Can We Share? Feeding Strategy in Three Syntopic Newts in Artificial Habitats
Abstract
:1. Introduction
- Describing and comparing the diets of newt species, with a special emphasis on the effect of the occurrence heterospecific individuals. This issue is noteworthy since the occurrence of heterospecific individuals (i.e., isolation vs. co-occurrence condition) is expected to influence species’ trophic strategy in terms of resource partitioning [7]. Indeed, heterospecific individuals may narrow or widen species’ niche reducing the available resources uniformly (expansion) or in a patchy manner (contraction) [20,21]. A reduction in food diversity may further decrease species’ trophic niche width [22,23].
- Investigating species interactions in terms of trophic niche overlap, since syntopic salamanders are known to assemble in a non-random fashion with food niche and morphological features playing a key role in structuring community composition [24]. Specifically, newt species with similar niche width and different body sizes are expected to show a low overlap in resource use.
2. Materials and Methods
2.1. Study Area
2.2. Samplings and Data Collection
2.3. Body Size and Diet Composition
2.4. Comparison in Diet Composition among Species and between Sexes
3. Results
3.1. Body Size and Diet Composition
3.2. Feeding Strategy and Comparison of Diet Composition among Species and between Sexes
4. Discussion
4.1. Body Size and Diet Composition
4.2. Comparison in Diet Composition among Species and between Sexes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [Green Version]
- Buono, V.; Bissattini, A.M.; Vignoli, L. Can a cow save a newt? The role of cattle drinking troughs in amphibian conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 964–975. [Google Scholar] [CrossRef]
- Caballero-Diaz, C.; Sanchez-Montes, G.; Butler, H.M.; Vredenburg, V.T.; Martinez-Solano, I. The role of artificial breeding sites in amphibian conservation: A case study in rural areas in central Spain. Herpetol. Conserv. Biol. 2020, 15, 87–104. [Google Scholar]
- Vignoli, L.; Macale, D.; Luiselli, L.; Lecis, R.; Casula, P. Are conservation assessments of threatened species reliable? Updated distribution of the Endangered Sardinian newt Euproctus platycephalus and implications for Red List assessments of Italian amphibians. Oryx 2016, 51, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Joly, P.; Giacoma, C. Limitation of similarity and feeding habits in three syntopic species of newts (Triturus, Amphibia). Ecography 1992, 15, 401–411. [Google Scholar] [CrossRef]
- Fasola, M.; Canova, L. Feeding habits of Triturus vulgaris, T. cristatus and T. alpestris (Amphibia, Urodela) in the northern Apennines (Italy). Ital. J. Zool. 1992, 59, 273–280. [Google Scholar]
- Vignoli, L.; Luiselli, L.; Bologna, M.A. Dietary patterns and overlap in an amphibian assemblage at a pond in Mediterranean Central Italy. Vie Milieu Life Environ. 2009, 59, 47–57. [Google Scholar]
