Predicting the Potential Distribution of Non-Native Mammalian Species Sold in the South African Pet Trade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Species Selection
2.2. Species Occurrence Data, Model Fitting, Prediction and Evaluation
3. Results
4. Discussion
5. Study Limitations
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Long, J.L. Introduced Mammals of the World-Their History, Distribution and Influence; Csiro Publishing: Melbourne, Australia, 2003; p. 612. [Google Scholar]
- Parkes, J.; Murphy, E. Management of introduced mammals in New Zealand. N. Z. J. Zool. 2003, 30, 335–359. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Páez, R. Invasive mammals in Cuba: An overview. Biol. Invasions 2009, 11, 2279–2290. [Google Scholar] [CrossRef]
- Patoka, J.; Vejtrubová, M.; Vrabec, V.; Masopustová, R. Which wild aardvarks are most suitable for outdoor enclosures in zoological gardens in the European Union? J. Appl. Anim. Welf. Sci. 2018, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Measey, J.; Hui, C.; Somers, M.J. Terrestrial vertebrate invasions in South Africa. In Biological invasions in South Africa; Van Wilgen, B., Measey, J., Richardson, D., Wilson, J., Zengeya, T., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 115–151. [Google Scholar] [CrossRef]
- Phifer-Rixey, M.; Nachman, M.W. The Natural History of Model Organisms: Insights into mammalian biology from the wild house mouse Mus musculus. Elife 2015, 4, e05959. [Google Scholar] [CrossRef]
- Clout, M.N.; Russell, J.C. The invasion ecology of mammals: A global perspective. Wildl. Res. 2008, 35, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.M. Across islands and continents, mammals are more successful invaders than birds. Divers. Distrib. 2008, 14, 913–916. [Google Scholar] [CrossRef]
- Latham, A.D.M.; Warburton, B.; Byrom, A.E.; Pech, R.P. The ecology and management of mammal invasions in forests. Biol. Invasions 2017, 19, 3121–3139. [Google Scholar] [CrossRef]
- Iriarte, J.; Lobos, G.A.; Jaksic, F.M. Invasive vertebrate species in Chile and their control and monitoring by governmental agencies. Rev. Chil. Hist. Nat. 2005, 78, 143–2154. [Google Scholar]
- Pavlin, B.I.; Schloegel, L.M.; Daszak, P. Risk of importing zoonotic diseases through wildlife trade, United States. Emerg. Infect. Dis. 2009, 15, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, S.; Di Montezemolo, N.C.; Preatoni, D.G.; Wauters, L.A.; Martinoli, A. A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol. Invasions 2014, 16, 53–62. [Google Scholar] [CrossRef]
- Shivambu, N.; Shivambu, T.C.; Downs, C.T. Assessing the potential impacts of non-native small mammals in the South African pet trade. NeoBiota 2020, 60, 1–18. [Google Scholar] [CrossRef]
- Bomford, M.; Kraus, F.; Barry, S.C.; Lawrence, E. Predicting establishment success for alien reptiles and amphibians: A role for climate matching. Biol. Invasions 2009, 11, 713–724. [Google Scholar] [CrossRef]
- Filz, K.J.; Bohr, A.; Lötters, S. Abandoned foreigners: Is the stage set for exotic pet reptiles to invade Central Europe? Biodivers. Conserv. 2018, 27, 417–435. [Google Scholar] [CrossRef]
- Thomaes, A.; Kervyn, T.; Maes, D. Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biol. Conserv. 2008, 141, 1400–1410. [Google Scholar] [CrossRef]
- Stevenson-Holt, C.D.; Watts, K.; Bellamy, C.C.; Nevin, O.T.; Ramsey, A.D. Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: A comparison of approaches using expert-opinion and habitat suitability modelling. PLoS ONE 2014, 9, e112119. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Albores, J.E.; Bustamante, R.O.; Badano, E.I. Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE 2016, 11, e0156029. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011; p. 314. [Google Scholar]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Runquist, R.D.B.; Lake, T.; Tiffin, P.; Moeller, D.A. Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Sci. Rep. 2019, 9, 2426. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.P.; Brotons, L.; Bustamante, J.; Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 2007, 13, 243–251. [Google Scholar] [CrossRef]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, L.J.; Hughes, L.; Pitman, A.J. Why is the choice of future climate scenarios for species distribution modelling important? Ecol. Lett. 2008, 11, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.M.; Aragón, P.; Lobo, J.M. Use of niche models in invasive species risk assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Uderbayev, T.; Patoka, J.; Beisembayev, R.; Petrtýl, M.; Bláha, M.; Kouba, A. Risk assessment of pet-traded decapod crustaceans in the Republic of Kazakhstan, the leading country in Central Asia. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 30. [Google Scholar] [CrossRef] [Green Version]
- Jarnevich, C.S.; Hayes, M.A.; Fitzgerald, L.A.; Adams, A.A.Y.; Falk, B.G.; Collier, M.A.; Lea’, R.B.; Klug, P.E.; Naretto, S.; Reed, R.N. Modeling the distributions of tegu lizards in native and potential invasive ranges. Sci. Rep. 2018, 8, 10193. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.B.; Svenning, J.C.; Chen, G.K.; Zhang, M.G.; Huang, J.H.; Chen, B.; Ordonez, A.; Ma, K.P. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, B.; Zieritz, A.; Aldridge, D.C. The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE 2015, 10, e0125801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, D.H.; Gillingham, P.K.; Britton, J.R.; Blanchet, S.; Gozlan, R.E. Predicting global invasion risks: A management tool to prevent future introductions. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steen, B.; Cardoso, A.C.; Tsiamis, K.; Nieto, K.; Engel, J.; Gervasini, E. Modelling hot spot areas for the invasive alien plant Elodea nuttallii in the EU. Manag. Biol. Invasions 2019, 10, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Kühn, I.; Wild, J.; Arianoutsou, M.; Bacher, S.; Chiron, F.; Didžiulis, V.; Essl, F.; et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 2010, 107, 12157–12162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julius, R.S.; Zengeya, T.A.; Schwan, E.V.; Chimimba, C.T. Geospatial modelling and univariate analysis of commensal rodent-borne cestodoses: The case of invasive spp. of Rattus and indigenous Mastomys coucha from South Africa. Front. Vet. Sci. 2021, 8, 678478. [Google Scholar] [CrossRef]
- Schwarz, E.; Schwarz, H.K. The wild and commensal stocks of the house mouse, Mus musculus Linnaeus. J. Mammal. 1943, 24, 59–72. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Hernández-Betancourt, S.F.; Torres-Castro, M.A.; Machaín-Williams, C.; Cigarroa-Toledo, N.; Sodá, L.; López-Manzanero, G.; Meza-Sulú, J.R.; Vidal-Martínez, V.M. Population characteristics of human-commensal rodents present in households from Mérida, Yucatán, México. J. Paras. Biodiv. 2016, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schweinfurth, M.K. The social life of Norway rats (Rattus norvegicus). Elife 2020, 9, e54020. [Google Scholar] [CrossRef]
- Da Rosa, C.A.; De Almeida Curi, N.H.; Puertas, F.; Passamani, M. Alien terrestrial mammals in Brazil: Current status and management. Biol. Invasions 2017, 19, 2101–2123. [Google Scholar] [CrossRef]
- Richardson, D.M.; Cambray, J.A.; Chapman, R.A.; Dean, W.R.J.; Griffiths, C.L.; Le Maitre, D.C.; Newton, D.J.; Winstanley, T.J. Vectors and pathways of biological invasions in South Africa: Past, present and future. In Invasive Species. Vectors and Management Strategies; Gregory, M.R., Carlton, J.T., Eds.; Island Press: London, UK, 2003; pp. 292–349. [Google Scholar]
- Marshall, B.M.; Strine, C.; Hughes, A.C. Thousands of reptile species threatened by under-regulated global trade. Nat. Commun. 2020, 11, 4738. [Google Scholar] [CrossRef]
- Stringham, O.C.; García-Díaz, P.; Toomes, A.; Mitchell, L.; Ross, J.V.; Cassey, P. Live reptile smuggling is predicted by trends in the legal exotic pet trade. Conserv. Lett. 2021, e12833. (in press). [Google Scholar] [CrossRef]
- Bush, E.R.; Baker, S.E.; Macdonald, D.W. Global trade in exotic pets 2006–2012. Conserv. Biol. 2014, 28, 663–676. [Google Scholar] [CrossRef]
- Maligana, N.; Julius, R.S.; Shivambu, T.C.; Chimimba, C.T. Genetic identification of freely traded synanthropic invasive murid rodents in pet shops in Gauteng Province, South Africa. Afr. Zool. 2020, 55, 149–154. [Google Scholar] [CrossRef]
