Richness in a Physically Harsh, Low Intertidal Platform. Diversity 2019, 11, 39. https://doi.org/10.3390/d11030039
Bagur M, Gutiérrez JL, Arribas LP, Palomo MG. Vacant Bivalve Boreholes Increase Invertebrate Species Richness in a Physically Harsh, Low Intertidal Platform. Diversity. 2019; 11(3):39. https://doi.org/10.3390/d11030039
Chicago/Turabian StyleBagur, María, Jorge L. Gutiérrez, Lorena P. Arribas, and M. Gabriela Palomo. 2019. "Vacant Bivalve Boreholes Increase Invertebrate Species Richness in a Physically Harsh, Low Intertidal Platform" Diversity 11, no. 3: 39. https://doi.org/10.3390/d11030039
APA StyleBagur, M., Gutiérrez, J. L., Arribas, L. P., & Palomo, M. G. (2019). Vacant Bivalve Boreholes Increase Invertebrate Species Richness in a Physically Harsh, Low Intertidal Platform. Diversity, 11(3), 39. https://doi.org/10.3390/d11030039