- Mirabasso, J.; Bissattini, A.M.; Bologna, M.; Luiselli, L.; Stellati, L.; Vignoli, L. Feeding Strategies of Co-occurring Newt Species across Different Conditions of Syntopy: A Test of the “Within-Population Niche Variation” Hypothesis. Diversity 2020, 12, 181. [Google Scholar] [CrossRef]
- Wilbur, H.M. Complex Life Cycles. Annu. Rev. Ecol. Syst. 1980, 11, 67–93. [Google Scholar] [CrossRef]
- Wells, K.D. The Ecology and Behavior of Amphibians; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Griffiths, R.A.; Mylotte, V.J. Microhabitat selection and feeding relations of smooth and warty newts, Triturus vulgaris and T. cristatus, at an upland pond in mid-Wales. Ecography 1987, 10, 1–7. [Google Scholar] [CrossRef]
- Lanza, B.; Andreone, F.; Bologna, M.A.; Corti, C.; Razzetti, E. Amphibia—Fauna d’Italia; Edizioni Calderini: Bologna, Italy, 2007; Volume 42. [Google Scholar]
- Sperone, E.; Tripepi, S. Ecological preferences of the Italian newt Triturus italicus (Perracca, 1898) in Calabria. Russ. J. Herpetol. 2005, 12, 216–218. [Google Scholar]
- Razzetti, E.; Bernini, F. Triturus Vulgaris. In Atlas of Italian Amphibians and Reptiles Societas Herpetologica Italica; Sindaco, R., Doria, G., Razzetti, E., Bernini, F., Eds.; Edizioni Polistampa: Florence, Italy, 2006. [Google Scholar]
- Canestrelli, D.; Salvi, D.; Maura, M.; Bologna, M.A.; Nascetti, G. One species, three Pleistocene evolutionary histories: Phylogeography of the crested newt, Triturus carnifex. PLoS ONE 2012, 7, e41754. [Google Scholar] [CrossRef]
- Cicort-Lucaciu, A.S.; Ardeleanu, A.; Cupsa, D.; Naghi, N.; Dalea, A. The trophic spectrum of a Triturus cristatus (Laurentus 1768) population from Plopis Mountains area (Bihor County, Romania). North West. J. Zool. 2005, 1, 31–39. [Google Scholar]
- Covaciu-Marcov, S.D.; Cicort-Lucaciu, A.Ş.; Mitrea, I.; Sas, I.; Căuş, A.V.; Cupşa, D. Feeding of three syntopic newt species (Triturus cristatus, Mesotriton alpestris and Lissotriton vulgaris) from Western Romania. North West. J. Zool. 2010, 6, 95–108. [Google Scholar]
- Covaciu-Marcov, S.; Cicort-Lucaciu, A.; Sas, I.; Cupşa, D.; Kovacs, E.; Ferenţi, S. Food composition of some low altitude Lissotriton montandoni (Amphibia, Caudata) populations from North-Western Romania. Arch. Biol. Sci. 2010, 62, 479–488. [Google Scholar] [CrossRef]
- Roşca, I.; Gherghel, I.; Strugariu, A.; Zamfirescu, Ş.R. Feeding ecology of two newt species (Triturus cristatus and Lissotriton vulgaris) during the reproduction season. Knowl. Manag. Aquat. Ecosyst. 2013, 408, 5. [Google Scholar] [CrossRef] [Green Version]
- Pianka, E.R. Competition and Niche Theory. Theoretical Ecology Principles and Applications; Blackwell: Oxford, UK, 1981; pp. 167–196. [Google Scholar]
