A Review of the Effects of Climate Change on Chelonians
Abstract
:1. Introduction
2. Current Effects
2.1. Individuals
2.2. Populations
2.3. Communities
3. Predicted Effects
3.1. Individuals
3.2. Populations
3.3. Communities
4. Research Priorities and Knowledge Gaps
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, C.J. The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 2003, 145, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Cotton, P.A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. USA 2003, 100, 12219–12222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Liang, Z. Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change. PLoS ONE 2012, 7, e31662. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Climate Change and Distribution Shifts in Marine Fishes. Science 2005, 308, 1912–1915. [Google Scholar] [CrossRef] [PubMed]
- Sekercioglu, C.H.; Schneider, S.H.; Fay, J.P.; Loarie, S.R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 2008, 22, 140–150. [Google Scholar] [CrossRef]
- Thuiller, W.; Broennimann, O.; Hughes, G.; Alkemade, J.R.M.; Midgley, G.F.; Corsi, F. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Chang. Biol. 2006, 12, 424–440. [Google Scholar] [CrossRef]
- Gibbon, J.W.; Scott, D.E.; Ryan, T.J.; Buhlmann, K.A.; Tuberville, T.D.; Metts, B.S.; Greene, J.L.; Mills, T.; Leiden, Y.; Poppy, S.; et al. The Global Decline of Reptiles, Déjà Vu Amphibians. BioScience 2000, 50, 653–666. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2019-1. 2019. Available online: http://www.iucnredlist.org (accessed on 17 April 2019).
- Browne, C.L.; Hecnar, S.J. Species loss and shifting population structure of freshwater turtles despite habitat protection. Biol. Conserv. 2007, 138, 421–429. [Google Scholar] [CrossRef]
- Berggren, Å.; Björkman, C.; Bylund, H.; Ayres, M.P. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 2009, 118, 1121–1126. [Google Scholar] [CrossRef]
- Janzen, F.J. Climate change and temperature-dependent sex determination in reptiles. Proc. Natl. Acad. Sci. USA 1994, 91, 7487–7490. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M.M.; Thomas, D.W.; Speakman, J.R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 2002, 418, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T. African dust and the demise of Caribbean Coral Reefs. Geophys. Res. Lett. 2000, 27, 3029–3032. [Google Scholar] [CrossRef] [Green Version]
- Weisrock, D.W.; Janzen, F.J. Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta). Funct. Ecol. 1999, 13, 94–101. [Google Scholar] [CrossRef]
- Du, W.-G.; Ji, X. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. J. Therm. Biol. 2003, 28, 279–286. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Thuiller, W.; Padoa-Schioppa, E. From introduction to the establishment of alien species: Bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 2009, 15, 108–116. [Google Scholar] [CrossRef]
- Lovich, J.; Agha, M.; Meulblok, M.; Meyer, K.; Ennen, J.; Loughran, C.; Madrak, S.; Bjurlin, C. Climatic variation affects clutch phenology in Agassiz’s desert tortoise Gopherus agassizii. Endanger. Species Res. 2012, 19, 63–74. [Google Scholar] [CrossRef]
- Chessman, B.C. Declines of freshwater turtles associated with climatic drying in Australia’s Murray–Darling Basin. Wildl. Res. 2011, 38, 664–671. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Bernstein, N.P.; Phillips, C.A.; Briggler, J.T.; Kangas, D. Declining populations of Yellow Mud Turtles (Kinosternon flavescens) in Iowa, Illinois, and Missouri. Southwest. Nat. 2012, 57, 304–314. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Limpus, C.J.; Hays, G.C. Chapter 2 Vulnerability of Marine Turtles to Climate Change. Adv. Mar. Biol. 2009, 56, 151–211. [Google Scholar] [PubMed]
- Hawkes, L.A.; Broderick, A.C.; Godfrey, M.H.; Godley, B.J. Climate change and marine turtles. Endanger. Species Res. 2009, 7, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.F.H.; Hoekstra, T.W. The confusion between scale-defined levels and conventional levels of organization in ecology. J. Veg. Sci. 1990, 1, 5–12. [Google Scholar] [CrossRef]
- Lidicker, W.Z., Jr. Levels of organization in biology: On the nature and nomenclature of ecology’s fourth level. Biol. Rev. 2008, 83, 71–78. [Google Scholar] [CrossRef]
- Visser, M.E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 2008, 275, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, J.A.; Burkholder, D.A.; Heithaus, M.R.; Fourqurean, J.W.; Fraser, M.W.; Statton, J.; Kendrick, G.A. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Chang. Biol. 2015, 21, 1463–1474. [Google Scholar] [CrossRef]
- Hochscheid, S.; Bentivegna, F.; Hays, G.C. First records of dive durations for a hibernating sea turtle. Biol. Lett. 2005, 1, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotkin, P.T.; Spotila, J.R. Post-nesting migrations of loggerhead turtles Caretta caretta from Georgia, USA: Conservation implications for a genetically distinct subpopulation. Oryx 2002, 36, 396–399. [Google Scholar] [CrossRef]
- Shoop, C.R.; Kenney, R.D. Seasonal Distributions and Abundances of Loggerhead and Leatherback Sea Turtles in Waters of the Northeastern United States. Herpetol. Monogr. 1992, 6, 43–67. [Google Scholar] [CrossRef]
- Milton, S.; Lutz, P. Physiological and Genetic Responses to Environmental Stress. In The Biology of Sea Turtles; Lutz, P., Musick, J.A., Wyneken, J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; Volume II, pp. 163–198. [Google Scholar]
