Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crossing Structures and the Study Area
2.2. Prey and Predator Types Monitored Using Crossing Structures
- (a)
- Prey: small mammals (mice, voles, and shrews); rat-sized rodents, hereafter ”rats” (Arvicola sapidus, A. terrestris, Rattus rattus, and R. norvegicus); and lagomorphs (Oryctolagus cuniculus and Lepus granatensis).
- (b)
- Predators: small mustelids (weasel Mustela nivalis and stoat M. erminea), cats (Felis catus and F. silvestris), Eurasian badger Meles meles, red fox Vulpes vulpes, and large canids (Canis familiaris and C. lupus).
2.3. Analysis of Co-occurrence Patterns
- (1)
- φ: a parameter related to potential predator-prey interactions at individual structures (Equation (1)). Spatial co-occurrence hereafter.φ = ΨAB/(ΨA * ΨB)
- (2)
- δ: a parameter informing on potential species interactions during the same-day use of one crossing structure (Equation (2)). Temporal co-occurrence hereafter.δ = rjAB/(rjA * rjB)
- (a)
- Limited model: without interactions (omits parameters φ and δ). It represents the spatial and temporal independence of species occurrence.
- (b)
- Partial interaction Model I: the spatial independence of species occurrence (omits interaction parameter φ).
- (c)
- Partial interaction Model II: temporal independence (omits interaction parameter δ).
- (d)
- Total interaction model (including both interaction parameters φ and δ): it represents species interdependence both in the use of a particular passage and in the same-day use of the same crossing.
3. Results
3.1. Small Mammals
3.2. Rats
3.3. Lagomorphs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bascompte, J.; Solé, R.V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 1996, 65, 465–473. [Google Scholar] [CrossRef]
- Fahrig, L. Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecol. Appl. 2002, 12, 346–353. [Google Scholar]
- Haila, Y. A conceptual genealogy of fragmentation research: From island biogeography to landscape ecology. Ecol. Appl. 2002, 12, 321–334. [Google Scholar]
- McGarigal, K.; Cushman, S.A. Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol. Appl. 2002, 12, 335–345. [Google Scholar] [CrossRef]
- Schneider, M.F. Habitat loss, fragmentation and predator impact: Spatial implications for prey conservation. J. Appl. Ecol. 2001, 38, 720–735. [Google Scholar] [CrossRef]
- Ryall, K.L.; Fahrig, L. Response of predators to loss and fragmentation of prey habitat: A review of theory. Ecology 2006, 87, 1086–1093. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Wierzchowski, J. Maintaining and restoring connectivity in landscapes fragmented by roads. In Connectivity Conservation; Crooks, K.R., Sanjayan, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 502–535. [Google Scholar]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Drainage culverts as habitat linkages and factors affecting passage by mammals. J. Appl. Ecol. 2001, 38, 1340–1349. [Google Scholar] [CrossRef]
- Mata, C.; Hervás, I.; Herranz, J.; Suárez, F.; Malo, J.E. Complementary use by vertebrates of crossing structures along a fenced Spanish motorway. Biol. Conserv. 2005, 124, 397–405. [Google Scholar] [CrossRef]
- Doncaster, C.P. Can badgers affect the use of tunnels by hedgehogs? A review of the literature. Lutra 1999, 42, 59–64. [Google Scholar]
- Foster, M.L.; Humphrey, S.R. Use of highway underpasses by Florida panthers and other wildlife. Wildl. Soc. Bull. 1995, 23, 95–100. [Google Scholar]
- Gloyne, C.C.; Clevenger, A.P. Cougar Puma concolor use of wildlife crossing structures on the Trans-Canada highway in Banff National Park, Alberta. Wildl. Biol. 2001, 7, 117–124. [Google Scholar] [CrossRef]
- Gates, J.E.; Gysel, L.W. Avian Nest Dispersion and Fledging Success in Field-Forest Ecotones. Ecology 1978, 59, 871–883. [Google Scholar] [CrossRef]
