Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Species (Psidium Guajava)
2.2. Floral Traits and Pollination Experiments
2.3. Pollinator Visitation and Richness
2.4. Pollinator Exclusion Experiment
2.5. Statistical Analyses
3. Results
3.1. Floral Morphology
3.2. Pollination Experiments
3.3. Pollinator Visitation Rate and Richness in Relation to Forest
3.4. Fruit Set in Relation to Pollinators and Forest
4. Discussion
Supplementary Files
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Species | Individuals Observed (Total) | Study Sites | |
---|---|---|---|
Bees (Anthophila) | Anthophila sp. 1 | 3 | 4 |
Nomia (Acunomia) strigata♀ | 5 | 4 | |
Braunsapis cupulifera cf. | 7 | 4 | |
Ceratina (ceratinidia) nigrolateralis♀ | 10 | 4 | |
Apis | Apis cerana | 196 | 1, 2, 3, 5, 6 |
Apis dorcata | 1 | 1 | |
Apis florana | 2 | 1 | |
Carpenter beess (Xylocopa) | Xylocopa (Koptortosoma) aestuans♀ | 14 | 2, 3, 4 |
Xylocopa (Mesotrichia) latipes cf. | 4 | 3 | |
Geniotrigona thoracica | 14 | 1 | |
Stingless bees(Meliponines) | Heterotrigona itama | 145 | 1, 4 |
Tetragonula (laeviceps gr.) | 32 | 1, 2, 4 | |
Tetragonula (pagdeni gr.) | 1 | 1 | |
Tetragonula sp. | 6 | 4 | |
Meliponines sp. | 1 | 1 | |
Wasps (Vespidae) | Vespa Affinis | 1 | 1 |
Beetles (Coleoptera) | Coleoptera sp. 1 | 2 | 5 |
Coleoptera sp. 2 | 7 | 5 | |
Coleoptera sp. 3 | 1 | 5 | |
Flies (Diptera) | Diptera sp. 1 | 19 | 4 |
Diptera sp. 2 | 2 | 4 | |
Diptera sp. 3 | 3 | 4 | |
Diptera sp. 4 | 15 | 2 | |
Ants (Formicidae) | Formicidae sp. 1 | 4 | 5 |
Formicidae sp. 2 | 2 | 4 | |
Formicidae sp. 3 | 1 | 5 |
References
- Rech, A.R.; Dalsgaard, B.; Sandel, B.; Sonne, J.; Svenning, J.C.; Holmes, N.; Ollerton, J. The macroecology of animal versus wind pollination: Ecological factors are more important than historical climate stability. Plant Ecol. Divers. 2016, 9, 253–262. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef] [Green Version]
- Bawa, K. Plant-pollinator interactions in tropical rain forests. Annu. Rev. Ecol. Evol. 1990, 21, 399–422. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.; Biesmeijer, J.C.; Breeze, T.; Dicks, L.; Garibaldi, L.; Settele, J.; Vanbergen, A.J.; Aizen, M.A.; et al. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on Pollinators, Pollination and Food Production; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; ISBN 978-92-807-3568-0. [Google Scholar]
- Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997; Volume 3. [Google Scholar]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A.; Buchmann, S.; Cane, J.; Cox, P.A.; Dalton, V.; Feinsinger, P.; Ingram, M.; et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 1998, 12, 8–17. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roubik, D.W. Pollination of Cultivated Plants in the Tropics; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1995; ISBN 9251036594. [Google Scholar]
- Dalsgaard, B. Land-Use and climate impacts on plant–pollinator interactions and pollination services. Diversity 2020, 12, 168. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Ollerton, J.; Erenler, H.; Edwards, M.; Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 2014, 346, 1360–1362. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F. Forest destruction in tropical Asia. Curr. Sci. 2007, 93, 1544–1550. [Google Scholar]
- Sritongchuay, T.; Hughes, A.C.; Memmott, J.; Bumrungsri, S. Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards. Landsc. Urban Plan. 2019, 192, 103646. [Google Scholar] [CrossRef]
- Büchert Lindberg, A.; Mogens Olesen, J. The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera. J. Trop. Ecol. 2001, 17, 323–329. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Michener, C.D. Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 2004, 101, 12579–12582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, T.H. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 2004, 18, 1262–1271. [Google Scholar] [CrossRef]
- Rathcke, B.J.; Jules, E.S. Habitat fragmentation and plant pollinator interactions. Curr. Sci. 1993, 65, 273–277. [Google Scholar]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A.; Carvalheiro, L.G.; Chacoff, N.P.; Dudenhöffer, J.H.; Greenleaf, S.S.; et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology 2011, 14, 1062–1072. [Google Scholar] [CrossRef]
- Blanche, K.R.; Ludwig, J.A.; Cunningham, S.A. Proximity to rainforest enhances pollination and fruit set in orchards. J. Appl. Ecol. 2006, 43, 1182–1187. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013, 340, 1608–1611. [Google Scholar] [CrossRef]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Pommer, C.V.; Murakami, K.R.N. Breeding guava (Psidium guajava L.). In Breeding Plantation Tree Crops: Tropical Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 83–120. ISBN 9780387712017. [Google Scholar]
- Salazar, D.M.; Melgarejo, P.; Martínez, R.; Martínez, J.J.; Hernández, F.; Burguera, M. Phenological stages of the guava tree (Psidium guajava L.). Sci. Hortic. 2006, 108, 157–161. [Google Scholar] [CrossRef]
- Morton, J.F.; Dowling, C.F. Fruits of Warm Climates, Pomegranate; JF Morton: Miami, FL, USA, 1987; ISBN 0-9610184-1-0. [Google Scholar]
- Altendorf, S. Minor Tropical Fruits: Mainstreaming a Niche Market; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; Available online: http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Minor_Tropical_Fruits_FoodOutlook_1_2018.pdf (accessed on 13 May 2020).