- Refsnider, J.M.; Palacios, M.G.; Reding, D.M.; Bronikowski, A.M. Effects of a novel climate on stress response and immune function in painted turtles (Chrysemys picta). J. Exp. ZooL. Part A: Ecol. Genet. Physiol. 2015, 323, 160–168. [Google Scholar] [CrossRef]
- Kolbe, J.J.; Janzen, F.J. Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats. Ecology 2002, 83, 269–281. [Google Scholar] [CrossRef]
- Santidrián Tomillo, P.; Fonseca, L.; Paladino, F.V.; Spotila, J.R.; Oro, D. Are thermal barriers “higher” in deep sea turtle nests? PLoS ONE 2017, 12, e0177256. [Google Scholar] [CrossRef]
- Wilson, D.S. Nest-Site Selection: Microhabitat Variation and Its Effects on the Survival of Turtle Embryos. Ecology 1998, 79, 1884–1892. [Google Scholar] [CrossRef]
- Zhao, B.; Li, T.; Shine, R.; Du, W.G. Turtle embryos move to optimal thermal environments within the egg. Biol. Lett. 2013, 9, 20130337. [Google Scholar] [CrossRef] [Green Version]
- Du, W.G.; Zhao, B.; Chen, Y.; Shine, R. Behavioral thermoregulation by turtle embryos. Proc. Natl. Acad. Sci. USA 2011, 108, 9513–9515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telemeco, R.S.; Gangloff, E.J.; Cordero, G.A.; Mitchell, T.S.; Bodensteiner, B.L.; Holden, K.G.; Mitchell, S.M.; Polich, R.L.; Janzen, F.J. Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg. Am. Nat. 2016, 188, E13–E27. [Google Scholar] [CrossRef]
- Cordero, G.A.; Telemeco, R.S.; Gangloff, E.J. Reptile embryos are not capable of behavioral thermoregulation in the egg. Evol. Dev. 2018, 20, 40–47. [Google Scholar] [CrossRef] [PubMed]
- McCallum, M.; McCallum, J.; Trauth, S. Predicted climate change may spark box turtle declines. Aphibia-Reptilia 2009, 30, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Marn, N.; Jusup, M.; Legović, T.; Kooijman, S.A.L.M.; Klanjšček, T. Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles. Ecol. Model. 2017, 360, 163–178. [Google Scholar] [CrossRef]
- Layfield, J.A.; Nancekivell, E.G.; Brooks, R.J.; Bobyn, M.L.; Galbraith, D.A. Maternal and environmental influences on growth and survival of embryonic and hatchling snapping turtles (Chelydra serpentina). Can. J. Zool. 1991, 69, 2667–2676. [Google Scholar]
- O’Steen, S. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. J. Exp. Biol. 1998, 201, 439–449. [Google Scholar] [PubMed]
- Willette, D.A.; Tucker, J.K.; Janzen, F.J. Linking climate and physiology at the population level for a key life-history stage of turtles. Can. J. Zool. 2005, 83, 845–850. [Google Scholar] [CrossRef]
- Gibbons, J.W.; Nelson, D.H. The evolutionary significance of delayed emergence from the nest by hatchling turtles. Evolution 1978, 32, 297–303. [Google Scholar] [CrossRef]
- Costanzo, J.P.; Dinkelacker, S.A.; Iverson, J.B.; Lee, J.R.E. Physiological Ecology of Overwintering in the Hatchling Painted Turtle: Multiple-Scale Variation in Response to Environmental Stress. Physiol. Biochem. Zool. 2004, 77, 74–99. [Google Scholar] [CrossRef]
- Reece, J.S.; Passeri, D.; Ehrhart, L.; Hagen, S.C.; Hays, A.; Long, C.; Noss, R.F.; Bilskie, M.; Sanchez, C.; Schwoerer, M.V.; et al. Sea level rise, land use, and climate change influence the distribution of loggerhead turtle nests at the largest USA rookery (Melbourne Beach, Florida). Mar. Ecol. Prog. Ser. 2013, 493, 259–274. [Google Scholar] [CrossRef]
- Franch, M.; Montori, A.; Sillero, N.; Llorente, G.A. Temporal analysis of Mauremys leprosa (Testudines, Geoemydidae) distribution in northeastern Iberia: Unusual increase in the distribution of a native species. Hydrobiologia 2015, 757, 129–142. [Google Scholar] [CrossRef]
- Johnson, S.A.; Bass, A.L.; Libert, B.; Marshall, M.; Fulk, D. Kemp’s Ridley (Lepidochelys kempi) nesting in Florida. Fla. Sci. 1999, 62, 194–204. [Google Scholar]
- Pike, D.A. Forecasting range expansion into ecological traps: Climate-mediated shifts in sea turtle nesting beaches and human development. Glob. Chang. Biol. 2013, 19, 3082–3092. [Google Scholar] [CrossRef] [PubMed]
- McMahon, C.R.; Hays, G.C. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Glob. Chang. Biol. 2006, 12, 1330–1338. [Google Scholar] [CrossRef]
- Ewert, M.A.; Jackson, D.R.; Nelson, C.E. Patterns of temperature-dependent sex determination in turtles. J. Exp. Zool. 1994, 270, 3–15. [Google Scholar] [CrossRef]
- Bull, J.J.; Legler, J.M.; Vogt, R.C. Non-Temperature Dependent Sex Determination in Two Suborders of Turtles. Copeia 1985, 1985, 784–786. [Google Scholar] [CrossRef]
- Ewert, M.A.; Nelson, C.E. Sex Determination in Turtles: Diverse Patterns and Some Possible Adaptive Values. Copeia 1991, 1991, 50–59. [Google Scholar] [CrossRef]
- Bull, J.J. Sex determination in reptiles. Q. Rev. Biol. 1980, 55, 3–21. [Google Scholar] [CrossRef]
- Pieau, C.; Mrosovsky, N. Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphibia-Reptilia 1991, 12, 169–179. [Google Scholar] [CrossRef]
- Ewert, M.A.; Lang, J.W.; Nelson, C.E. Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J. Zool. 2005, 265, 81–95. [Google Scholar] [CrossRef]
- Gibbons, J.W.; Lovich, J.E. Where has turtle ecology been, and where is it going? Herpetologica 2019, 75, 4–20. [Google Scholar] [CrossRef]
