Effects of Human Activities on the Diversity of Waterbirds Wintering in a Shallow Lake of the Middle and Lower Yangtze River Floodplain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Methods
2.2.1. Waterbird Survey
2.2.2. Habitat Parameter Survey
2.2.3. Data Analysis
3. Results
3.1. Waterbird Species and Number in Different Wetlands
3.2. Wintering Waterbird Diversity in Different Types of Wetlands
3.3. Environmental Factors Influencing Waterbird Diversity
4. Discussion
4.1. Spatial Distribution of Overwintering Waterbirds
4.2. Factors Influencing Community Structure of Waterbirds
4.3. Shallow Lake Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.X.; Dong, Y.X.; Xia, F. Significance of waterbird monitoring in lake ecosystems. J. Lake Sci. 2011, 23, 155–162. [Google Scholar]
- Ramachandran, R.; Kumar, A.; Gopi, S.K.; Bhalla, R.S. Hunting or habitat? Drivers of waterbird abundance and community structure in agricultural wetlands of southern India. Ambio 2017, 46, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-González, E.; Sánchez-Zapata, J.A.; Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 2009, 56, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.X.; Liu, H.; Zhang, L.Q. Spatial Patterns for the Distribution of Winter Waterbirds in the Aquaculture Ponds of Chongming Dongtan, Shanghai. Zoo. Res. 2008, 29, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Zhou, L.Z.; Zhou, B. Seasonal dynamics of wintering waterbirds in two shallow lakes along Yangtze River in Anhui Province. Zoo. Res. 2011, 32, 540−548. [Google Scholar]
- Zhou, B.; Zhou, L.Z.; Chen, J.Y. Diurnal time-activity budgets of wintering hooded cranes (Grus monacha) in Shengjin Lake, China. Waterbirds 2010, 33, 110–115. [Google Scholar] [CrossRef]
- Zhao, F.T.; Zhou, L.Z.; Xu, W.B. Habitat utilization and resource partitioning of wintering hooded cranes and three goose species at Shengjin Lake. Chin. Birds 2013, 4, 281–290. [Google Scholar] [CrossRef]
- Bellio, M.G.; Kingsford, R.; Kotagama, S.W. Natural versus artificial- wetlands and their waterbirds in Sri Lanka. Biol. Conserv. 2009, 142, 3076–3085. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhou, L.Z. Guild structure of wintering waterbird assemblages in shallow lakes along Yangtze River in Anhui Province, China. Acta. Ecol. Sin. 2011, 31, 5323–5331. [Google Scholar]
- Chen, B.; Cui, P.; Xu, H. Assessing the suitability of habitat for wintering Siberian Cranes (Leucogeranus leucogeranus) at different water levels in Poyang Lake area, China. Pol. J. Ecol. 2016, 64, 84–97. [Google Scholar] [CrossRef]
- Holm, T.E.; Clausen, P. Effects of water level management on autumn staging waterbird and macrophyte diversity in three Danish coastal lagoons. Bio. Conserv. 2006, 15, 4399–4423. [Google Scholar] [CrossRef]
- Tanalgo, K.C.; Pineda, J.A.; Agravante, M.E. Bird diversity and structure in different land-use types in lowland South-Central Mindanao, Philippines. Trop. Life Sci. Res. 2015, 26, 85–103. [Google Scholar] [PubMed]
- White, C.L.; Main, M.B. Waterbird use of created wetlands in golf-course landscapes. Wildl. Soc. Bull. 2005, 33, 411–421. [Google Scholar] [CrossRef]
- Schuh, M.H.; Guadagnin, D.L. Habitat and landscape factors associated with the nestedness of waterbird assemblages and wetland habitats in South Brazil. Austral Ecol. 2018, 43, 989–999. [Google Scholar] [CrossRef]