- Harris, I.M.; Mills, H.R.; Bencini, R. Multiple individual southern brown bandicoots (Isoodon obesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildl. Res. 2010, 37, 127–133. [Google Scholar] [CrossRef]
- Hunt, A.; Dickens, H.J.; Whelan, R.J. Movements of mammal through tunnels under railway lines. Aust. Zool. 1987, 24, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Little, S.J.; Harcourt, R.G.; Clevenger, A.P. Do wildlife passages act as prey-traps? Biol. Conserv. 2002, 107, 135–145. [Google Scholar] [CrossRef]
- Dickson, B.G.; Jenness, J.S.; Beier, P. Influence of vegetation, topography, and roads on cougar movement in southern California. J. Wildl. Manag. 2005, 69, 264–276. [Google Scholar] [CrossRef]
- Ford, A.T.; Clevenger, A.P. Validity of the prey-trap hypothesis for carnivore-ungulate interactions at wildlife-crossing structures. Conserv. Biol. 2010, 24, 1679–1685. [Google Scholar] [CrossRef]
- Caldwell, M.R.; Klip, J.M.K. Wildlife interactions within highway underpasses. J. Wildl. Manag. 2020, 84, 227–236. [Google Scholar] [CrossRef]
- Jedrzejewski, W.; Jedrzejewska, B. Foraging and diet of the red fox in relation to variable food resources in Bialowieza National Park. Poland. Ecography 1992, 15, 212–220. [Google Scholar] [CrossRef]
- Erlinge, S. Demography and dynamics of a stoat Mustela erminea population in a diverse community of vertebrates. J. Anim. Ecol. 1983, 52, 705–726. [Google Scholar] [CrossRef]
- Mcdonald, R.A.; Webbon, C.; Harris, S. The diet of stoats (Mustela erminea) and weasels (Mustela nivalis) in Great Britain. J. Zool. 2000, 252, 363–371. [Google Scholar] [CrossRef]
- Malo, A.F.; Lozano, J.; Huertas, D.L.; Virgos, E. A change of diet from rodents to rabbits (Oryctolagus cuniculus) is the wildcat (Felis silvestris) a specialist predator? J. Zool. 2004, 263, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Virgós, E.; Mangas, J.C.; Blanco-aguiar, J.A.G.G.; Almagro, N.; Viso, R.P. Food habits of european badgers (Meles meles) along an altitudinal gradient of mediterranean environments: A field test of the earthworm specialization hypothesis. Can. J. Zool. 2004, 82, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Capitani, C.; Bertelli, I.; Varuzza, P.; Scandura, M.; Apollonio, M. A comparative analysis of wolf (Canis lupus) diet in three different Italian ecosystems. Mamm. Biol. 2004, 69, 1–10. [Google Scholar] [CrossRef]
- Dell’arte, G.L.; Laaksonen, T.; Norrdahl, K.; Korpimaki, E. Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecol.-Int. J. Ecol. 2007, 31, 276–281. [Google Scholar] [CrossRef]
- Gisbert, J.; García-Perea, R. Mustela erminea Linnaeus, 1758. In Atlas y Libro Rojo de los Mamíferos Terrestres de España; Palomo, L.J., Gisbert, J., Blanco, J.C., Eds.; Dirección General de la Naturaleza-SECEM_SECEMU: Madrid, Spain, 2007; pp. 280–282. [Google Scholar]
- Barja, I. Prey and Prey-Age Preference by the Iberian wolf Canis Lupus Signatus in a multiple-prey ecosystem. Wildl. Biol. 2009, 15, 147–154. [Google Scholar] [CrossRef]
- Vanak, A.T.; Gompper, M.E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mamm. Rev. 2009, 39, 265–283. [Google Scholar] [CrossRef]
- MacKenzie, D.; Bailey, L.; Nichols, J. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 2004, 73, 546–555. [Google Scholar] [CrossRef]
- MacKenzie, D.; Nichols, J.; Royle, J.; Pollock, K.; Bailey, L.; Hines, J. Occupancy Estimation and Modeling. Inferring Patterns and Dynamics of Species Occurrence, 2nd ed.; Elsevier: Burlington, MA, USA, 2006. [Google Scholar]
- Mata, C.; Hervás, I.; Herranz, J.; Malo, J.E.; Suárez, F. Seasonal changes in wildlife use of motorway crossing structures and their implication for monitoring programmes. Transp. Res. Part D-Transp. Environ. 2009, 14, 447–452. [Google Scholar] [CrossRef]
- Hines, J.E. 2006 Presence2-Software to Estimate Patch Occupancy and Related Parameters. USGS-PWRC. Available online: http://www.mbr-pwrc.usgs.gov/software/presence.html (accessed on 22 January 2016).