- Shivambu, N.; Shivambu, T.C.; Downs, C.T. Non-native small mammal species in the South African pet trade. Manag. Biol. Invasions 2021, 12, 294–312. [Google Scholar] [CrossRef]
- Chucholl, C. Invaders for sale: Trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 2013, 15, 125–141. [Google Scholar] [CrossRef]
- Huynh, H.M.; Williams, G.R.; McAlpine, D.F.; Thorington, R.W. Establishment of the eastern gray squirrel (Sciurus carolinensis) in Nova Scotia, Canada. Northeast. Nat. 2010, 17, 673–677. [Google Scholar] [CrossRef]
- Campbell, C.D.; Pecon-Slattery, J.; Pollak, R.; Joseph, L.; Holleley, C.E. The origin of exotic pet sugar gliders (Petaurus breviceps) kept in the United States of America. PeerJ 2019, 7, e6180. [Google Scholar] [CrossRef] [PubMed]
- Booy, O.; Wade, M.; Roy, H. Field Guide to Invasive Plants and Animals in Britain; Bloomsbury Publishing: London, UK, 2015; p. 288. [Google Scholar]
- Gunn, R.C. Minutes of the Tasmanian Society. Tasmania J. Nat. Sci. 1846, 2, 458–459. [Google Scholar]
- Heinsohn, T.E. Phalangeroids as ethnotramps: A brief history of possums and gliders as introduced species. In The Biology of Australian Possums; Goldingay, R., Jackson, S.M., Eds.; Exeter: Surrey Beatty and Sons: Sydney, Australia, 2004; pp. 506–526. [Google Scholar]
- Braysher, M. Managing Australia’s Pest Animals: A Guide to Strategic Planning and Effective Management; Csiro Publishing: Melbourne, Australia, 2017; p. 208. [Google Scholar]
- Valle, R.R.; Ruiz-Miranda, C.R.; Pereira, D.G.; Rímoli, J.; Bicca-Marques, J.C.; Jerusalinsky, L.; Valença-Montenegro, M.M.; Mittermeier, R.A. Callithrix penicillata (amended version of 2018 assessment). The IUCN Red List of Threatened Species. Version 20 21: e.T41519A191705321. Available online: https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T41519A191705321.en (accessed on 27 September 2021).
- Valença-Montenegro, M.M.; Bezerra, B.M.; Ruiz-Miranda, C.R.; Pereira, D.G.; Miranda, J.M.D.; Bicca-Marques, J.C.; Oliveira, L.; Da Cruz, M.A.O.M.; Valle, R.R.; Mittermeier, R.A.; et al. Callithrix jacchus (amended version of 2018 assessment). The IUCN Red List of Threatened Species. Version 20 21: e.T41518A191705043. Available online: https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T41518A191705043.en (accessed on 27 September 2021).
- Camarotti, F.L.M.; Silva, V.L.D.; Oliveira, M.A.B. The effects of introducing the Amazonian squirrel monkey on the behavior of the northeast marmoset. Acta. Amaz. 2015, 45, 29–34. [Google Scholar] [CrossRef] [Green Version]
- GBIF.org. GBIF Occurrence (Atelerix albiventris). Available online: https://doi.org/10.15468/dl.tftrhb (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Callithrix jacchus). Available online: https://doi.org/10.15468/dl.qrrkfj (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Callithrix penicillata). Available online: https://doi.org/10.15468/dl.kgmj7v (accessed on 7 June 2020).
- GBIF.org. GBIF Occurrence (Cavia porcellus). Available online: https://doi.org/10.15468/dl.ekshfw (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Meriones unguiculatus). Available online: https://doi.org/10.15468/dl.srmaay (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Mus musculus). Available online: https://doi.org/10.15468/dl.ag7cpj (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Mesocricetus auratus). Available online: https://doi.org/10.15468/dl.q3zyw5 (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Mustela putorius furo). Available online: https://doi.org/10.15468/dl.mrnhzs (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Oryctolagus cuniculus). Available online: https://doi.org/10.15468/dl.e84j6c (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Phodopus sungorus). Available online: https://doi.org/10.15468/dl.nyv3q8 (accessed on 14 September 2021).
- GBIF.org. GBIF Occurrence (Petaurus breviceps). Available online: https://doi.org/10.15468/dl.rt4yry (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Rattus norvegicus). Available online: https://doi.org/10.15468/dl.79f5df (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Saimiri sciureus). Available online: https://doi.org/10.15468/dl.h72pwt (accessed on 17 June 2020).
