Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Chl a and Nutrient Measurements
2.3. DNA Extraction and Sequencing
2.4. Read Processing
2.5. Data Analysis
3. Results
3.1. Environmental Variables and Bloom Periods
3.2. Temporal Dynamics of the Unicellular Eukaryotic Community
3.3. Temporal vs. Spatial Structure of the Unicellular Eukaryotic Community
3.4. Environmental Effects on Unicellular Eukaryotic Communities
3.5. Notable OTUs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bik, H.M.; Porazinska, D.L.; Creer, S.; Caporaso, J.G.; Knight, R.; Thomas, W.K. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 2012, 27, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Campo, J.; Sieracki, M.E.; Molestina, R.; Keeling, P.; Massana, R.; Ruiz-Trillo, I. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 2014, 29, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Christaki, U.; Kormas, K.A.; Genitsaris, S.; Georges, C.; Sime-Ngando, T.; Viscogliosi, E.; Monchy, S. Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb. Ecol. 2014, 67, 13–23. [Google Scholar] [CrossRef] [PubMed]
- De Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Carmichael, M. Eukaryotic plankton diversity in the sunlit ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.K.; Campbell, V.; Connell, P.; Gellene, A.G.; Liu, Z.; Terrado, R.; Caron, D.A. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific. FEMS Microbiol. Ecol. 2016, 92, fiw050. [Google Scholar] [CrossRef] [Green Version]
- Logares, R.; Mangot, J.-F.; Massana, R. Rarity in aquatic microbes: Placing protists on the map. Res. Microbiol. 2015, 166, 831–841. [Google Scholar] [CrossRef]
- Genitsaris, S.; Monchy, S.; Bréton, E.; Lecuyer, E.; Christaki, U. Small-scale variability of protistan planktonic communities relative to environmental pressures and biotic interactions at two adjacent coastal stations. Mar. Ecol. Prog. Ser. 2016, 548, 61–75. [Google Scholar] [CrossRef]
- Das, P.B.; Gauns, M.; Naqvi, S.W.A. Ecological diversity of planktonic protists in spatial regimes of the Arabian Sea revealed through next-generation sequencing. Reg. Stud. Mar. Sci. 2019, 25, 100484. [Google Scholar] [CrossRef]
- Genitsaris, S.; Monchy, S.; Viscogliosi, E.; Sime-Ngando, T.; Ferreira, S.; Christaki, U. Seasonal variations of marine protist community structure based on taxon-specific traits using the eastern English Channel as a model coastal system. FEMS Microbiol. Ecol. 2015, 91, fiv034. [Google Scholar] [CrossRef]
- Brannock, P.M.; Ortmann, A.C.; Moss, A.G.; Halanych, K.M. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes. Mol. Ecol. 2016, 25, 3593–3604. [Google Scholar] [CrossRef]
- Piredda, R.; Tomasino, M.P.; D’Erchia, A.M.; Manzari, C.; Pesole, G.; Montresor, M.; Kooistra, W.H.C.F.; Sarno, D.; Zingone, A. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean long term ecological research site. FEMS Microbiol. Ecol. 2017, 93, fiw200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giner, C.R.; Balagué, V.; Krabberod, A.K.; Ferrera, I.; Reňé, A.; Garcés, E.; Gasol, J.M.; Logares, R.; Massana, R. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol. Ecol. 2019, 28, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Stefanidou, N.; Genitsaris, S.; Lopez-Bautista, J.; Sommer, U.; Moustaka-Gouni, M. Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments. Front. Microbiol. 2018, 9, 2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramond, P.; Sourisseau, M.; Simon, N.; Romac, S.; Schmitt, S.; Rigaut-Jalabert, F.; Henry, N.; de Vargas, C.; Siano, R. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ. Microbiol. 2019, 21, 730–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christaki, U.; Genitsaris, S.; Monchy, S.; Li, L.L.; Rachik, S.; Breton, E.; Sime-Ngando, T. Parasitic eukaryotes in a meso-eutrophic coastal system with marked Phaeocystis globosa blooms. Front. Mar. Sci 2017, 4, 416. [Google Scholar] [CrossRef] [Green Version]