- Bissattini, A.M.; Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol. Invasions 2017, 19, 2633–2646. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Pianka, E.R.; Vitt, L.J.; Joern, A. Food web laws or niche theory? Six independent empirical tests. Am. Nat. 2001, 158, 193–199. [Google Scholar] [CrossRef]
- Lejeune, B.; Bissey, L.; Didaskalou, E.A.; Sturaro, N.; Lepoint, G.; Denoël, M. Progenesis as an intrinsic factor of ecological opportunity in a polyphenic amphibian. Funct. Ecol. 2020. [Google Scholar] [CrossRef]
- Vignoli, L.; Bissattini, A.M.; Luiselli, L. Food partitioning and the evolution of non-randomly structured communities in tailed amphibians: A worldwide systematic review. Biol. J. Linn. Soc. 2016, 120, 489–502. [Google Scholar] [CrossRef]
- Cerini, F.; Bologna, M.A.; Vignoli, L. Dragonflies community assembly in artificial habitats: Glimpses from field and manipulative experiments. PLoS ONE 2019, 14, e0214127. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, C.; Garcia-Vazquez, E. The value of traditional troughs as freshwater shelters for amphibian diversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 21, 74–81. [Google Scholar] [CrossRef]
- Novellino, D. An Account of Basket Weaving and the Use of Fibre Plants in the Mount Aurunci Regional Park (Central Italy). In Proceedings of the Fourth International Conference of Ethnobotany (ICEB 2005), Istanbul, Turkey, 21–26 August 2005; pp. 317–326. [Google Scholar]
- Romano, A.; Montinaro, G.; Mattoccia, M.; Sbordoni, V. Amphibians of the Aurunci Mountains (Latium, Central Italy). Checklist and conservation guidelines. Acta Herpetol. 2007, 2, 17–25. [Google Scholar]
- Solé, M.; Beckmann, O.; Pelz, B.; Kwet, A.; Engels, W. Stomach-flushing for diet analysis in anurans: An improved protocol evaluated in a case study in Araucaria forests, southern Brazil. Stud. Neotrop. Fauna Environ. 2005, 40, 23–28. [Google Scholar] [CrossRef]
- Griffiths, R.A. Feeding Niche Overlap and Food Selection in Smooth and Palmate Newts, Triturus vulgaris and T. helveticus, at a Pond in Mid-Wales. J. Anim. Ecol. 1986, 55, 201. [Google Scholar] [CrossRef]
- Bellocq, M.I.; Kloosterman, K.; Smith, S.M. The diet of coexisting species of amphibians in Canadian jack pine forests. Herpetol. J. 2000, 10, 63–68. [Google Scholar]
- Pinkas, L.; Oliphant, M.S.; Iverson, L.K. Food habits of albacore, blue fin tuna, and bonito in California waters. Fish Bull. 1971, 152, 1–105. [Google Scholar]
- Levins, R. Evolution in Changing Environments; Princeton University Press: Princeton, NJ, USA, 1968. [Google Scholar]
- Hurlbert, S.H. The measurement of nice overlap and some relatives. Ecology 1978, 59, 67–77. [Google Scholar] [CrossRef]
- Grossman, G.D. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool. 1986, 1, 317–355. [Google Scholar] [CrossRef]
- Costello, M.J. Predator feeding strategy and prey importance: A new graphical analysis. J. Fish Biol. 1990, 36, 261–263. [Google Scholar] [CrossRef]