- Jensen, M.P.; Allen, C.D.; Eguchi, T.; Bell, I.P.; Lacasella, E.L.; Hilton, W.A.; Hof, C.A.; Dutton, P.H. Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World. Curr. Biol. 2018, 28, 154–159. [Google Scholar] [CrossRef]
- Laloë, J.O.; Esteban, N.; Berkel, J.; Hays, G.C. Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. J. Exp. Mar. Biol. Ecol. 2016, 474, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Schwanz, L.E.; Spencer, R.-J.; Bowden, R.M.; Janzen, F.J. Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination. Ecology 2010, 91, 3016–3026. [Google Scholar] [CrossRef]
- Tucker, J.K.; Dolan, C.R.; Lamer, J.T.; Dustman, E.A. Climatic Warming, Sex Ratios, and Red-Eared Sliders (Trachemys scripta elegans) in Illinois. Chelonian Conserv. Biol. 2008, 7, 60–69. [Google Scholar] [CrossRef]
- Reid, B.N.; Peery, M.Z. Land use patterns skew sex ratios, decrease genetic diversity and trump the effects of recent climate change in an endangered turtle. Divers. Distrib. 2014, 20, 1425–1437. [Google Scholar] [CrossRef]
- Pilcher, N.J.; Perry, L.; Antonopoulou, M.; Abdel-Moati, M.A.; Al Abdessalaam, T.Z.; Albeldawi, M.; Al Ansi, M.; Al-Mohannadi, S.F.; Baldwin, R.; Chikhi, A.; et al. Short-term behavioural responses to thermal stress by hawksbill turtles in the Arabian region. J. Exp. Mar. Biol. Ecol. 2014, 457, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.S.; Refnsider, J.M.; Sethuraman, A.; Warner, D.A.; Janzen, F.J. Experimental assessment of winter conditions on turtle nesting behaviour. Evol. Ecol. Res. 2017, 18, 271–280. [Google Scholar]
- Janzen, F.J.; Hoekstra, L.A.; Brooks, R.J.; Carroll, D.M.; Gibbons, J.W.; Greene, J.L.; Iverson, J.B.; Litzgus, J.D.; Michael, E.D.; Parren, S.G.; et al. Altered spring phenology of North American freshwater turtles and the importance of representative populations. Ecol. Evol. 2018, 8, 5815–5827. [Google Scholar] [CrossRef]
- Del Monte-Luna, P.; Guzmán-Hernández, V.; Cuevas, E.A.; Arreguín-Sánchez, F.; Lluch-Belda, D. Effect of North Atlantic climate variability on hawksbill turtles in the Southern Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 2012, 412, 103–109. [Google Scholar] [CrossRef]
- Chaloupka, M.; Kamezaki, N.; Limpus, C. Is climate change affecting the population dynamics of the endangered Pacific loggerhead sea turtle? J. Exp. Mar. Biol. Ecol. 2008, 356, 136–143. [Google Scholar] [CrossRef]
- Mazaris, A.D.; Kallimanis, A.S.; Tzanopoulos, J.; Sgardelis, S.P.; Pantis, J.D. Sea surface temperature variations in core foraging grounds drive nesting trends and phenology of loggerhead turtles in the Mediterranean Sea. J. Exp. Mar. Biol. Ecol. 2009, 379, 23–27. [Google Scholar] [CrossRef]
- Patel, S.H.; Morreale, S.J.; Saba, V.S.; Panagopoulou, A.; Margaritoulis, D.; Spotila, J.R. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region. PLoS ONE 2016, 11, e0157170. [Google Scholar] [CrossRef] [PubMed]
- Neeman, N.; Robinson, N.J.; Paladino, F.V.; Spotila, J.R.; O’Connor, M.P. Phenology shifts in leatherback turtles (Dermochelys coriacea) due to changes in sea surface temperature. J. Exp. Mar. Biol. Ecol. 2015, 462, 113–120. [Google Scholar] [CrossRef]
- Rollinson, N.; Farmer, R.G.; Brooks, R.J. Widespread reproductive variation in North American turtles: Temperature, egg size and optimality. Zoology 2012, 115, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, A.R.; Klondaris, H.M.; Corichi, L.C.; Dreslik, M.J.; Iverson, J.B. The effects of climate on annual variation in reproductive output in Snapping Turtles (Chelydra serpentina). Can. J. Zool. 2017, 96, 221–228. [Google Scholar] [CrossRef]
- Eisemberg, C.C.; Balestra, R.A.M.; Famelli, S.; Pereira, F.F.; Bernardes, V.C.D.; Vogt, R.C. Vulnerability of Giant South American Turtle (Podocnemis expansa) nesting habitat to climate-change-induced alterations to fluvial cycles. Trop. Conserv. Sci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Lovich, J.E.; Yackulic, C.B.; Freilich, J.; Agha, M.; Austin, M.; Meyer, K.P.; Arundel, T.R.; Hansen, J.; Vamstad, M.S.; Root, S.A. Climatic variation and tortoise survival: Has a desert species met its match? Biol. Conserv. 2014, 169, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Bertolero, A.; Amengual, A.; Oro, D.; Fernández-Chacón, A.; Tavecchia, G.; Homar, V. Spatial heterogeneity in the effects of climate change on the population dynamics of a Mediterranean tortoise. Glob. Chang. Biol. 2011, 17, 3075–3088. [Google Scholar]
- Princé, K.; Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Chang. Biol. 2015, 21, 572–585. [Google Scholar] [CrossRef]
- Ramsay, N.F.; Ng, P.K.A.; O’Riordan, R.M.; Chou, L.M. The Red-Eared Slider (Trachemys Scripta Elegans) in Asia: A Review. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats; Springer Netherlands: Heidelberg, Germany, 2007; Volume 2, pp. 161–174. [Google Scholar]
- Cadi, A.; Joly, P. Competition for basking places between the endangered European pond turtle (Emys orbicularis galloitalica) and the introduced red-eared slider (Trachemys scripta elegans). Can. J. Zool. 2003, 81, 1392–1398. [Google Scholar] [CrossRef]
- Polo-Cavia, N.; López, P.; Martín, J. Interspecific differences in chemosensory responses of freshwater turtles: Consequences for competition between native and invasive species. Biol. Invasions 2009, 11, 431–440. [Google Scholar] [CrossRef]
- Davenport, J.; Black, K.D.; Burnell, G.; Cross, T.; Culloty, S.; Ekaratne, S.; Furness, B.; Mulcahy, M.; Thetmeyer, H. Aquaculture: The Ecological Issues; Blackwell: Oxford, UK, 2003. [Google Scholar]