- Food and Agriculture Organization of the United Nations (FAO). Food Outlook: Biannual Report on Global Food Markets; Global Information and Early Warning System on Food and Agriculture: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7343e.pdf (accessed on 13 May 2020).
- Kadam, D.M.; Kaushik, P.; Kumar, R. Evaluation of guava products quality. Int. J. Food Sci. Nutr. Eng. 2012, 2012, 7–11. [Google Scholar] [CrossRef]
- Singh, R.; Sehgal, O. Studies on the blossom-biology of Psidium guajava L. (Guava) II. pollen studies, stigmatal receptivity, pollination and fruit-set. Indian J. Hortic. 1968, 25, 52–59. [Google Scholar]
- Thanarut, C.; Ko, J.-C. Guava, wax apple, sugar apple and pineapple productions in Thailand. Acta Hortic. 2017, 1166, 7–14. [Google Scholar] [CrossRef]
- Mitra, S.K.; Thingreingam Irenaeus, K.S. Guava cultivars of the world. Acta Hortic. 2018, 1205, 905–910. [Google Scholar] [CrossRef]
- Land Development Department. GIS Data on Land Use Resources. Available online: http://www.ldd.go.th/www/lek_web/web.jsp?id=18907 (accessed on 29 May 2020).
- Klein, A.-M.; Steffan-Dewenter, I.; Tscharntke, T. Bee pollination and fruit set of coffea arabica and C. canephora (Rubiaceae). Am. J. Bot. 2003, 90, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package ‘vegan’Community Ecology Package. R Package Version 2.5-6. 2019. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 12 May 2020).
- Ekstrøm, C.T.; Sørensen, H. Introduction to Statistical Data Analysis for the Life Sciences; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781439894866. [Google Scholar]
- R Core Team. R: A language and environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hadley, W. Ggplot2: Elegant Graphics for Data Analysis; Springer: Houston, TA, USA, 2016. [Google Scholar]
- Alves, J.E.; Freitas, B.M. Foraging behavior and pollination efficiency of five bee species on guava (Psidiumguajava L.) flowers. Rev. Ciência Agronômica 2008, 37, 216. [Google Scholar]
- Tangtorwongsakul, P.; Warrit, N.; Gale, G.A. Effects of landscape cover and local habitat characteristics on visiting bees in tropical orchards. Agric. For. Entomol. 2018, 20, 28–40. [Google Scholar] [CrossRef]
- Hansen, K.; University of Copenhagen, Copenhagen, Denmark. Personal Communication, 2020.