- Rocke, E.; Jing, H.; Xia, X.; Liu, H. Effects of hypoxia on the phylogenetic composition and species distribution of protists in a subtropical harbor. Microb. Ecol. 2016, 72, 96–105. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbrück, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; et al. Defining seasonal marine microbial community dynamics. ISME J. 2012, 6, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Herfort, L.; Crump, B.C.; Fortunato, C.S.; McCue, L.A.; Campbell, V.; Simon, H.M.; Baptista, A.M.; Zuber, P. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima. MicrobiologyOpen 2017, 6, e00522. [Google Scholar] [CrossRef] [Green Version]
- Guidi, L.; Chaffron, S.; Bittner, L.; Eveillard, D.; Larhlimi, A.; Roux, S.; Darzi, Y.; Audic, S.; Berline, L.; Brum, J.R.; et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 2016, 532, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; Lopez-Garcia, P.; Takaki, Y.; et al. Major role of nitrate-oxidizing bacteria in dark ocean carbon fixation. Science 2017, 358, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Garnier, J.; Beusen, A.; Thieu, V.; Billen, G.; Bouwman, L. N: P: Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global. Biogeochem. Cycles 2010, 24, GB0A05. [Google Scholar] [CrossRef]
- Jeon, B.S.; Park, M.G. Tuberlatum coatsi gen. n., sp. n. (Alveolata, Perkinsozoa), a new parasitoid with short germ tubes infecting marine dinoflagellates. Protist 2019, 170, 82–103. [Google Scholar] [CrossRef]
- Martin, D.L.; Chiari, Y.; Boone, E.; Sherman, T.D.; Ross, C.; Wyllie-Echeverria, S.; Gaydos, J.K.; Boettcher, A.A. Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease. Estuar. Coast. 2016, 39, 1403–1421. [Google Scholar] [CrossRef] [Green Version]
- Xie, N.; Sen, B.; Song, Z.; Zhao, Y.; Chen, Z.; Shi, W.; Zhang, Y.; Zhang, J.; Johnson, Z.I.; Wang, G. High phylogenetic diversity and abundance pattern of Labyrinthulomycete protists in the coastal waters of the Bohai Sea. Environ. Microbiol. 2018, 20, 3042–3056. [Google Scholar] [CrossRef]
- Santoferrara, L.F.; Rubin, E.; McManus, G.B. Global and local DNA (meta)barcoding reveal new biogeography patterns in tintinnid ciliates. J. Plankton Res. 2018, 40, 209–221. [Google Scholar] [CrossRef]
- More, K.; Simpson, A.G.B.; Hess, S. Two new species of Placopus (Vampyrellida, Rhizaria) that perforate the theca of tetraselmis (Chlorodendrales, Viridiplantae). J. Eukaryot. Microbiol. 2019, 66, 560–573. [Google Scholar] [CrossRef]
- Massana, R.; Gobet, A.; Audic, S.; Bass, D.; Bittner, L.; Boutte, C.; Chambouvet, A.; Christen, R.; Claverie, J.M.; Decelle, J.; et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 2015, 17, 4035–4049. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, S.; Chen, T.; Li, C. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing. Estuar. Coast. Shelf Sci. 2017, 189, 143–155. [Google Scholar] [CrossRef]
- Weber, F.; Mylnikov, A.P.; Jürgens, K.; Wylezich, C. Culturing heterotrophic protists from the Baltic Sea: Mostly the “usual suspects” but a few novelties as well. J. Eukaryot. Microbiol. 2017, 64, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.K.; Nong, W.; Kwan, H.S.; Wong, C.K. Composition of heterotrophic flagellates in coastal waters of different trophic status. Curr. Microbiol. 2013, 67, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Mihalatou, H.M.; Moustaka-Gouni, M. Pico-, nano-, microplankton abundance and primary productivity in a eutrophic coastal area of the Aegean Sea, Mediterranean. Int. Rev. Hydrobiol. 2002, 87, 439–456. [Google Scholar] [CrossRef]