- Verneau, O.; Palacios, C.; Platt, T.; Alday, M.; Billard, E.; Allienne, J.-F.; Basso, C.; Du Preez, L.H. Invasive species threat: Parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles. Parasitology 2011, 138, 1778–1792. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L.; Du Preez, L.; Bonneau, E.; Héritier, L.; Quintana, M.F.; Valdeón, A.; Sadaoui, A.; Kechemir-Issad, N.; Palacios, C.; Verneau, O. Parasite host-switching from the invasive American red-eared slider, Trachemys scripta elegans, to the native Mediterranean pond turtle, Mauremys leprosa, in natural environments. Aquat. Invasions. 2015, 10, 79–91. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013, The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Sanford, T.; Frumhoff, P.C.; Luers, A.; Gulledge, J. The climate policy narrative for a dangerously warming world. Nat. Clim. Chang. 2014, 4, 164–166. [Google Scholar] [CrossRef]
- Frazer, N.B.; Greene, J.L.; Gibbons, J.W. Temporal Variation in Growth Rate and Age at Maturity of Male Painted Turtles, Chrysemys picta. Am. Midl. Nat. 1993, 130, 314–324. [Google Scholar] [CrossRef]
- Rehm, E.M.; Olivas, P.; Stroud, J.; Feeley, K.J. Losing your edge: Climate change and the conservation value of range-edge populations. Ecol. Evol. 2015, 5, 4315–4326. [Google Scholar] [CrossRef]
- Cahill, A.E.; Levinton, J.S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 2016, 25, 515–526. [Google Scholar] [CrossRef]
- Refsnider, J.M.; Janzen, F.J. Temperature-dependent sex determination under rapid anthropogenic environmental change: Evolution at a turtle’s pace? J. Hered. 2016, 107, 61–70. [Google Scholar] [CrossRef]
- Carlson, S.M.; Cunningham, C.J.; Westley, P.A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 2014, 29, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Quintero, I.; Wiens, J.J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 2013, 16, 1095–1103. [Google Scholar] [CrossRef]
- Foden, W.B.; Butchart, S.H.M.; Stuart, S.N.; Vie, J.C.; Akçakaya, H.R.; Angulo, A.; DeVantier, L.M.; Gutsche, A.; Turak, E.; Cao, L.; et al. Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals. PLoS ONE 2013, 8, e65427. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.A.; Outhwaite, W.E.; Goodman, G.L.; Oldfield, T.E.E.; Foden, W.B. Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa’s Albertine Rift; IUCN: Gland, Switzerland; Cambridge, UK, 2013. [Google Scholar]
- Böhm, M.; Cook, D.; Ma, H.; Davidson, A.D.; García, A.; Tapley, B.; Pearce-Kelly, P.; Carr, J. Hot and bothered: Using trait-based approaches to assess climate change vulnerability in reptiles. Biol. Conserv. 2016, 204, 32–41. [Google Scholar] [CrossRef]
- Ihlow, F.; Dambach, J.; Engler, J.O.; Flecks, M.; Hartmann, T.; Nekum, S.; Rajaei, H.; Rödder, D. On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Glob. Chang. Biol. 2012, 18, 1520–1530. [Google Scholar] [CrossRef]
- Waterson, A.M.; Schmidt, D.N.; Valdes, P.J.; Holroyd, P.A.; Nicholson, D.B.; Farnsworth, A.; Barrett, P.M. Modelling the climatic niche of turtles: A deep-time perspective. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161408. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, H.R.; Rissler, L.J.; Buckley, L.B.; Urban, M.C. Abiotic and biotic constraints across reptile and amphibian ranges. Ecography 2016, 39, 1–8. [Google Scholar] [CrossRef]
- Harsch, M.A.; HilleRisLambers, J. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America. PLoS ONE 2016, 11, e0159184. [Google Scholar] [CrossRef] [PubMed]
- Bates, A.E.; Pecl, G.T.; Frusher, S.; Hobday, A.J.; Wernberg, T.; Smale, D.A.; Sunday, J.M.; Hill, N.A.; Dulvy, N.K.; Colwell, R.K.; et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Chang. 2014, 26, 27–38. [Google Scholar] [CrossRef]
- Rodrigues, J.F.M.; Lima-Ribeiro, M.S. Predicting where species could go: Climate is more important than dispersal for explaining the distribution of a South American turtle. Hydrobiologia 2018, 808, 343–352. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Bateman, B.L.; Gorzo, J.M.; Reid, B.; Thogmartin, W.E.; Peery, M.Z.; Heglund, P.J.; Radeloff, V.C.; Pidgeon, A.M. Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding’s turtle (Emydoidea blandingii) behind. Biol. Conserv. 2018, 222, 75–85. [Google Scholar] [CrossRef]
- Iannella, M.; Cerasoli, F.; D’Alessandro, P.; Console, G.; Biondi, M. Coupling GIS spatial analysis and Ensemble Niche Modelling to investigate climate change-related threats to the Sicilian pond turtle Emys trinacris, an endangered species from the Mediterranean. PeerJ 2018, 6, e4969. [Google Scholar] [CrossRef]
- Spinks, P.Q.; Pauly, G.B.; Crayon, J.J.; Shaffer, H.B. Survival of the western pond turtle (Emys marmorata) in an urban California environment. Biol. Conserv. 2003, 113, 257–267. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Seamster, V.A.; Harings, N.M.; Boykin, K.G.; Alvarez, G.; Dixon, K.W. Projected future bioclimate-envelope suitability for reptile and amphibian species of concern in south central USA. Herpetol. Conserv. Biol. 2017, 12, 522–547. [Google Scholar]