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Sih, A. Predator-prey space use as an emergent outcome of a behavioral race. In Ecology of Predator-Prey Interactions; Barbosa, P., Castellanos, I., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 240–255. [Google Scholar]
- Lima, S.L.; Steury, T.D. Perception of predation risk. The foundation of nonlethal predator-prey interactions. In Ecology of Predator-Prey Interactions; Barbosa, P., Castellanos, I., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 166–188. [Google Scholar]
- Schmitz, O.J. Scaling from plot experiments to landscapes: Studying grasshoppers to inform forest ecosystem management. Oecologia 2005, 145, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.E.; Rive, A.C.; Ferrari, M.C.O.; Chivers, D.P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 2006, 61, 9–16. [Google Scholar] [CrossRef]
- Jedrzejewski, W.; Jedrzejewska, B. Effect of a predator’s visit on the spatial distribution of bank voles: Experiments with weasels. Can. J. Zool. 1990, 68, 660–666. [Google Scholar] [CrossRef]
- Burwash, M.D.; Tobin, M.E.; Woolhouse, A.D.; Sullivan, T.P. Field testing synthetic predator odors for roof rats (Rattus rattus) in Hawaiian macadamia nut orchards. J. Chem. Ecol. 1998, 24, 603–630. [Google Scholar] [CrossRef]
- Monclús, R.; Palomares, F.; Tablado, Z.; Martínez-Fontúrbel, A.; Palme, R. Testing the threat-sensitive predator avoidance hypothesis: Physiological responses and predator pressure in wild rabbits. Oecologia 2009, 158, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Grostal, P.; Dicke, M. Direct and indirect cues of predation risk influence behavior and reproduction of prey: A case for acarine interactions. Behav. Ecol. 1999, 10, 422–427. [Google Scholar] [CrossRef]
- Creel, S.; Winnie, J., Jr.; Maxwell, B.; Hamlin, K.; Creel, M. Elk alter habitat selection as an antipredator response to wolves. Ecology 2005, 86, 3387–3397. [Google Scholar] [CrossRef]
- Kats, L.B.; Dill, L.M. The scent of death: Chemosensory assessment of predation risk by prey animal. Ecoscience 1998, 5, 361–394. [Google Scholar] [CrossRef]
- Dickman, C.; Doncaster, C.P. Responses of small mammals to red fox (Vulpes vulpes) odour. J. Zool. 1984, 204, 521–531. [Google Scholar] [CrossRef]
- Fenn, M.G.P.; Macdonald, D.W. Use of middens by red foxes -risk reverses rhythms of rats. J. Mammal. 1995, 76, 130–136. [Google Scholar] [CrossRef]
- Sullivan, T.; Nordstrom, L.; Sullivan, D. Use of predator odors as repellents to reduce feeding damage by herbivores. I. Snowshoe hares (Lepus americanus). J. Chem. Ecol. 1985, 11, 903–919. [Google Scholar] [CrossRef]
- Boag, B.; Mlotkiewicz, J. Effect of odor derived from lion faeces on behavior of wild rabbits. J. Chem. Ecol. 1994, 20, 631–637. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Au, W.W.L. Prey dynamics affect foraging by pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. Behav. Ecol. Sociobiol. 2003, 53, 364–373. [Google Scholar] [CrossRef]