- Genitsaris, S.; Stefanidou, N.; Sommer, U.; Moustaka-Gouni, M. Phytoplankton blooms, red tides and mucilaginous aggregates in the urban Thessaloniki Bay, Eastern Mediterranean. Diversity 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Krestenitis, Y.N.; Kombiadou, K.D.; Androulidakis, Y.S. Interannual variability of the physical characteristics of North Thermaikos Gulf (NW Aegean Sea). J. Marine Syst. 2012, 96–97, 132–151. [Google Scholar] [CrossRef]
- Genitsaris, S.; Kormas, K.A.; Moustaka-Gouni, M. Airborne algae and cyanobacteria: Occurrence and related health effects. Front. Biosci. 2011, 3E, 772–787. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Hansen, H.P.; Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis, 3rd ed.; Grasshoff, K., Kremling, K., Ehrhardt, M., Eds.; Wiley VCH: Weinheim, Germany, 1999; pp. 159–228. [Google Scholar]
- Comeau, A.M.; Li, W.K.; Tremblay, J.E.; Carmack, E.C.; Lovejoy, C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 2011, 6, e27492. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Hall, J.R.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Gevers, D.; Westcott, S.L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 2011, 6, e27310. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behnke, A.; Engel, M.; Christen, R.; Nebel, M.; Klein, R.R.; Stoeck, T. Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ. Microbiol. 2011, 13, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Kunin, V.; Engelbrektson, A.; Ochman, H.; Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 2010, 12, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, T.A.; Leonard, G.; Mahé, F.; del Campo, J.; Romac, S.; Jones, M.D.M.; Maguire, F.; Dunthorn, M.; De Vargas, C.; Massana, R.; et al. Molecular diversity and distribution of marine fungi across 130 european environmental samples. Proc. R. Soc. B Biol. Sci. B 2015, 282, 20152243. [Google Scholar] [CrossRef]
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; de Vargas, C.; Decelle, J.; et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013, 41, D597–D604. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, XIX. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. Primer v6: User Manual/Tutorial. PRIMER; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); CANOCO: Ithaca, NY, USA, 2002. [Google Scholar]
- Pavlidou, A. Nutrient distribution in selected coastal areas of Aegean Sea (East Mediterranean Sea). J. Environ. Sci. Eng. A 2012, 1, 78–88. [Google Scholar]
- Simboura, N.; Pavlidou, A.; Bald, J.; Tsapakis, M.; Pagou, K.; Zeri, C.; Androni, A.; Panayotidis, P. Response of ecological indices to nutrient and chemical contaminant stress factors in Eastern Mediterranean coastal waters. Ecol. Indic. 2016, 70, 89–105. [Google Scholar] [CrossRef]
- Tugrul, S.; Ozhan, K.; Akcay, I. Assessment of trophic status of the northeastern Mediterranean coastal waters: Eutrophication classification tools revisited. Environ. Sci. Pollut. Res. 2019, 26, 14742–14754. [Google Scholar] [CrossRef]
- Friligos, N.; Kondylakis, J.C.; Psyllidou-Giouranovits, R.; Georgakopoulou-Gregoriadou, E. Eutrophication and phytoplankton abundance in the Thermaikos Gulf, Greece. Fresen. Environ. Bull. 1997, 6, 27–31. [Google Scholar]
- Moncheva, S.; Gotsis-Skretas, O.; Pagou, K.; Krastev, A. Phytoplankton blooms in black seas and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication. Similarities and differences. Estuar. Coast. Shelf Sci. 2001, 53, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Soetaert, K.; Heip, C. Sample-size dependence of diversity indices and the determination of sufficient sample size in a high-diversity deep-sea environment. Mar. Ecol. Prog. Ser. 1991, 59, 305–307. [Google Scholar] [CrossRef]