- Stanton, R.L.; Morrissey, C.A.; Clark, R.G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 2018, 254, 244–254. [Google Scholar] [CrossRef]
- Ma, Z.J.; Li, B.; Zhao, B. Are artificial wetlands good alternatives to natural wetlands for waterbirds?—A case study on Chongming Island, China. Bio. Conserv. 2004, 13, 333–350. [Google Scholar] [CrossRef]
- MacGregor-Fors, I. Relation between habitat attributes and bird richness in a western Mexico suburb. Landsc. Urban Plan. 2007, 84, 92–98. [Google Scholar] [CrossRef]
- Yu, C.X.; Yang, G.; Lu, Z. Habitat use by waterbirds in coastal wetlands during migratory seasons in Shankou Nature Reserve, Guangxi, South China. Oceanol. Lim. Sin. 2014, 45, 513–521. [Google Scholar]
- An, A.; Cao, L.; Jia, Q.; Wang, X.; Zhu, Q.; Zhang, J.; Ye, X.; Gao, D. Changing abundance and distribution of the wintering Swan Goose Anser cygnoides in the middle and lower Yangtze River floodplain: An investigation combining a field survey with satellite telemetry. Sustainability 2019, 11, 1398. [Google Scholar] [CrossRef] [Green Version]
- Bater, M.; Liwei, C.; Lei, C. Waterbird Survery of the Middle and Lower Yangtze River Floodplain in Late January and February 2004; China Forestry Publishing House: Hefei, China, 2004. [Google Scholar]
- Aharon-Rotman, Y.; McEvoy, J.; Zheng, Z.J. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecol. Evol. 2017, 7, 10440–10450. [Google Scholar] [CrossRef]
- Rodríguez-Villafañe, C.; Bécares, E.; Fernández-Aláez, M. Waterfowl grazing effects on submerged macrophytes in a shallow Mediterranean lake. Aquat. Bot. 2007, 86, 25–29. [Google Scholar] [CrossRef]
- Chen, X.; Li, B.L.; Scott, T.A. Spatial structure of multispecies distributions in southern California, USA. Biol. Conserv. 2005, 124, 169–175. [Google Scholar] [CrossRef]
- Gill, F.; Donsker, D.; Rasmussen, P. IOC World Bird List (v10. 1). 2020. Available online: www.worldbirdnames.org (accessed on 2 August 2020).
- Ma, K.P.; Liu, Y.M. Measurement method I for biological community diversity: Alpha diversity measurement method (the second half). Chi. Bio. 1994, 2, 231–239. [Google Scholar]
- Liu, C.R.; Ma, K.P. Measurement of biotic community diversity VI. The statistical aspects of diversity measures. Bio. Science. 1998, 6, 229–239. [Google Scholar]
- Zhao, P.; Yuan, X.; Tang, S.X. Species and habitat preference of waterbirds at the eastern end of Chongming Island (Shanghai) in Winter. Zoo. Res. 2003, 24, 387–391. [Google Scholar]
- Liu, J.; Niu, J.Y.; Zou, Y.A. Changes in the waterbird community of the ecological restored wetlands in Pudong Dongtan, Shanghai. Resour. Environ. Yangtze. Basin. 2015, 24, 219–226. [Google Scholar]
- Smiley, P.C., Jr.; Maul, J.D.; Cooper, C.M. Avian community structure among restored riparian habitats in northwestern Mississippi. Agri. Eco. Environ. 2007, 122, 149–156. [Google Scholar] [CrossRef]
- Yang, Y.X.; Bai, H.T.; Fu, W. Bird diversity and its correlation with the habitat structure in Dashanbao Black-necked Cranes Nature Reserve. Chin. J. Zoo. 2018, 37, 147–156. [Google Scholar]
- Jin, X.; Ren, X.T.; Peng, H.B. Habitat use and factors affecting distribution of wintering waterbirds in the wetland restoration area at Chongming Dongtan. Chin. J. Zoo. 2013, 48, 686–692. [Google Scholar]