- Ioannou, C.C.; Ruxton, G.D.; Krause, J. Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behav. Ecol. 2008, 19, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Lima, S.L. Nonlethal effects in the ecology of predator–prey interactions. What are the ecological effects of anti–predator decision–making? BioScience 1998, 48, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Preisser, E.L.; Bolnick, D.I.; Benard, M.F. Scared to death? The effects of intimidation in predator-prey interactions. Ecology 2005, 86, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Abrams, P.A. Measuring the population-level consequences of predator-induced prey movement. Evol. Ecol. Res. 2008, 10, 333–350. [Google Scholar]
- Apfelbach, R.; Blanchard, C.D.; Blanchard, R.J.; Hayes, R.A.; McGregor, I.S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 2005, 29, 1123–1144. [Google Scholar] [CrossRef]
- Russell, B.G.; Banks, P.B. Do Australian small mammals respond to native and introduced predator odours? Austral Ecol. 2007, 32, 277–286. [Google Scholar] [CrossRef]
- Ruediger, B. Rare carnivores and highways- moving into the 21st century. In Proceedings of the International Conference on Wildlife Ecology and Transportation (ICOWET), Fort Meyers, FL, USA, 9–12 February 1998; Evink, G.L., Garrett, P., Zeigler, D., Berry, J., Eds.; Florida Department of Transportation: Tallahassee, FL, USA, 1998; pp. 10–16. [Google Scholar]
- Love, R.A.; Webon, C.; Glue, D.E.; Harris, S. Changes in the food of British barn owls Tyto alba between 1974 and 1997. Mamm. Rev. 2000, 30, 107–129. [Google Scholar] [CrossRef]
- Smith-Patten, B.D.; Patten, M.A. Diversity, seasonality, and context of mammalian roadkills in the southern great plains. Environ. Manag. 2008, 41, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Higgs, E.; Harrism, J.A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 2009, 24, 599–605. [Google Scholar] [CrossRef]
- Holderegger, R.; Di Giulio, M. The genetic effects of roads: A review of empirical evidence. Basic Appl. Ecol. 2010, 11, 522–531. [Google Scholar] [CrossRef]
- Ramalho, C.E.; Ottewell, K.M.; Chambers, B.K.; Yates, C.J.; Wilso, B.A.; Bencini, R.; Barret, G. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape. PLoS ONE 2018, 13, e0191190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.H.; Heske, E.J. Control of a desert-grassland transition by a keystone rodent guild. Science 1990, 250, 1705–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawaya, M.A.; Kalinowski, S.T.; Clevenger, A.P. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc. R. Soc. B-Biol. Sci. 2014, 281, 20131705. [Google Scholar] [CrossRef] [Green Version]
- Soanes, K.; Taylor, A.C.; Sunnucks, P.; Vesk, P.A.; Cesarini, S.; van der Ree, R. Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: Lessons from a gliding mammal. J. Appl. Ecol. 2018, 55, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.; Goldman, C.R.; Heanue, K.; et al. Road Ecology. Science and Solutions; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Corlatti, L.; Hackländer, K.; Frey-Roos, F. Ability of wildlife overpasses to provide connectivity and prevent genetic isolation. Conserv. Biol. 2009, 23, 548–556. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 2005, 121, 453–464. [Google Scholar] [CrossRef]
- Bissonette, J.A.; Adair, W. Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biol. Conserv. 2008, 141, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Food and the Environment. Technical prescriptions for wildlife crossing and fence design. In Documents for the Mitigation of Habitat Fragmentation Caused by Transport Infrastructure, 2nd ed.; Ministry of Agriculture, Food and the Environment: Madrid, Spain, 2016; 124p. [Google Scholar]