- Padisák, J. Spatial and temporal scales in phytoplankton ecology. Abstracta Botanica 1992, 16, 15–23. [Google Scholar]
- Rachik, S.; Christaki, U.; Li, L.L.; Genitsaris, S.; Breton, E.; Monchy, S. Diversity and potential activity patterns of planktonic eukaryotic microbes in a mesoeutrophic coastal area (eastern English Channel). PLoS ONE 2018, 13, e0196987. [Google Scholar] [CrossRef] [PubMed]
- Kawami, H.; Van Wezel, R.; Koeman, R.P.T.; Matsuoka, K. Protoperidinium tricingulatum sp. nov. (Dinophyceae), a new motile form of a round, brown, and spiny dinoflagellate cyst. Phycol. Res. 2009, 57, 259–267. [Google Scholar] [CrossRef]
- Gómez, F.; Onuma, R.; Artigas, L.F.; Horiguchi, T. A new definition of Adenoides eludens, an unusual marine sand-dwelling dinoflagellate without cingulum, and Pseudadenoides kofoidii gen. & comb. nov. for the species formerly known as Adenoides eludens. Eur. J. Phycol. 2015, 50, 125–138. [Google Scholar]
- Egge, E.S.; Eikrem, W.; Edvardsen, B. Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J. Eukaryot. Microbiol. 2015, 62, 121–140. [Google Scholar] [CrossRef]
- Not, F.; del Campo, J.; Balagué, V.; de Vargas, C.; Massana, R. New insights into the diversity of marine picoeukaryotes. PLoS ONE 2009, 4, article–e7143. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Ohtsuka, S.; Horiguchi, T. Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group I. Protist 2007, 158, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Massana, R.; Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 2008, 11, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Bråte, J.; Krabberod, A.K.; Dolven, J.K.; Ose, R.F.; Kristensen, T.; Bjorklund, K.R.; Shalchian-Tabrizi, K. Radiolaria associated with large diversity of marine alveolates. Protist 2012, 163, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, U.; Hesse, K.-J.; Tillmann, A. Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. J. Sea Res. 1999, 42, 255–261. [Google Scholar] [CrossRef]
- Schnepf, E.; Kühn, S.F. Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgoland Mar. Res. 2000, 54, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Hullar, M.A.J.; Kaplan, L.A.; Stahl, D.A. Recurring seasonal dynamics of microbial communities in stream habitats. Appl. Environ. Microb. 2006, 72, 713–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, D.S.; Gweon, H.S.; Bowes, M.J.; Newbold, L.K.; Field, D.; Bailey, M.J.; Griffiths, R.I. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 2015, 9, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Chen, H.; Yang, J. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Appl. Microbiol. Biot. 2015, 99, 9255–9266. [Google Scholar] [CrossRef]
- Logares, R.; Audic, S.; Santini, S.; Pernice, M.C.; de Vargas, C.; Massana, R. Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J. 2012, 6, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Logares, R.; Audic, S.; Bass, D.; Bittner, L.; Boutte, C.; Christen, R.; Claverie, J.M.; Decelle, J.; Dolan, J.R.; Dunthorn, M.; et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 2014, 24, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Chow, C.-E.T.; Kim, D.Y.; Sachdeva, R.; Caron, D.A.; Fuhrman, J.A. Top-down controls on bacterial community structure: Microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 2014, 8, 816–829. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.A.; Countway, P.D.; Xia, L.; Vigil, P.D.; Beman, J.M.; Kim, D.Y.; Rose, J.M. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 2011, 5, 1414–1425. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Sabeti, P.C. Detecting novel associations in large datsa sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Van Treuren, W.; Lozupone, C.; Faust, K.; Friedman, J.; Deng, Y.; Birmingham, A. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016, 10, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Sommer, U.; Peter, K.H.; Genitsaris, S.; Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol. Rev. 2016, 92, 1011–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Towards a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Lewandowska, A.M.; Sommer, U. Climate change and the spring bloom: A mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar. Ecol. Prog. Ser. 2010, 405, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Moustaka-Gouni, M.; Kormas, K.A.; Scotti, M.; Vardaka, E.; Sommer, U. Warming and acidification effects on planktonic heterotrophic pico- and nanoflagellates in a mesocosm experiment. Protist 2016, 167, 389–410. [Google Scholar] [CrossRef]
- Turkoglu, M.; Koray, T. Algal blooms in surface waters of the Sinop Bay in the Black Sea, Turkey. Pak. J. Bio. Sci. 2004, 7, 1577–1585. [Google Scholar]
- Turkoglu, M. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey). Oceanologia 2013, 55, 709–732. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J.; Furuya, K.; Glibert, P.M.; Xu, J.; Liu, H.B.; Yin, K.; Lee, J.H.; Anderson, D.M.; Gowen, R.; Al-Azri, A.R.; et al. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limn. 2011, 29, 807–831. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Wu, L.-Y.; Chou, W.-C.; Chiang, K.-P. The dynamics of a dominant dinoflagellate, Noctiluca scintillans, in the subtropical coastal waters of the Matsu archipelago. Mar. Pollut. Bull. 2018, 127, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Montani, S.; Pithakpol, S.; Tada, K. Nutrient regeneration in coastal seas by Noctiluca scintillans, a red tide-causing dinoflagellate. J. Mar. Biotechnol. 1998, 6, 224–228. [Google Scholar] [PubMed]
Sampling Sites | Latitude | Longitude | Number of Samples |
---|---|---|---|
White Tower (WT) | 40°37′34N | 22°56′51E | 47 |
Aretsou Beach (AR) | 40°34′29N | 22°56′38E | 12 |
Music Hall coast (MH) | 40°35′57N | 22°56′53E | 12 |
Harbour (HB) | 40°37′55N | 22°56′09E | 12 |
Bloom Periods | Key Forming Taxa |
---|---|
March–June 2017 | Leptocylindrus danicus, Leptocylindrus minimus, Coccolithales |
22 March–29 March 2017 | Noctiluca scintillans red tide |
12 April 2017 | Noctiluca scintillans red tide |
14–21 June 2017 | Noctiluca scintillans red tide |
28 June–4 July 2017 | Mucilage aggregates phenomenon |
July–September 2017 | Chaetoceros spp., Cylindrotheca closterium, Skeletonema costatum |
November 2017 | Dinophysis cf. acuminata |
December 2017–17 January 2018 | Mesodinium rubrum |
January–February 2018 | Chaetoceros tenuissimus, Skeletonema costatum |
OTUs | Putative High-Level Taxonomic Affiliation | Closest Cultured Relative (% Similarity) [Accession Number] | Isolation Source | Sampling Site (Overall Relative Abundance >1% of the Total Site Reads) |
---|---|---|---|---|
OTU_1 * | Dinoflagellata | Scrippsiella trochoidea (100%) [KR535602] | Laboratory clone | WT, AR, MH, HB |
OTU_2 * | Dinoflagellata | Noctiluca scintillans (100%) [KY980371] | Laboratory clone | WT, AR, MH, HB |
OTU_4 * | Bacillariophyta | Chaetoceros tenuissimus (99.5%) [MG972315] | Italy: Gulf of Naples | WT, AR, MH, HB |
OTU_5 * | Dinoflagellata | Gonyaulax fragilis (100%) [MF494206] | New Zealand seawater | WT, AR, MH, HB |
OTU_6 * | Dinoflagellata | Uncultured MALV (99.2%) [FJ431703] | English Channel | WT, AR, MH, HB |
OTU_8 * | Bacillariophyta | Chaetoceros cf. wighamii (99.5%) [KY980229] | Laboratory clone | WT, AR, MH |
OTU_9 * | Bacillariophyta | Thalassiosira sp. (99.6%) [AJ535171] | Laboratory clone | WT, MH, HB |
OTU_13 | Cryptophyta | Teleaulax sp. (99.7%) [MF179478] | Laboratory clone | WT, AR, MH |