- Butler, C.J.; Stanila, B.D.; Iverson, J.B.; Stone, P.A.; Bryson, M. Projected changes in climatic suitability for Kinosternon turtles by 2050 and 2070. Ecol. Evol. 2016, 6, 7690–7705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spear, M.J.; Elgin, A.K.; Grey, E.K. Current and Projected Distribution of the Red-Eared Slider Turtle, Trachemys scripta elegans, in the Great Lakes Basin. Am. Midl. Nat. 2018, 179, 191–221. [Google Scholar] [CrossRef]
- Witt, M.J.; Hawkes, L.A.; Godfrey, M.H.; Godley, B.; Broderick, A.C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 2010, 213, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Pike, D.A. Climate influences the global distribution of sea turtle nesting. Glob. Ecol. Biogeogr. 2013, 22, 555–566. [Google Scholar] [CrossRef]
- Buhlmann, K.A.; Coffman, G. Fire ant predation of turtle nests and implications for the strategy of delayed emergence. J. Elisha Mitchell Sci. Soc. 2001, 117, 94–100. [Google Scholar]
- Du Preez, L.H.; Badets, M.; Héritier, L.; Verneau, O. Tracking platyhelminth parasite diversity from freshwater turtles in French Guiana: First report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the description of three new species. Parasites Vectors 2017, 10, 53. [Google Scholar] [CrossRef]
- Lever, C. Naturalized Reptiles and Amphibians of the World; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Đorđević, S.; Anđelković, M. Possible reproduction of the red-eared slider, Trachemys scripta elegans (Reptilia: Testudines: Emydidae), in Serbia, under natural conditions. Hyla 2015, 2015, 44–49. [Google Scholar]
- Micheli-Campbell, M.A.; Gordos, M.A.; Campbell, H.A.; Booth, D.T.; Franklin, C.E. The influence of daily temperature fluctuations during incubation upon the phenotype of a freshwater turtle. J. Zool. 2012, 288, 143–150. [Google Scholar] [CrossRef]
- Pike, D.A. Forecasting the viability of sea turtle eggs in a warming world. Glob. Chang. Biol. 2014, 20, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Telemeco, R.S.; Abbott, K.C.; Janzen, F.J. Modeling the Effects of Climate Change–Induced Shifts in Reproductive Phenology on Temperature-Dependent Traits. Am. Nat. 2013, 181, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.R.; Godfrey, M.H.; Owens, D.W. Incubation Temperature Effects on Hatchling Performance in the Loggerhead Sea Turtle (Caretta caretta). PLoS ONE 2014, 9, e114880. [Google Scholar] [CrossRef] [PubMed]
- Segura, L.N.; Cajade, R. The effects of sand temperature on pre-emergent green sea turtle hatchlings. Herpetol. Conserv. Biol. 2010, 5, 196–206. [Google Scholar]
- Hays, G.C.; Mazaris, A.D.; Schofield, G.; Laloe, J.O. Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proc. R. Soc. B Biol. Sci. 2017, 284, 201962576. [Google Scholar] [CrossRef]
- Howard, R.; Bell, I.; Pike, D.A. Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change. J. Exp. Biol. 2015, 218, 3330–3335. [Google Scholar] [CrossRef]
- Montero, N.; Marcovaldi, M.A.G.D.; Lopez–Mendilaharsu, M.; Santos, A.S.; Santos, A.J.B.; Fuentes, M.M.P.B. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS ONE 2018, 13, e0204188. [Google Scholar] [CrossRef]
- Saba, V.S.; Stock, C.A.; Spotila, J.R.; Paladino, F.V.; Tomillo, P.S. Projected response of an endangered marine turtle population to climate change. Nat. Clim. Chang. 2012, 2, 814–820. [Google Scholar] [CrossRef]
- Dudley, P.N.; Bonazza, R.; Porter, W.P. Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer. Ecol. Model. 2016, 320, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Dieng, H.B.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 2017, 44, 3744–3751. [Google Scholar] [CrossRef]
- Fish, M.R.; Côté, I.M.; Gill, J.A.; Jones, A.P.; Renshoff, S.; Watkinson, A.R. Predicting the Impact of Sea-Level Rise on Caribbean Sea Turtle Nesting Habitat. Conserv. Biol. 2005, 19, 482–491. [Google Scholar] [CrossRef]
- Woodland, R.J.; Rowe, C.L.; Henry, P.F.P. Changes in Habitat Availability for Multiple Life Stages of Diamondback Terrapins (Malaclemys terrapin) in Chesapeake Bay in Response to Sea Level Rise. Chesap. Sci. 2017, 40, 1502–1515. [Google Scholar] [CrossRef]
- Kraemer, J.E.; Bell, R. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (Caretta caretta) on the Georgia Coast. Herpetologica 1980, 36, 72–77. [Google Scholar]
- Foley, A.M.; Peck, S.A.; Harman, G.R. Effects of Sand Characteristics and Inundation on the Hatching Success of Loggerhead Sea Turtle (Caretta caretta) Clutches on Low-Relief Mangrove Islands in Southwest Florida. Chelonian Conserv. Biol. 2006, 5, 32–41. [Google Scholar] [CrossRef]
- Tietjen, B.; Schlaepfer, D.R.; Bradford, J.B.; Hall, S.A.; Duniway, M.C.; Hochstrasser, T.; Jia, G.; Munson, S.M.; Pyke, D.A.; Wilson, S.D.; et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob. Chang. Biol. 2017, 23, 2743–2754. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M.V.; Williams, B.K.; Skiver, M.M.; Carlyle, J.C. Effects of Dehydration on the Critical Thermal Maximum of the Desert Box Turtle (Terrapene ornata luteola). South Am. J. Herpetol. 2003, 37, 747–750. [Google Scholar] [CrossRef]
- Bickford, D.; Howard, S.D.; Ng, D.J.J.; Sheridan, J.A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 2010, 19, 1043–1062. [Google Scholar] [CrossRef]
- Jergenson, A.M.; Miller, D.A.W.; Neuman-Lee, L.A.; Warner, D.A.; Janzen, F.J. Swimming against the tide: Resilience of a riverine turtle to recurrent extreme environmental events. Biol. Lett. 2014, 10, 20130782. [Google Scholar] [CrossRef]