- Amundsen, P.-A.; Gabler, H.-M.; Staldvik, F.J. A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. J. Fish Biol. 1996, 48, 607–614. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Entsminger, G.L. EcoSim: Null Modeling Software for Ecology. Version 7.0. 2011. Available online: http://garyentsminger.com/ecosim/index.htm (accessed on 5 May 2020).
- Vignoli, L.; Luiselli, L. Dietary relationships among coexisting anuran amphibians: A worldwide quantitative review. Oecologia 2011, 169, 499–509. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package version 2.5-6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 5 May 2020).
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2001; p. 172. [Google Scholar]
- Creque, S.M.; Czesny, S.J. Diet overlap of non-native alewife with native yellow perch and spottail shiner in nearshore waters of southwestern Lake Michigan, 2000–2007. Ecol. Freshw. Fish 2011, 21, 207–221. [Google Scholar] [CrossRef]
- Clarke, K.R.; Tweedley, J.R.; Valesini, F.J. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. J. Mar. Biol. Assoc. U. K. 2014, 94, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Schoener, T.W. Theory of Feeding Strategies. Annu. Rev. Ecol. Syst. 1971, 2, 369–404. [Google Scholar] [CrossRef] [Green Version]
- Vignoli, L.; Bologna, M.A.; Luiselli, L. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology. Acta Oecol. 2007, 31, 185–192. [Google Scholar] [CrossRef]
- Vignoli, L.; Bombi, P.M.; D’Amen, M.; Bologna, M.A. Seasonal variation in the trophic niche of a heterochronic population of Triturus alpestris apuanus from the south-western Alps. Herpetol. J. 2007, 17, 183–191. [Google Scholar]
- Rudolph, D.C. Aspects of the Larval Ecology of Five Plethodontid Salamanders of the Western Ozarks. Am. Midl. Nat. 1978, 100, 141. [Google Scholar] [CrossRef]
- Pianka, E.R. Evolutionary Ecology, 5th ed.; Pianka, E.R., Ed.; HarperCollins College Division: New York, NY, USA, 2011; pp. 279–289. [Google Scholar]
- Walton, B.M. Salamanders in forest-floor food webs: Environmental heterogeneity affects the strength of top-down effects. Pedobiologia 2005, 49, 381–393. [Google Scholar] [CrossRef]
- Sun, X.; Tao, M.; Qin, B.; Qi, M.; Niu, Y.; Zhang, J.; Ma, Z.; Xie, P. Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu, China. J. Plankton Res. 2012, 34, 853–863. [Google Scholar] [CrossRef]
- MacArthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Sucea, F.; Cicort-Lucaciu, A.S.; Covaci, R.F.; Dimancea, N. Note on the diet of two newt species in Jiului Gorge National Park, Romania. Herpetol. Rom. 2014, 8, 11–27. [Google Scholar]
- Hamilton, W.J., Jr. The Food and Feeding Habits of Some Eastern Salamanders. Copeia 1932, 1932, 83. [Google Scholar] [CrossRef]
- Kutrup, B.; Akir, E.; Yilmaz, N. Food of the banded newt, Triturus vittatus ophryticus (Berthold, 1846), at different sites in Trabzon. Turk. J. Zool. 2005, 29, 83–89. [Google Scholar]