- GBIF.org. GBIF Occurrence (Sciurus carolinensis). Available online: https://doi.org/10.15468/dl.nz5yca (accessed on 17 June 2020).
- Robertson, M.P.; Visser, V.; Hui, C. Biogeo: An R package for assessing and improving data quality of occurrence record datasets. Ecography 2016, 39, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Castañeda, G.; Hof, A.R.; Jansson, R.; Harding, L.E. Predicting the fate of biodiversity using Species’ Distribution Models: Enhancing model comparability and repeatability. PLoS ONE 2012, 7, e44402. [Google Scholar] [CrossRef] [Green Version]
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 23 December 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Liu, X.; Blackburn, T.M.; Song, T.; Wang, X.; Huang, C.; Li, Y. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020, 11, 2892. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.K.; Jones, R.H.; Possingham, P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Last of the Wild Project; Version 3 (LWP-3): 2009 Human Footprint, 2018 Release; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018; Available online: https://doi.org/10.7927/H46T0JQ4 (accessed on 28 January 2021).
- ESRI. ArcGIS Desktop: Release 10.4.1; Environmental Systems Research Institute: Redlands, CA, USA, 2018. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, D.R.; Peterson, A.T. Controlling bias in biodiversity. In Predicting Species Occurrences: Issues of Accuracy and Scale; Scott, J.M., Heglund, P.M., Morrison, L., Eds.; Island Press: London, UK, 2002; pp. 537–546. [Google Scholar]
- Phillips, S.J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 2008, 31, 272–278. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [Green Version]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banha, F.; Gama, M.; Anastácio, P.M. The effect of reproductive occurrences and human descriptors on invasive pet distribution modelling: Trachemys scripta elegans in the Iberian Peninsula. Ecol. Model. 2017, 360, 45–52. [Google Scholar] [CrossRef]
- Gaertner, M.; Wilson, J.R.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef] [Green Version]
- Musser, G.G.; Carleton, M.D. Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; pp. 894–1531. [Google Scholar]
- Picker, M.D.; Griffiths, C.L. Alien animals in South Africa-composition, introduction history, origins and distribution patterns. Afr. Biodivers. Conserv. 2017, 47, a2147. [Google Scholar] [CrossRef]
- Taylor, P.J.; Arntzen, L.; Hayter, M.; Iles, M.; Frean, J.; Belmain, S. Understanding and managing sanitary risks due to rodent zoonoses in an African city: Beyond the Boston Model. Integr. Zool. 2008, 3, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.D.; Nair, D.; Taylor, P.J.; Brettschneider, H.; Kirsten, F.; Mostert, E.; Von Maltitz, E.; Lamb, J.M.; Van Hooft, P.; Belmain, S.R.; et al. Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa. BMC Genet. 2011, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julius, R.S.; Schwan, E.V.; Chimimba, C.T. Molecular characterization of cosmopolitan and potentially co-invasive helminths of commensal, murid rodents in Gauteng Province, South Africa. Parasitol. Res. 2018, 117, 1729–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadell, M.V.; Cavia, R.; Suarez, O.V. Abundance, age structure and reproductive patterns of Rattus norvegicus and Mus musculus in two areas of the city of Buenos Aires. Int. J. Pest Manag. 2010, 56, 327–336. [Google Scholar] [CrossRef]
- Gomez, M.D.; Priotto, J.; Provensal, M.C.; Steinmann, A.; Castillo, E.; Polop, J.J. A population study of house mice (Mus musculus) inhabiting different habitats in an Argentine urban area. Int. Biodeterior. Biodegrad. 2008, 62, 270–273. [Google Scholar] [CrossRef]
- Pocock, M.J.; Searle, J.B.; White, P.C. Adaptations of animals to commensal habitats: Population dynamics of house mice Mus musculus domesticus on farms. J. Anim. Ecol. 2004, 73, 878–888. [Google Scholar] [CrossRef]