- Garcés-Restrepo, M.F.; Carr, J.L.; Giraldo, A. Long-Term Variation in Survival of a Neotropical Freshwater Turtle: Habitat and Climatic Influences. Diversity 2019, 11, 97. [Google Scholar] [CrossRef]
- Hulin, V.; Delmas, V.; Girondot, M.; Godfrey, M.H.; Guillon, J.-M. Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia 2009, 160, 493–506. [Google Scholar] [CrossRef]
- Neuwald, J.L.; Valenzuela, N. The Lesser Known Challenge of Climate Change: Thermal Variance and Sex-Reversal in Vertebrates with Temperature-Dependent Sex Determination. PLoS ONE 2011, 6, e18117. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, N.; Literman, R.; Neuwald, J.L.; Mizoguchi, B.; Iverson, J.B.; Riley, J.L.; Litzgus, J.D. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 2019, 9, 4254. [Google Scholar] [CrossRef] [PubMed]
- Kallimanis, A.S.; Kallimanis, A. Temperature dependent sex determination and climate change. Oikos 2010, 119, 197–200. [Google Scholar] [CrossRef]
- Fuentes, M.; Hamann, M.; Limpus, C. Past, current and future thermal profiles of green turtle nesting grounds: Implications from climate change. J. Exp. Mar. Biol. Ecol. 2010, 383, 56–64. [Google Scholar] [CrossRef]
- Wright, L.I.; Stokes, K.L.; Fuller, W.J.; Godley, B.J.; McGowan, A.; Snape, R.; Tregenza, T.; Broderick, A.C. Turtle mating patterns buffer against disruptive effects of climate change. Proc. R. Soc. B Biol. Sci. 2012, 279, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Porter, W. Using a microclimate model to evaluate impacts of climate change on sea turtles. Ecol. Model. 2013, 251, 150–157. [Google Scholar] [CrossRef]
- Mainwaring, M.C.; Barber, I.; Deeming, D.C.; Pike, D.A.; Roznik, E.A.; Hartley, I.R. Climate change and nesting behaviour in vertebrates: A review of the ecological threats and potential for adaptive responses. Biol. Rev. 2017, 92, 1991–2002. [Google Scholar] [CrossRef]
- Refsnider, J.M.; Bodensteiner, B.L.; Reneker, J.L.; Janzen, F.J. Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Anim. Conserv. 2013, 16, 481–490. [Google Scholar] [CrossRef]
- Mazaris, A.D.; Kallimanis, A.S.; Pantis, J.D.; Hays, G.C. Phenological response of sea turtles to environmental variation across a species’ northern range. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122397. [Google Scholar] [CrossRef]
- Weber, S.B.; Broderick, A.C.; Groothuis, T.G.; Ellick, J.; Godley, B.J.; Blount, J.D. Fine-scale thermal adaptation in a green turtle nesting population. Proc. R. Soc. B Biol. Sci. 2012, 279, 1077–1084. [Google Scholar] [CrossRef]
- Tilley, D.; Ball, S.; Ellick, J.; Godley, B.J.; Weber, N.; Weber, S.B.; Broderick, A.C. No evidence of fine scale thermal adaptation in green turtles. J. Exp. Mar. Biol. Ecol. 2019, 514, 110–117. [Google Scholar] [CrossRef]
- Burrows, M.T.; Schoeman, D.S.; Buckley, L.B.; Moore, P.; Poloczanska, E.S.; Brander, K.M.; Brown, C.; Bruno, J.F.; Duarte, C.M.; Halpern, B.S.; et al. The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science 2011, 334, 652–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Hickey, S.M.; Phinn, S.R.; Callow, N.J.; Van Niel, K.P.; Hansen, J.E.; Duarte, C.M. Is Climate Change Shifting the Poleward Limit of Mangroves? Chesap. Sci. 2017, 40, 1215–1226. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef] [PubMed]
- Pielou, E.C. After the Ice Age: The Return of Life to Glaciated North America; University of Chicago Press: Chicago, IL, USA, 1991. [Google Scholar]
- Davis, M.B. Climatic Instability, Time, Lags, and Community Disequilibrium. In Community Ecology; Diamond, J.M., Case, T.J., Eds.; Harper and Row: New York, NY, USA, 1984; pp. 269–284. [Google Scholar]
- Sittaro, F.; Paquette, A.; Messier, C.; Nock, C.A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Chang. Biol. 2017, 23, 3292–3301. [Google Scholar] [CrossRef]
- Butt, N.; Whiting, S.; Dethmers, K. Identifying future sea turtle conservation areas under climate change. Biol. Conserv. 2016, 204, 189–196. [Google Scholar] [CrossRef] [Green Version]
- James, C.S.; Reside, A.E.; Vanderwal, J.; Pearson, R.G.; Burrows, D.; Capon, S.J.; Harwood, T.D.; Hodgson, L.; Waltham, N.J. Sink or swim? Potential for high faunal turnover in Australian rivers under climate change. J. Biogeogr. 2017, 44, 489–501. [Google Scholar] [CrossRef]
- Cahill, A.E.; Aiello-Lammens, M.E.; Caitlin Fisher-Reid, M.; Hua, X.; Karanewsky, C.J.; Ryu, H.Y.; Sbeglia, G.C.; Spagnolo, F.; Waldron, J.B.; Wiens, J.J. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 2014, 41, 429–442. [Google Scholar] [CrossRef]
- Stephens, P.R.; Wiens, J.J. Bridging the gap between community ecology and historical biogeography: Niche conservatism and community structure in emydid turtles. Mol. Ecol. 2009, 18, 4664–4679. [Google Scholar] [CrossRef]
- Hutchison, V.H.; Vinegar, A.; Kosh, R.J. Critical thermal maxima in turtles. Herpetologica 1966, 22, 32–41. [Google Scholar]
- Stralberg, D.; Carroll, C.; Pedlar, J.H.; Wilsey, C.B.; McKenney, D.W.; Nielsen, S.E. Macrorefugia for North American trees and songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 2018, 27, 690–703. [Google Scholar] [CrossRef]
- Reside, A.E.; Critchell, K.; Crayn, D.M.; Goosem, M.; Goosem, S.; Hoskin, C.J.; Sydes, T.; Vanderduys, E.P.; Pressey, R.L. Beyond the Model: Expert Knowledge Improves Predictions of Species’ Fates under Climate Change. Bull. Ecol. Soc. Am. 2019, 100, e01522. [Google Scholar] [CrossRef]