- Brooks, J.S.; Calver, C.M.; Dickman, R.C.; Meathrel, E.C.; Bradley, S.J. Does intraspecific variation in the energy value of a prey species to its predators matter in studies of ecological energetics? A case study using insectivorous vertebrates. Ecoscience 1996, 3, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Forró, L.; Korovchinsky, N.M.; Kotov, A.A.; Petrusek, A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Dordrecht, The Netherlands, 2007; pp. 177–184. [Google Scholar]
- Osenberg, C.W.; Mittelbach, G.G. Effects of Body Size on the Predator-Prey Interaction Between Pumpkinseed Sunfish and Gastropods. Ecol. Monogr. 1989, 59, 405–432. [Google Scholar] [CrossRef]
- Braña, F.; de la Hoz, M.; Lastra, C. Alimentaciòn y relaciones tròficas entre las larvas de Triturus marmoratus, T. alpestris y T. helveticus (Amphibia: Caudata). Doñana Acta Venebrata 1986, 13, 21–33. [Google Scholar]
- Toft, C.A. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 1980, 45, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Schoener, T.W. Resource Partitioning in Ecological Communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Denoël, M.; Whiteman, H.H.; Wissinger, S.A. Temporal shift of diet in alternative cannibalistic morphs of the tiger salamander. Biol. J. Linn. Soc. 2006, 89, 373–382. [Google Scholar] [CrossRef]
- David, A.; Ferenti, S.; Hodişan, O.; Bogdan, H.V.; Gale, O. The food analysis of a Triturus cristatus population near Ignesti locality, Arad County, Romania. Herpetol. Rom. 2009, 3, 47–52. [Google Scholar]
- Bull, E.L. Diet and prey availability of Columbia spotted frogs in northeastern Oregon. Northwest Sci. 2003, 77, 349–356. [Google Scholar]
- Dobre, F.; Bucur, D.M.; Mihuţ, R.; Birceanu, M.; Gale, O. Data on the food composition of a Triturus cristatus (Laur. 1768) population from „Jiului Gorge” National Park, Romania. Biharean Biol. 2007, 1, 23–28. [Google Scholar]
- Avery, R.A. Food and Feeding Relations of Three Species of Triturus (Amphibia Urodela) during the Aquatic Phases. Oikos 1968, 19, 408. [Google Scholar] [CrossRef]
- Stoch, E.; Dolce, S. Alimentazione e rapporti alimentari di Triturus alpestris (Laur.), T. cristatus carnifex (Laur.) e Triturus vulgaris meridionalis (Boul.). (Osservazioni sull’alimentazione degli Anfibi: III). Quaderni ETP. Udine 1984, 9, 17–28. [Google Scholar]
- Griffiths, R.A. Microhabitat and Seasonal Niche Dynamics of Smooth and Palmate Newts, Triturus vulgaris and T. helveticus, at a Pond in Mid-Wales. J. Anim. Ecol. 1987, 56, 441. [Google Scholar] [CrossRef]
- Hyslop, E.J. Stomach contents analysis-a review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.S.; dos Reis, S.F.; Giaretta, A.A.; Machado, G.; Bolnick, D.I. Intrapopulation diet variation in four frogs (Leptodactylidae) of the Brazilian Savannah. Copeia 2007, 4, 855–865. [Google Scholar] [CrossRef]