- Connor, K.J.; Gabor, S. Breeding waterbird wetland habitat availability and response to water-level management in Saint John River floodplain wetlands, New Brunswick. Hydrobiologia 2006, 567, 169–181. [Google Scholar] [CrossRef]
- Kaminski, R.W.; Baldassarre, G.A.; Pearse, A.T. Waterbird responses to hydrological management of wetlands reserve program habitats in New York. Wildl. Soc. Bull. 2006, 34, 921–926. [Google Scholar] [CrossRef]
- Fang, W.; Chu, H.J.; Cheng, B.Y. Modeling waterbird diversity in irrigation ponds of Taoyuan, Taiwan using an artificial neural network approach. Paddy Water Environ. 2009, 7, 209–216. [Google Scholar] [CrossRef]
- Hsu, C.H.; Chou, J.Y.; Fang, W.T. Habitat selection of wintering birds in farm ponds in Taoyuan, Taiwan. Animals 2019, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xie, H.B.; Zeng, W.B. The waterfowl community structure and waterflowl habitat-selection analysis for four artificial wetlands type in spring in Chongming Dongtan, China. Chin. J. Zoo. 2014, 49, 490–504. [Google Scholar]
- Nurqamareena, K.; Chong, Y.L.; Mohd-Azlan, J. A survey of understory birds at a rice field and a mixed dipterocarp forest in Kuching Sarawak. Malays. Appl. Biol. 2018, 47, 217–222. [Google Scholar]
- Zheng, M.; Zhou, L.; Zhao, N. Effects of variation in food resources on foraging habitat use by wintering Hooded Cranes (Grus monacha). Avian Res. 2015, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Perkins, A.J.; Maggs, H.E.; Wilson, J.D. Winter bird use of seed-rich habitats in agri-environment schemes. Agric. Ecos. Environ. 2008, 126, 189–194. [Google Scholar] [CrossRef]
- Sandsten, H.; Klaassen, M. Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species. Oecologia 2008, 156, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.A.; Zhang, P.Y.; Zhang, S.Q. Crucial sites and environmental variables for wintering migratory waterbird population distributions in the natural wetlands in East Dongting Lake, China. Sci. Total Environ. 2019, 655, 147–157. [Google Scholar] [CrossRef]
- Golet, G.H.; Low, C.; Avery, S. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 2018, 28, 409–426. [Google Scholar] [CrossRef]
- Gatto, A.; Quintana, F.; Yorio, P. Feeding behavior and habitat use in a waterbird assemblage at a marine wetland in coastal Patagonia, Argentina. Waterbirds 2008, 31, 463–471. [Google Scholar] [CrossRef]
- Kurosawa, R. Disturbance-induced bird diversity in early successional habitats in the humid temperate region of northern Japan. Ecol. Res. 2008, 24, 687–696. [Google Scholar] [CrossRef]
Code | Habitat Factors | Explanation |
---|---|---|
BMW (bare mudflat width) | Mudflat width (m) | Mudflat width in transect |
MA (mudflat area) | Mudflat area ratio (%) | Percentage of mudflat area over total transect area |
WA (water area) | Water body area ratio (%) | Ratio of water body area to transect area |
EPC (emerged plants coverage rate) | Emergent vegetation area ratio (%) | Percentage of area covered by emergent vegetation |
SPC (submerged plants coverage rate) | Submerged vegetation area ratio (%) | Percentage of area covered by submerged vegetation |
TPC (total plants coverage rate) | Total vegetation cover (%) | Vegetation cover of the transect |
AWD (average water depth) | Water depth (cm) | Water depth in transect |
DHA (disturbners of human and animals) | Human interference | Number of people and livestock |
Order | Aquaculture Ponds | Paddy Fields | Lakeside Wetlands | Total | |||||