- Rödder, D.; Schmidtlein, S.; Veith, M.; Lötters, S. Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied? PLoS ONE 2009, 4, e7843. [Google Scholar] [CrossRef] [PubMed]
- Chmura, H.E.; Glass, T.W.; Williams, C.T. Biologging physiological and ecological responses to climatic variation: New tools for the Climate Change Era. Front. Ecol. Evol. 2018, 6, 92. [Google Scholar] [CrossRef]
- Litzgus, J.D.; Brooks, R.J.; Lee, J.R.E.; Costanzo, J.P. Phenology and ecology of hibernation in spotted turtles ( Clemmys guttata ) near the northern limit of their range. Can. J. Zool. 1999, 77, 1348–1357. [Google Scholar] [CrossRef]
- Bacigalupe, L.D.; Opitz, T.; Lagos, N.A.; Timmermann, T.; Lardies, M.A.; Gaitán-Espitia, J.D. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 2014, 217, 4379–4386. [Google Scholar]
- Heithaus, M.R.; McLash, J.J.; Frid, A.; Dill, L.M.; Marshall, G.J. Novel insights into green sea turtle behaviour using animal-borne video cameras. J. Mar. Biol. Assoc. UK 2002, 82, 1049–1050. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.D.; Cedras, A.; Myers, A.E.; Liebsch, N.; Metcalfe, J.D.; Mortimer, J.A.; Hays, G.C. Measuring the state of consciousness in a free-living diving sea turtle. J. Exp. Mar. Biol. Ecol. 2008, 356, 115–120. [Google Scholar] [CrossRef]
- Marshall, G.J. Crittercam: An animal-borne imaging and data logging system. Mar. Technol. Soc. J. 1998, 32, 11. [Google Scholar]
- Myers, A.; Hays, G. Do leatherback turtles Dermochelys coriacea forage during the breeding season? A combination of data-logging devices provide new insights. Mar. Ecol. Prog. Ser. 2006, 322, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Parlin, A.F.; do Amaral, J.P.S.; Dougherty, J.K.; Stevens, M.H.H.; Schaeffer, P.J. Thermoregulatory performance and habitat selection of the eastern box turtle (Terrapene carolina carolina). Conserv. Physiol. 2017, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hochscheid, S. Why we mind sea turtles’ underwater business: A review on the study of diving behavior. J. Exp. Mar. Biol. Ecol. 2014, 450, 118–136. [Google Scholar] [CrossRef]
- Fisher, R.A. The Genetical Theory of Natural Selection, 2nd ed.; Dover Books: New York, NY, USA, 1957. [Google Scholar]
- Rees, A.; Alfaro-Shigueto, J.; Barata, P.; Bjorndal, K.; Bolten, A.; Bourjea, J.; Broderick, A.; Campbell, L.; Cardona, L.; Carreras, C.; et al. Review: Are we working towards global research priorities for management and conservation of sea turtles? Endanger. Species Res. 2016, 31, 337–382. [Google Scholar] [CrossRef]
- Mrosovsky, N. Sex ratios of sea turtles. J. Exp. Zool. 1994, 270, 16–27. [Google Scholar] [CrossRef]
- Gibbons, J.W. Sex ratios in turtles. Popul. Ecol. 1970, 12, 252–254. [Google Scholar] [CrossRef]
- Laloë, J.O.; Cozens, J.; Renom, B.; Taxonera, A.; Hays, G.C. Effects of rising temperature on the viability of an important sea turtle rookery. Nat. Clim. Chang. 2014, 4, 513–518. [Google Scholar] [CrossRef]
- Houghton, J.; Myers, A.; Lloyd, C.; King, R.; Isaacs, C.; Hays, G.; Hays, G. Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: Ecological implications for a species displaying temperature dependent sex determination. J. Exp. Mar. Biol. Ecol. 2007, 345, 71–77. [Google Scholar] [CrossRef]
- Chadwick, R.; Good, P.; Martin, G.; Rowell, D.P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Chang. 2015, 6, 177–181. [Google Scholar] [CrossRef]
- Gibbs, J.P.; Steen, D.A.; Bini, L.M.; Alexandre, J.; Diniz-Filho, F.; Carvalho, P.; Pinto, M.P.; Rangel, T.F.L.V.B.; Diniz-Filho, F. Trends in Sex Ratios of Turtles in the United States: Implications of Road Mortality. Conserv. Biol. 2005, 19, 552–556. [Google Scholar]
- Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud. 1847, 3, 595–708. [Google Scholar]
- Meiri, S. Bergmann’s Rule—What’s in a name? Glob. Ecol. Biogeogr. 2011, 20, 203–207. [Google Scholar] [CrossRef]
- Ashton, K.G.; Feldman, C.R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 2003, 57, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Iverson, J.B.; Smith, G.R. Reproductive Ecology of the Painted Turtle (Chrysemys picta) in the Nebraska Sandhills and across Its Range. Copeia 1993, 1993, 1–21. [Google Scholar] [CrossRef]
- Werner, Y.L.; Korolker, N.; Sion, G.; Göçmen, B. Bergmann’s and Rensch’s rules and the spur-thighed tortoise (Testudo graeca). Biol. J. Linn. Soc. 2016, 117, 796–811. [Google Scholar] [CrossRef]
- Lewis, E.L.; Iverson, J.B.; Smith, G.R.; Rettig, J.E. Body size and growth in the Red-eared Slider (Trachemys scripta elegans) at the northern edge of its range: Does Bergmann’s rule apply? Herpetol. Conserv. Biol. 2018, 13, 700–710. [Google Scholar]
- Sheridan, J.A.; Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 2011, 1, 401–406. [Google Scholar] [CrossRef]
- De Souza, R.R.; Vogt, R.C. Incubation temperature influences sex and hatchling size in the Neotropical turtle Podocnemis unifilis. J. Herpetol. 1994, 28, 453–464. [Google Scholar] [CrossRef]
- Glen, F.; Broderick, A.; Godley, B.; Hays, G.; Godley, B.; Hays, G. Incubation environment affects phenotype of naturally incubated green turtle hatchlings. J. Mar. Biol. Assoc. UK 2003, 83, 1183–1186. [Google Scholar] [CrossRef] [Green Version]
- Congdon, J.D.; Sels, R.C.V.L. Growth and body size in Blanding’s turtles (Emydoidea blandingi): Relationships to reproduction. Can. J. Zool. 1991, 69, 239–245. [Google Scholar] [CrossRef]