- Denoël, M.; Joly, P. Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): Resource partitioning in an alpine lake. Freshw. Biol. 2001, 46, 1387–1396. [Google Scholar] [CrossRef]
- Giller, P.S. Community Structure and the Niche; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Hutchinson, G.E. Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? Am. Nat. 2002, 93, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, G.E.; MacArthur, R.H. A Theoretical Ecological Model of Size Distributions among Species of Animals. Am. Nat. 2002, 93, 117–125. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Svanbäck, R.; Fordyce, J.A.; Yang, L.H.; Davis, J.M.; Hulsey, C.D.; Forister, M.L. The ecology of individuals: In-cidence and implications of individual specialization. Am. Nat. 2003, 161, 1–28. [Google Scholar] [CrossRef]
- Sas, I.; Covaciu-Marcov, S.D.; Strugariu, A.; David, A.; Ilea, C. Food habit of Rana (Pelophylax) kl. esculenta females in a new recorded E-system population from a forested habitat in North-Western Romania. Turk. J. Zool. 2009, 33, 1–5. [Google Scholar]
- Salvidio, S.; Costa, A.; Crovetto, F. Individual Trophic Specialisation in the Alpine Newt Increases with Increasing Resource Diversity. Ann. Zool. Fenn. 2019, 56, 17–24. [Google Scholar] [CrossRef]
L. italicus (142) | L. vulgaris (163) | T. carnifex (227) | |||||||
---|---|---|---|---|---|---|---|---|---|
PREY | N% | V% | IRI | N% | V% | IRI | N% | V% | IRI |
Aquatic | |||||||||
Acanthocephala | 0 | 0 | 0 | 0 | 0 | 0 | 0.019 | * | 0.009 |
Amphipoda | 7.553 | 0.143 | 216.807 | 2.081 | 0.201 | 47.6 | 2.361 | 0.053 | 35.105 |
Bivalvia | 1.033 | 1.911 | 4.146 | 0.059 | 0.543 | 0.739 | 1.312 | 2.859 | 16.537 |
Cladocera | 24.919 | 1.467 | 836.189 | 76.036 | 22.197 | 6930.532 | 51.406 | 3.607 | 1841.815 |
Coleoptera ad | 0.194 | 0.324 | 1.094 | 0.04 | 0.205 | 0.3 | 0.094 | 0.214 | 0.678 |
Coleoptera l | 1.097 | 1.037 | 18.035 | 0.02 | 0.061 | 0.05 | 0.319 | 0.237 | 1.958 |
Crustacea | 0.194 | 0.165 | 0.757 | 0 | 0 | 0 | 0.056 | 0.001 | 0.051 |
Diptera l | 28.018 | 8.761 | 2175.647 | 7.77 | 18.643 | 1490.801 | 16.229 | 14.936 | 1867.151 |
Diptera pu | 6.068 | 12.947 | 629.371 | 1.467 | 15.436 | 342.212 | 6.428 | 16.108 | 804.144 |
Ephemeroptera l | 1.743 | 1.801 | 37.436 | 0.178 | 0.909 | 6.005 | 0.731 | 0.897 | 19.357 |
Gastropoda | 0.065 | 0.326 | 0.275 | 0.178 | 4.447 | 19.865 | 2.211 | 13.338 | 253.448 |
Isopoda | 5.1 | 50.518 | 705.017 | 0.238 | 11.622 | 65.485 | 1.087 | 12.214 | 70.315 |
Nematoda | 0.065 | * | 0.046 | 0 | 0 | 0 | 0 | 0 | 0 |
Odonata | 0 | 0 | 0 | 0 | 0 | 0 | 0.056 | 1.04 | 1.448 |
Odonata l | 0.646 | 1.456 | 11.838 | 0.059 | 7.252 | 13.457 | 0.412 | 6.355 | 56.641 |
Ostracoda | 9.748 | 0.957 | 346.787 | 10.605 | 5.125 | 704.474 | 8.996 | 1.048 | 283.176 |
Rhynchota ad | 0.065 | 0.036 | 0.071 | 0 | 0 | 0 | 0.037 | 0.719 | 0.667 |
Rhynchota ne | 0 | 0 | 0 | 0 | 0 | 0 | 0.431 | 0.198 | 3.048 |
Salamandridae eggs | 4.261 | 1.564 | 82.043 | 0.813 | 2.411 | 31.642 | 2.642 | 3.059 | 90.417 |