---|---|---|---|---|---|---|---|---|---|
Richness | Percentage | Richness | Percentage | Richness | Percentage | Richness | Percentage | ||
Species Number | Podicipediformes | 2 | 6.67 | 0 | 0.00 | 2 | 7.41 | 2 | 5.13 |
Suliformes | 1 | 3.33 | 0 | 0.00 | 0 | 0.00 | 1 | 2.56 | |
Pelecaniformes | 3 | 10.00 | 4 | 30.77 | 2 | 7.41 | 4 | 10.26 | |
Ciconiiformes | 1 | 3.33 | 2 | 15.38 | 1 | 3.70 | 2 | 5.13 | |
Anseriformes | 10 | 33.33 | 5 | 38.46 | 9 | 33.33 | 14 | 35.90 | |
Gruiformes | 3 | 10.00 | 1 | 7.69 | 2 | 7.41 | 3 | 7.69 | |
Charadriiformes | 10 | 33.33 | 4 | 30.77 | 9 | 33.33 | 13 | 33.33 | |
Total | 30 | 76.92 | 13 | 33.33 | 27 | 69.23 | 39 | 100 | |
Individuals Number | Podicipediformes | 155 | 0.56 | 0 | 0.00 | 43 | 0.39 | 198 | 0.41 |
Suliformes | 2 | 0.01 | 0 | 0.00 | 0 | 0.00 | 2 | 0.00 | |
Pelecaniformes | 1958 | 7.13 | 1900 | 19.63 | 1343 | 12.28 | 5201 | 10.81 | |
Ciconiiformes | 453 | 1.65 | 118 | 1.22 | 94 | 0.86 | 666 | 1.38 | |
Anseriformes | 22,649 | 82.43 | 7065 | 72.98 | 6720 | 61.45 | 36,434 | 75.76 | |
Gruiformes | 439 | 1.60 | 520 | 5.37 | 662 | 6.05 | 1621 | 3.37 | |
Charadriiformes | 1821 | 6.63 | 78 | 0.81 | 2073 | 18.96 | 3972 | 8.26 | |
Total | 27,477 | 57.13 | 9681 | 20.13 | 10,935 | 22.74 | 48,094 | 100 |
Order | Species | Aquaculture Ponds | Percentage of Total Community | Paddy Fields | Percentage of Total Community | Lakeside Wetlands | Percentage of Total Community |
---|---|---|---|---|---|---|---|
Podicipediformes | Tachybaptus ruficollis | 15.63 ± 17.44 | + | - | + | 7.38 ± 14.21 | + |
Podiceps cristatus | 1.25 ± 2.12 | + | - | + | 0.25 ± 0.71 * | + | |
Suliformes | Phalacrocorax carbo | 0.25 ± 0.71 | + | - | + | - | + |
Pelecaniformes | Ardea cinerea | 83.38 ± 76.33 | ++ | 123.63 ± 106.13 | +++ | 86.25 ± 101.59 | ++ |
Ardea alba | 72.63 ± 85.74 | ++ | 113.75 ± 106.54 | +++ | 51.38 ± 62.62 | ++ | |
Ardea intermedia | - | + | - | + | 1.25 ± 3.54 | + | |
Platalea leucorodia | 88.75 ± 132.28 | ++ | - | + | 15.00 ± 42.43 | ++ | |
Ciconiiformes | Ciconia nigra | - | + | 0.25 ± 0.71 | + | - | + |
Ciconia boyciana | 56.63 ± 84.15 | + | 14.25 ± 27.89 | ++ | 9.25 ± 9.13 | + | |
Anseriformes | Cygnus columbianus | 1484.50 ± 2287.95 | +++ | - | + | 25.00 ± 70.71 * | ++ |
Anser cygnoides | 1307.50 ± 1305.98 | +++ | 919.00 ± 1089.63 | +++ | 496.25 ± 647.72 | +++ | |
Anser fabalis | 5.75 ± 8.10 | + | - | + | 264.00 ± 693.76 | +++ | |
Anser albifrons | - | + | 0.25 ± 0.71 | + | - | + | |
Anser erythropus | - | + | 0.25 ± 0.71 | + | - | + | |
Anser anser | 0.50 ± 1.41 | + | 0.50 ± 1.41 | + | + | ||
Todorna ferruginea | 4.63 ± 5.50 | + | 25.63 ± 31.79 | ++ | 76.00 ± 68.59 * | ++ | |
Mareca penelope | - | + | 1.00 ± 2.83 | + | 2.75 ± 7.01 | + | |
Mareca falcata | 2.25 ± 3.11 | + | - | + | - | + | |
Anas crecca | 7.88 ± 22.27 | + | + | 2- ± 56.57 | ++ | ||
Anas platyrhynchos | 2.25 ± 6.36 | + | - | + | 7.50 ± 11.05 | + | |
Anas poecilorhyncha | 14.75 ± 22.72 | + | - | + | 25.75 ± 52.93 | ++ | |
Anas acuta | 1.13 ± 3.18 | + | 1.88 ± 5.30 | + | - | + | |
Spatula querquedula | - | + | - | + | 0.75 ± 2.12 | + | |
Gruiformes | Leucogeranus leucogeranus | 0.25 ± 0.71 | + | - | + | - | + |
Grus monacha | 52.38 ± 78.97 | ++ | 115.50 ± 119.82 | ++ | 100.50 ± 60.11 | ++ | |
Paragallinula angulata | 4.50 ± 11.56 | + | - | + | 2.75 ± 7.78 | + | |
Charadriiformes | Recurvirostra avosetta | 10.38 ± 15.00 | + | - | + | 1.50 ± 2.78 | + |