OTU_15 | Dinoflagellata | Uncultured MALV (99.5%) [EU793918] | Mediterranean Sea | WT, MH |
OTU_18 * | Bacillariophyta | Skeletonema pseudocostatum (99.5%) [KY054992] | Naozhou Island marine water | WT, AR, MH |
OTU_19 | Dinoflagellata | Adenoides eludens (99.6%) [KY980212] | Laboratory clone | WT, HB |
OTU_20 * | Haptophyta | Haptolina sp. (99.3%) [JF812342] | North Pacific | WT, HB |
OTU_21 * | Chlorophyta | Uncultured chlorophyte (99.1%) [HQ867357] | Saanich Inlet marine water | WT, MH |
OTU_27 | Chlorophyta | Micromonas pusilla (100%) [KF501033] | Mediterranean Sea, Gulf of Naples | AR, MH |
OTU_28 | Dinoflagellata | Gymnodinium aureolum (97.3%) [KR362891] | Mediterranean Sea, off Italy | AR, MH |
OTU_29 | Dinoflagellata | Pelagodinium sp. (100%) [JX661027] | Endosymbiotic micoralgae microdissected from Acantharia | AR |
OTU_30 | Ciliophora | Strobilidium sp. (100%) [AF399126] | Laboratory clone | AR |
OTU_31 | Dinoflagellata | Islandinium tricingulatum (98.9%) [AB716918] | Cyst cell isolated from seawater | HB |
OTU_38 * | Dinoflagellata | Uncultured dinoflagellate | Not Available | AR |
OTU_42 | Dinoflagellata | Alexandrium margaelefii (99.3%) [U27498] | Laboratory clone | AR |
OTU_47 * | Ciliophora | Tintinnopsis sp. (99.8%) [JX178899] | Laboratory clone | MH |
OTU_49 | Acantharia | Acanthometron sp. (100%) [JQ697713] | Antarctic sea | HB |
OTU_52 | Dinoflagellata | Uncultured dinoflagellate | Not Available | AR |
OTU_55 * | Dinoflagellata | Peridinium quinquecorne (99.3%) [AB246744] | Laboratory clone | MH |
OTU_63 * | Ciliophora | Strombidium biarmatum (99.8%) [JX512970] | Long Island Sound | HB |
OTU_67 * | Bacillariophyta | Minutocellus polymorphus (99.8%) [KY980301] | Laboratory clone | < 1% relative abundance in each of the four sites |
OTU_75 * | Ciliophora | Parundella sp. (100%) [AB640645] | Japan, Sendai Bay | < 1% relative abundance in each of the four sites |
OTU_76 * | Ciliophora | Uncultured ciliate | Not Available | < 1% relative abundance in each of the four sites |
OTU_77 * | Dinoflagellata | Uncultured dinoflagellate | Not Available | < 1% relative abundance in each of the four sites |
OTU_78 * | Ciliophora | Amphorellopsis sp. (99.8%) [KU715757] | China, Yantai University bathing beach | < 1% relative abundance in each of the four sites |
OTU_80 * | Cercozoa | Uncultured cercozoan (94.6%) [KM067448] | Surface layer sediment from the East China Sea | < 1% relative abundance in each of the four sites |
OTU_85 | Dinoflagellata | Uncultured dinoflagellate | Not Available | HB |
OTU_87 * | Chlorophyta | Uncultured chlorophyte | Not Available | MH |
OTU_121 | Stramenopiles | Uncultured Marine Stramenopile (MAST-8A) | Not Available | HB |
OTU_135 | Dinoflagellata | Uncultured Marine Alveolate (MALV-II) | Not Available | MH |
OTU_138 | Dinoflagellata | Uncultured dinoflagellate | Not Available | MH |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genitsaris, S.; Stefanidou, N.; Moustaka-Gouni, M.; Sommer, U.; Tsipas, G. Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. Diversity 2020, 12, 114. https://doi.org/10.3390/d12030114
Genitsaris S, Stefanidou N, Moustaka-Gouni M, Sommer U, Tsipas G. Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. Diversity. 2020; 12(3):114. https://doi.org/10.3390/d12030114
Chicago/Turabian StyleGenitsaris, Savvas, Natassa Stefanidou, Maria Moustaka-Gouni, Ulrich Sommer, and George Tsipas. 2020. "Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides" Diversity 12, no. 3: 114. https://doi.org/10.3390/d12030114
APA StyleGenitsaris, S., Stefanidou, N., Moustaka-Gouni, M., Sommer, U., & Tsipas, G. (2020). Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. Diversity, 12(3), 114. https://doi.org/10.3390/d12030114