- Winfree, R.; Williams, N.M.; Dushoff, J.; Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 2007, 10, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. The case of the empty hives. Science 2007, 316, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Zurbuchen, A.; Landert, L.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 2010, 143, 669–676. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Nascimento, V.T.; Agostini, K.; Souza, C.S.; Maruyama, P.K. Tropical urban areas support highly diverse plant-pollinator interactions: An assessment from Brazil. Landsc. Urban Plan. 2020, 198, 103801. [Google Scholar] [CrossRef]
- Mariana Morais, V.; Cristina, B.; Leandro Reverberi, T.; Érica, H.; Pedro Ferreira, D.; Wesley Rodrigues, S.; Paulo Roberto, G.; Jean Paul, M. Predicting the non-linear collapse of plant–frugivore networks due to habitat loss. Ecography 2019, 42, 1765–1776. [Google Scholar] [CrossRef] [Green Version]
- Melo, I.; Ochoa-Quintero, J.M.; Oliveira Roque, F.; Dalsgaard, B. A review of threshold responses of birds to landscape changes across the world. J. Field Ornithol. 2018, 89, 303–314. [Google Scholar] [CrossRef]
Study Sites Information | Evergreen Forest Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Site | Latitude | Longitude | Size (ha) | No. Trees | Age Trees (Years) | Distance (m) | 1 km (%) | 5 km (%) | 10 km (%) |
1 | 6.989000 | 100.616611 | 1.6 | 1500 | 4–5 | 371 | 15.63 | 12.96 | 7.27 |
2 | 7.035883 | 100.280283 | 2.8 | 1000 | 2–4 | 752 | 0.00 | 0.00 | 0.00 |
3 | 7.048433 | 100.449133 | 2.3 | 839 | 5 | 5475 | 0 | 0 | 3.30 |
4 | 6.908079 | 100.502339 | 0.4 | 500 | 2 | 770 | 2.33 | 2.85 | 5.09 |
5 | 7.555000 | 100.130433 | 1.6 | 998 | 3 | 8676 | 3.47 | 0.16 | 0.39 |
6 | 7.873817 | 99.885733 | 0.5 | 216 | 3.5 | 7070 | 0 | 0 | 2.21 |
Dependent | Independent | R2 | Regression Coefficients |
---|---|---|---|
Visitation rate | Forest | ||
All | 1000 m (%) | 0.51 | 0.42 (0.21) NS |
5000 m (%) | 0.68 | 0.57 (0.20) * | |
10,000 m (%) | 0.47 | 0.88 (0.47) NS | |
Distance (m) | 0.48 | −6.7·10−4 (3.5·10−4) NS | |
Wild pollinators | 1000 m (%) | 0.79 | 0.69 (0.18) * |
5000 m (%) | 0.91 | 0.87 (0.14) ** | |
10,000 m (%) | 0.72 | 1.43 (0.45) * | |
Distance (m) | 0.53 | −9.4·10−4 (4.4·10−4) NS | |
All bees | 1000 m (%) | 0.52 | 0.44 (0.21) NS |
5000 m (%) | 0.67 | 0.59 (0.21) * | |
10,000 m (%) | 0.45 | 0.90 (0.50) NS | |
Distance (m) | 0.34 | −6.0·10−4 (4.2·10−4) NS | |
Wild bees | 1000 m (%) | 0.86 | 0.71 (0.14) ** |
5000 m (%) | 0.97 | 0.90 (0.08) ** | |
10,000 m (%) | 0.74 | 1.45 (0.42) * | |
Distance (m) | 0.45 | −8.6·10−4 (4.7·10−4) NS | |
Estimated richness | 1000 m (%) | 0.27 | 0.35 (0.29) NS |
5000 m (%) | 0.31 | 0.44 (0.33) NS | |
10,000 m (%) | 0.37 | 0.88 (0.58) NS | |
Distance (m) | 0.34 | −6.5·10−4 (4.5·10−4) NS | |
Additional initial fruit set | 1000 m (%) | 0.39 | −0.005 (0.003) NS |
5000 m (%) | 0.24 | −0.004 (0.004) NS | |
10,000 m (%) | 0.20 | −0.007 (0.007) NS | |
Distance (m) | 0.35 | −4.4·10−5 (5.7·10−6) NS | |
Additional initial fruit set | VR and Richness | ||
VR All | 0.0001 | −0.0001 (0.006) NS | |
VR Wild pollinators | 0.1141 | −0.0032 (0.004) NS | |
VR All bees | 0.0069 | −0.0010 (0.006) NS | |
VR Wild bees | 0.1589 | −0.0038 (0.004) NS | |
Richness | 0.0765 | −0.0031 (0.005) NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, K.; Sritongchuay, T.; Bumrungsri, S.; Simmons, B.I.; Strange, N.; Dalsgaard, B. Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand. Diversity 2020, 12, 259. https://doi.org/10.3390/d12060259
Hansen K, Sritongchuay T, Bumrungsri S, Simmons BI, Strange N, Dalsgaard B. Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand. Diversity. 2020; 12(6):259. https://doi.org/10.3390/d12060259
Chicago/Turabian StyleHansen, Katrine, Tuanjit Sritongchuay, Sara Bumrungsri, Benno I. Simmons, Niels Strange, and Bo Dalsgaard. 2020. "Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand" Diversity 12, no. 6: 259. https://doi.org/10.3390/d12060259