Charadrius dubius | 3.25 ± 9.19 | + | 7.00 ± 14.74 | + | 3.00 ± 6.93 | + | |
Charadris alexandrinus | - | + | 0.38 ± 1.06 | + | - | + | |
Gallinago gallinago | 0.38 ± 1.06 | + | - | + | 0.13 ± 0.35 | + | |
Limosa limosa | 15.00 ± 424.26 | ++ | - | + | - | + | |
Numenius arquata | - | + | - | + | 0.25 ± 0.71 | + | |
Tringa erythropus | 5.88 ± 11.22 | + | 1.88 ± 4.91 | + | 3.88 ± 6.69 | + | |
Tringa totanus | - | + | - | + | 3.75 ± 10.61 | + | |
Tringa nebularia | 7.25 ± 13.42 | + | 0.63 ± 1.41 | + | 16.00 ± 42.07 | ++ | |
Tringa ochropus | 1.13 ± 3.18 | + | - | + | - | + | |
Calidris alpina | 45.63 ± 72.28 | ++ | - | + | 708.50 ± 1746.2 | +++ | |
Larus argentatus | 5.75 ± 7.05 | + | - | + | 3.00 ± 2.88 | + | |
Chroicocephalus ridibundus | 1.88 ± 5.30 | + | - | + | - | + |
Wetland Type | Shannon–Wiener Index (H′) | Pielou Index (J) | Simpson Index (C) |
---|---|---|---|
Lakeside wetland | 1.50 ± 0.31 a | 0.44 ± 0.13 a | 0.35 ± 0.13 a |
Aquaculture ponds | 1.02 ± 0.60 ab | 0.29 ± 0.16 a | 0.55 ± 0.26 b |
Paddy fields | 0.90 ± 0.42 b | 0.38 ± 0.14 a | 0.55 ± 0.21 b |
Principal Component | Aquaculture Ponds | Paddy Fields | Lakeside Wetlands | ||||||
---|---|---|---|---|---|---|---|---|---|
Eigenvalue | Contributing Rate | Cumulative Contributing Rate | Eigenvalue | Contributing Rate | Cumulative Contributing Rate | Eigenvalue | Contributing Rate | Cumulative Contributing Rate | |
1 | 4.163 | 52.040 | 52.040 | 3.677 | 45.964 | 45.964 | 3.341 | 41.768 | 41.768 |
2 | 2.040 | 25.500 | 77.541 | 1.766 | 22.070 | 68.034 | 2.034 | 25.424 | 67.192 |
3 | 0.865 | 10.814 | 88.355 | 1.353 | 16.912 | 84.946 | 1.406 | 17.578 | 84.770 |
Variable | Aquaculture Ponds | Paddy Fields | Lakeside Wetlands | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | |
BMW | 0.857 | −0.115 | 0.786 | −0.337 | −0.510 | 0.101 | 0.850 | 0.113 |
MA | −0.743 | −0.606 | −0.859 | 0.166 | 0.436 | −0.832 | 0.486 | −0.080 |
WA | 0.743 | 0.606 | 0.017 | 0.879 | −0.094 | 0.832 | −0.486 | 0.080 |
EPC | 0.604 | 0.395 | 0.733 | 0.260 | −0.174 | −0.869 | 0.041 | −0.441 |
SPC | 0.755 | −0.386 | 0.823 | 0.106 | 0.477 | 0.902 | 0.343 | −0.114 |
TPC | 0.931 | −0.170 | 0.855 | 0.124 | 0.444 | 0.789 | 0.461 | −0.339 |
AWD | −0.666 | 0.541 | −0.144 | 0.671 | −0.644 | −0.266 | −0.065 | 0.859 |
DHA | −0.282 | −0.816 | 0.140 | 0.758 | 0.276 | 0.139 | 0.485 | 0.517 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, J.; Zhou, L. Effects of Human Activities on the Diversity of Waterbirds Wintering in a Shallow Lake of the Middle and Lower Yangtze River Floodplain, China. Diversity 2020, 12, 302. https://doi.org/10.3390/d12080302
Wang X, Chen J, Zhou L. Effects of Human Activities on the Diversity of Waterbirds Wintering in a Shallow Lake of the Middle and Lower Yangtze River Floodplain, China. Diversity. 2020; 12(8):302. https://doi.org/10.3390/d12080302
Chicago/Turabian StyleWang, Xinjian, Jinyun Chen, and Lizhi Zhou. 2020. "Effects of Human Activities on the Diversity of Waterbirds Wintering in a Shallow Lake of the Middle and Lower Yangtze River Floodplain, China" Diversity 12, no. 8: 302. https://doi.org/10.3390/d12080302
APA StyleWang, X., Chen, J., & Zhou, L. (2020). Effects of Human Activities on the Diversity of Waterbirds Wintering in a Shallow Lake of the Middle and Lower Yangtze River Floodplain, China. Diversity, 12(8), 302. https://doi.org/10.3390/d12080302