- Iuell, B.; Bekker, G.J.; Cuperus, R.; Dufek, J.; Fry, G.; Hicks, C.; Hlavác, V.B.; Rosell, C.; Sangwine, T.; Torslov, N.; et al. Wildlife and Traffic: A European Handbook for Identifying Conflicts and Designing Solutions; KNNV Publishers: Utrecht, The Netherlands, 2003. [Google Scholar]
- Tissier, M.L.; Bousquet, C.A.H.; Fleitz, J.; Chatelain, N.; Habold, C.; Handrich, Y. An anti-predation device to facilitate and secure the crossing of small mammals in motorway wildlife underpasses. (II) Validation with the European hamster under semi-natural conditions. Ecol. Eng. 2018, 125, 106–110. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; Macarthur, R.H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 1963, 97, 209. [Google Scholar] [CrossRef]
Prey and Predator Species | Culverts (n = 58) | Underpasses (n = 29) | Overpasses (n = 26) | Total (n = 113) | ||||
---|---|---|---|---|---|---|---|---|
n | d | n | d | n | d | n | d | |
Prey | ||||||||
Small mammals | 51 | 508 | 23 | 125 | 22 | 184 | 96 | 817 |
Rats | 15 | 43 | 6 | 16 | 2 | 2 | 23 | 61 |
Lagomorphs | 13 | 28 | 22 | 177 | 18 | 133 | 53 | 338 |
Predators | ||||||||
Small mustelids (Mustela spp.) | 16 | 50 | 6 | 6 | 0 | 0 | 22 | 56 |
Eurasian badger | 14 | 69 | 14 | 85 | 2 | 3 | 30 | 157 |
Cats (Felis spp.) | 22 | 50 | 15 | 48 | 13 | 28 | 50 | 126 |
Red fox | 34 | 102 | 27 | 201 | 21 | 81 | 82 | 384 |
Large canids (Canis spp.) | 33 | 77 | 27 | 177 | 24 | 136 | 84 | 390 |
Prey-Predator Pairs | Small Mustelid | Cat | Eurasian Badger | Red Fox | Large Canids | |
---|---|---|---|---|---|---|
Small mammal | φ (SE) | 1.04(-) | 1.05(0.03) | 1.11(0.04) ** | 1.02(0.02) | 1.02(0.03) |
δ (SE) | 1.14(0.10) ** | 1.01(0.15) ** | 1.15(0.18) ** | 0.77(0.07) ** | 0.76(0.07) ** |
Prey-Predator Pairs | Small Mustelid | Cat | Eurasian Badger | Red Fox | Large Canid | |
---|---|---|---|---|---|---|
Rat-sized rodent | φ(SE) | 0.74(0.37) ** | 0.71(0.27) | 1.02(13.4) | 1.09(-) | 1.13(0.16) |
δ(SE) | 0.86(0.36) * | 0.96(0.48) | 0.34(0.51) | 0.65(0.24) ** | 0.51(0.2) |
Prey-Predator Pairs | Small Mustelid | Cat | Eurasian Badger | Red Fox | Large Canid | |
---|---|---|---|---|---|---|
Lagomorph | φ(SE) | 0.99(0.08) | 0.93(0.13) | 1.59(0.21) ** | 1.07(-) | 1.19(-) |
δ(SE) | 0.51(0.26) | 0.74(0.18) ** | 2.25(0.52) * | 1.12(0.12) ** | 1.34(0.15) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, C.; Herranz, J.; Malo, J.E. Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads. Diversity 2020, 12, 166. https://doi.org/10.3390/d12040166
Mata C, Herranz J, Malo JE. Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads. Diversity. 2020; 12(4):166. https://doi.org/10.3390/d12040166
Chicago/Turabian StyleMata, Cristina, Jesús Herranz, and Juan E. Malo. 2020. "Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads" Diversity 12, no. 4: 166. https://doi.org/10.3390/d12040166
APA StyleMata, C., Herranz, J., & Malo, J. E. (2020). Attraction and Avoidance between Predators and Prey at Wildlife Crossings on Roads. Diversity, 12(4), 166. https://doi.org/10.3390/d12040166