- Hirth, H.F. Some aspects of the nesting behavior and reproductive biology of sea turtles. Integr. Comp. Biol. 2015, 20, 507–523. [Google Scholar] [CrossRef]
- Tucker, J.K.; Paukstis, G.L.; Janzen, F.J. Experimental analysis of an early life-history stage: Avian predation selects for larger body size of hatchling turtles. J. Evol. Biol. 2000, 13, 947–954. [Google Scholar]
- Burke, V.J.; Standora, E.A.; Morreale, S.J. Factors Affecting Strandings of Cold-Stunned Juvenile Kemp’s Ridley and Loggerhead Sea Turtles in Long Island, New York. Copeia 1991, 1991, 1136–1138. [Google Scholar] [CrossRef]
- Griffin, L.P.; Griffin, C.R.; Finn, J.T.; Prescott, R.L.; Faherty, M.; Still, B.M.; Danylchuk, A.J. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLoS ONE 2019, 14, e0211503. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.B.C. Reefs since Columbus. Coral Reefs 1997, 16, S23–S32. [Google Scholar] [CrossRef]
- Mancini, A.; Koch, V.; Seminoff, J.A.; Madon, B. Small-scale gill-net fisheries cause massive green turtle Chelonia mydas mortality in Baja California Sur, Mexico. Oryx 2012, 46, 69–77. [Google Scholar] [CrossRef]
- Wallace, B.P.; DiMatteo, A.D.; Bolten, A.B.; Chaloupka, M.Y.; Hutchinson, B.J.; Abreu-Grobois, F.A.; Mortimer, J.A.; Seminoff, J.A.; Amorocho, D.; Bjorndal, K.A.; et al. Global Conservation Priorities for Marine Turtles. PLoS ONE 2011, 6, e24510. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [Green Version]
- Spear, S.F.; Groves, J.D.; Williams, L.A.; Waits, L.P. Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biol. Conserv. 2015, 183, 38–45. [Google Scholar] [CrossRef]
- Turner, C.R.; Uy, K.L.; Everhart, R.C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 2015, 183, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P. Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. PLoS ONE 2011, 6, e22746. [Google Scholar] [CrossRef] [PubMed]
- Davy, C.M.; Kidd, A.G.; Wilson, C.C. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles. PLoS ONE 2015, 10, e0130965. [Google Scholar] [CrossRef] [PubMed]
- García-Díaz, P.; Ramsey, D.S.L.; Woolnough, A.P.; Franch, M.; Llorente, G.A.; Montori, A.; Buenetxea, X.; Larrinaga, A.R.; Lasceve, M.; Álvarez, A.; et al. Challenges in confirming eradication success of invasive red-eared sliders. Biol. Invasions 2017, 19, 2739–2750. [Google Scholar] [CrossRef]
- Urban, M.C.; Richardson, J.L.; Freidenfelds, N.A. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol. Appl. 2014, 7, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.M.; Pike, D.A.; DiMatteo, A.; Wallace, B.P. Resilience of marine turtle regional management units to climate change. Glob. Chang. Biol. 2013, 19, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Newson, S.; Mendes, S.; Crick, H.; Dulvy, N.; Houghton, J.; Hays, G.; Hutson, A.; MacLeod, C.; Pierce, G.; Robinson, R. Indicators of the impact of climate change on migratory species. Endanger. Species Res. 2009, 7, 101–113. [Google Scholar] [CrossRef]
- Patino-Martinez, J.; Marco, A.; Quiñones, L.; Hawkes, L. A potential tool to mitigate the impacts of climate change to the Caribbean leatherback sea turtle. Glob. Chang. Biol. 2012, 18, 401–411. [Google Scholar] [CrossRef]
- Esteban, N.; Laloë, J.-O.; Kiggen, F.S.P.L.; Ubels, S.M.; Becking, L.E.; Meesters, E.H.; Berkel, J.; Hays, G.C.; Christianen, M.J.A. Optimism for mitigation of climate warming impacts for sea turtles through nest shading and relocation. Sci. Rep. 2018, 8, 17625. [Google Scholar] [CrossRef]
- Hill, J.E.; Paladino, F.V.; Spotila, J.R.; Tomillo, P.S. Shading and Watering as a Tool to Mitigate the Impacts of Climate Change in Sea Turtle Nests. PLoS ONE 2015, 10, e0129528. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Janzen, F.J. Temperature-dependent sex determination and contemporary climate change. Sex. Dev. 2010, 4, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.M.P.B.; Fish, M.R.; Maynard, J.A. Management strategies to mitigate the impacts of climate change on sea turtle’s terrestrial reproductive phase. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 51–63. [Google Scholar] [CrossRef]
- Liles, M.J.; Peterson, T.R.; Seminoff, J.A.; Gaos, A.R.; Altamirano, E.; Henríquez, A.V.; Gadea, V.; Chavarría, S.; Urteaga, J.; Wallace, B.P.; et al. Potential limitations of behavioral plasticity and the role of egg relocation in climate change mitigation for a thermally sensitive endangered species. Ecol. Evol. 2019, 9, 1603–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diffenbaugh, N.S.; Field, C.B. Changes in Ecologically Critical Terrestrial Climate Conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavergne, S.; Mouquet, N.; Thuiller, W.; Ronce, O. Biodiversity and Climate Change: Integrating Evolutionary and Ecological Responses of Species and Communities. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 321–350. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, C.J. A Review of the Effects of Climate Change on Chelonians. Diversity 2019, 11, 138. https://doi.org/10.3390/d11080138
Butler CJ. A Review of the Effects of Climate Change on Chelonians. Diversity. 2019; 11(8):138. https://doi.org/10.3390/d11080138
Chicago/Turabian StyleButler, Christopher J. 2019. "A Review of the Effects of Climate Change on Chelonians" Diversity 11, no. 8: 138. https://doi.org/10.3390/d11080138