Trichoptera l | 0 | 0 | 0 | 0.02 | 1.069 | 0.668 | 0.019 | 0.243 | 0.115 |
Terrestial | |||||||||
Acarina | 0.129 | * | 0.183 | 0.059 | 0.001 | 0.037 | 0.056 | 0.001 | 0.075 |
Araneae | 0.646 | 1.401 | 14.41 | 0.04 | 0.424 | 0.569 | 0.356 | 0.96 | 9.277 |
Blattodea | 0.129 | 1.415 | 2.175 | 0 | 0 | 0 | 0.131 | 1.781 | 5.897 |
Coleoptera ad | 1.614 | 2.479 | 49.003 | 0.159 | 1.283 | 5.307 | 1.574 | 5.185 | 107.202 |
Coleoptera l | 0 | 0 | 0 | 0 | 0 | 0 | 0.169 | 0.142 | 0.548 |
Collembola | 0.323 | 0.004 | 0.46 | 0.02 | 0.001 | 0.013 | 0.037 | * | 0.033 |
Dermaptera | 0.065 | 0.657 | 0.508 | 0 | 0 | 0 | 0 | 0 | 0 |
Diplopoda | 0 | 0 | 0 | 0 | 0 | 0 | 0.206 | 1.88 | 6.434 |
Diptera | 2.389 | 0.634 | 42.567 | 0.04 | 0.053 | 0.114 | 0.506 | 0.164 | 5.901 |
Formicidae | 1.356 | 0.159 | 12.804 | 0.02 | 0.02 | 0.024 | 0.75 | 0.165 | 9.674 |
Haplotaxida | 0.065 | 5.051 | 3.602 | 0.02 | 7.649 | 4.705 | 0.075 | 6.963 | 6.201 |
Hymenoptera (no Formicidae) | 0.516 | 1.279 | 8.849 | 0.02 | 0.018 | 0.023 | 0.131 | 0.536 | 2.058 |
Isopoda | 0 | 0 | 0 | 0 | 0 | 0 | 0.056 | 0.128 | 0.243 |
Isoptera | 0.065 | 0.044 | 0.077 | 0.02 | 0.065 | 0.052 | 0 | 0 | 0 |
Lepidoptera l | 0 | 0 | 0 | 0.02 | 0.361 | 0.233 | 0.169 | 1.388 | 6.172 |
Orthoptera | 0.323 | 0.473 | 1.681 | 0 | 0 | 0 | 0.037 | 0.065 | 0.09 |
Pseudoscorpionida | 0.129 | 0.01 | 0.098 | 0 | 0 | 0 | 0 | 0 | 0 |
Rhynchota ad | 1.356 | 2.98 | 42.748 | 0 | 0 | 0 | 0.806 | 3.134 | 50.33 |
Rhynchota ny | 0 | 0 | 0 | 0 | 0 | 0 | 0.019 | 0.031 | 0.022 |
Scorpiones | 0 | 0 | 0 | 0 | 0 | 0 | 0.037 | 0.348 | 0.34 |
Thysanoptera | 0.129 | 0.002 | 0.184 | 0.02 | 0.001 | 0.013 | 0.037 | * | 0.034 |
B’ | 0.17 | 0.08 | 0.03 | 0.26 | 0.06 | 0.26 | |||
Total prey | 1549 | 10245.98 | 5045 | 6765 | 5336 | 29729.32 | |||
% Aquatic prey | 90.77 | 83.41 | 99.56 | 90.12 | 94.84 | 77.13 |
SPECIES | SITE | SAMPLES | B’total N; V | B’females N; V | B’males N; V |
---|---|---|---|---|---|
LI | MP | 11 | 0.180; 0.330 | 0.127; 0.336 | 0.168; 0.561 |
E | 8 | 0.443; 0.185 | 0.424; 0.154 | 0.286; 0.451 | |
NN3 | 30 | 0.192; 0.176 | 0.158; 0.300 | 0.208; 0.164 | |
P3P | 25 | 0.262; 0.303 | 0.227; 0.449 | 0.200; 0.320 | |
Po | 17 | 0.170; 0.349 | 0.425; 0.364 | 0.082; 0.286 | |
PM | 14 | 0.056; 0.005 | 0.068; 0.006 | 0.068 | |
SV | 22 | 0.220; 0.220 | 0.161; 0.219 | 0.228; 0.210 | |
W | 15 | 0.462; 0.201 | 0.37; 0.203 | 0.554; 0.278 | |
LV | MP | 31 | 0.133; 0.312 | 0.140; 0.556 | 0.126; 0.215 |
NN1 | 26 | 0.016; 0.224 | 0.011; 0.246 | 0.020; 0.148 | |
P5P | 15 | 0.059; 0.257 | 0.069; 0.233 | 0.039; 0.666 | |
PLV | 22 | 0.262; 0.259 | 0.093; 0.350 | 0.330; 0.259 | |
SO | 69 | 0.069; 0.364 | 0.060; 0.426 | 0.076; 0.359 | |
TC | MP | 20 | 0.158; 0.225 | 0.098; 0.195 | 0.270; 0.252 |
C | 14 | 0.398; 0.252 | 0.526; 0.314 | 0.514; 0.266 | |
F | 11 | 0.137; 0.434 | 0.143; 0.610 | 0.152; 0.429 | |
NN1 | 21 | 0.196; 0.118 | 0.216; 0.124 | 0.269; 0.202 | |
NN3 | 15 | 0.108; 0.028 | 0.220; 0.083 | 0.124; 0.029 | |
P3P | 20 | 0.139; 0.364 | 0.081; 0.428 | 0.046; 0.143 | |
P5P | 14 | 0.017; 0.075 | 0.020; 0.331 | 0.036; 0.054 | |
Po | 29 | 0.218; 0.286 | 0.194; 0.365 | 0.420; 0.330 | |
P | 22 | 0.228; 0.341 | 0.223; 0.293 | 0.242; 0.349 | |
PLV | 7 | 0.221; 0.208 | 0.255; 0.102 | 0.759; 0.578 | |
PT | 19 | 0.363; 0.425 | 0.423; 0.226 | 0.187; 0.515 | |
SO | 35 | 0.050; 0.207 | 0.065; 0.139 | 0.062; 0.429 |
SPECIES | |||||
NUMBER | VOLUME | ||||
SPECIES | SITE | p (obs > exp) | p (obs < exp) | p (obs > exp) | p (obs < exp) |
LI-LV-TC | Total | <0.001 | 1 | 0.150 | 0.850 |
LI-TC | NN3 | <0.001 | 1 | <0.001 | 1 |
LI-TC | P3P | 0.003 | 0.997 | 0.003 | 0.997 |
LV-TC | NN1 | <0.001 | 1 | 1 | <0.001 |
LV-TC | P5P | <0.001 | 1 | <0.001 | 1 |
LV-TC | PLV | 0.038 | 0.962 | 1 | <0.001 |
LV-TC | SO | <0.001 | 1 | 0.911 | 0.089 |
LI-LV-TC | MP | <0.001 | 1 | 0.265 | 0.735 |
SEXES | |||||
LI | Total | <0.001 | 1 | <0.001 | 1 |
LV | Total | <0.001 | 1 | 0.002 | 0.998 |
TC | Total | <0.001 | 1 | ns | ns |
LI | MP | 0.007 | 0.993 | ns | ns |
E | 0.075 | 0.925 | ns | ns | |
NN3 | <0.001 | 1 | <0.001 | 0.999 | |
P3P | 0.04 | 0.96 | <0.001 | 1 | |
PM | <0.001 | 0.999 | <0.001 | 1 | |
SV | 0.129 | 0.871 | ns | ns | |
W | 0.041 | 0.959 | <0.001 | 1 | |
LV | MP | <0.001 | 1 | ns | ns |
NN1 | <0.001 | 1 | ns | ns | |
P5P | <0.001 | 1 | ns | ns | |
PLV | 0.957 | 0.043 | 0.05 | 0.95 | |
SO | <0.001 | 1 | ns | ns | |
TC | MP | <0.001 | 1 | ns | ns |
C | <0.001 | 1 | 0.009 | 0.991 | |
F | 0.058 | 0.942 | ns | ns | |
NN1 | <0.001 | 0.999 | <0.001 | 1 | |
NN3 | <0.001 | 1 | <0.001 | 1 | |
P3P | 1 | <0.001 | 0.98 | 0.02 | |
P5P | <0.001 | 1 | 0.998 | 0.002 | |
Po | <0.001 | 1 | 0 | 1 | |
P | 0.145 | 0.855 | ns | ns | |
PLV | 0.965 | 0.035 | 1 | <0.001 | |
PT | 0.94 | 0.06 | 0.978 | 0.022 | |
SO | <0.001 | 1 | 0.04 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stellati, L.; Mirabasso, J.; Luiselli, L.; Bologna, M.A.; Vignoli, L.; Bissattini, A.M. Can We Share? Feeding Strategy in Three Syntopic Newts in Artificial Habitats. Diversity 2021, 13, 32. https://doi.org/10.3390/d13010032
Stellati L, Mirabasso J, Luiselli L, Bologna MA, Vignoli L, Bissattini AM. Can We Share? Feeding Strategy in Three Syntopic Newts in Artificial Habitats. Diversity. 2021; 13(1):32. https://doi.org/10.3390/d13010032
Chicago/Turabian StyleStellati, Luca, Jennifer Mirabasso, Luca Luiselli, Marco A. Bologna, Leonardo Vignoli, and Alessandra Maria Bissattini. 2021. "Can We Share? Feeding Strategy in Three Syntopic Newts in Artificial Habitats" Diversity 13, no. 1: 32. https://doi.org/10.3390/d13010032
APA StyleStellati, L., Mirabasso, J., Luiselli, L., Bologna, M. A., Vignoli, L., & Bissattini, A. M. (2021). Can We Share? Feeding Strategy in Three Syntopic Newts in Artificial Habitats. Diversity, 13(1), 32. https://doi.org/10.3390/d13010032