- Bennison, K.; Godfree, R.; Dickman, C.R. Synchronous boom–bust cycles in central Australian rodents and marsupials in response to rainfall and fire. J. Mammal. 2018, 99, 1137–1148. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Carvalho-Pereira, T.S.; Serrano, S.; Pedra, G.G.; Taylor, J.; Pertile, A.C.; Minter, A.; Airam, V.; Carvalho, M.; Júnior, N.N.; et al. A two-year ecological study of Norway rats (Rattus norvegicus) in a Brazilian urban slum. PLoS ONE 2016, 11, e0152511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.H.; Che, X.; Paulick, A.; Guo, C.; Lee, B.; Muller, D.; Uhlemann, A.C.; Lowy, F.D.; Corrigan, R.M.; Lipkin, W.I. New York City house mice (Mus musculus) as potential reservoirs for pathogenic bacteria and antimicrobial resistance determinants. MBio 2018, 9, e00624-18. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Almeida, A.; Corrigan, R.; Sarno, R. The economic impact of commensal rodents on small businesses in Manhattan’s Chinatown: Trends and possible causes. Suburb. Sustainab. 2013, 1, 2. [Google Scholar] [CrossRef]
- Diagne, C.; Ballesteros-Mejia, L.; Bodey, T.; Cuthbert, R.; Fantle-Lepczyk, J.; Angulo, E.; Dobigny, G.; Courchamp, F. Economic costs of invasive rodents worldwide: The tip of the iceberg. Res. Sq. Pre-print. 2021, 1–24. [Google Scholar] [CrossRef]
- Meyer, S. The Barn Owl as a Control Agent for Rat Populations in Semi-Urban Habitats. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2008; p. 84. [Google Scholar]
- Langton, S.D.; Cowan, D.P.; Meyer, A.N. The occurrence of commensal rodents in dwellings as revealed by the 1996 English House Condition Survey. J. Appl. Ecol. 2001, 38, 699–709. [Google Scholar] [CrossRef]
- Svihla, A. The occurrence of albino and spotted rats under feral conditions. Am. Nat. 1936, 70, 403–404. [Google Scholar] [CrossRef]
- Maligana, N. The Influence of Pet Trade and Scientific Laboratories on the Potential Spread of Invasive Species of Rattus in South Africa: Implications for Public Health, Economy and Invasive Rodent Control. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2018; p. 250. [Google Scholar]
- Williams, A. One-Woman Infestation: ‘Rat Girl’ Has Released Thousands of Rodents on to the Streets of San Francisco—And Officials Say They’re Powerless to Stop Her. 2014. Available online: https://www.dailymail.co.uk/news/article-2646082/One-woman-infestation-Rat-Girl-released-thousands-rodents-streets-San-Francisco-officials-say-theyre-powerless-stop-her.html (accessed on 16 July 2020).
- Robbins, C. Who Released Dozens of White Rats Next to Hudson River Park? 2015. Available online: http://gothamist.com/2015/07/14/these_rats_are_doomed.php (accessed on 16 July 2020).
- Drevfjall, L. Man Finds Rats Left to Die in Cages Dumped in Ditch Amidst Niagara Heat Wave. Thorold News. 2020. Available online: https://www.thoroldnews.com/local-news/man-finds-rats-left-to-die-in-cages-dumped-in-ditch-amidst-niagara-heat-wave-2555576 (accessed on 16 July 2020).
- Croft, J.D.; Fleming, P.J.S.; Van de Ven, R. The impact of rabbits on a grazing system in eastern New South Wales. 1. Ground cover and pastures. Aust. J. Exp. Agric. 2002, 42, 909–916. [Google Scholar] [CrossRef]
- Lees, A.C.; Bell, D.J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 2008, 38, 304–320. [Google Scholar] [CrossRef]
- Hume, J.P. Undescribed juvenile plumages of the Laysan rail or crake (Zapornia palmeri: Frohawk, 1892) and a detailed chronology of its extinction. Wilson J. Ornithol. 2017, 129, 429–445. [Google Scholar] [CrossRef]
- Lawton, C.; Rochford, J. The recovery of grey squirrel (Sciurus carolinensis) populations after intensive control programmes. Biol. Environ: Proc. R. Ir. Acad. 2007, 107B, 19–29. [Google Scholar] [CrossRef]
- Signorile, A.L.; Evans, J. Damage caused by the American grey squirrel (Sciurus carolinensis) to agricultural crops, poplar plantations and semi-natural woodland in Piedmont, Italy. Forestry 2007, 80, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, L.; Fernández, N.; Moreno, S. Habitat use and spatial behaviour in the European rabbit in three Mediterranean environments. Basic Appl. Ecol. 2007, 8, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Lawton, C.; Cowan, P.; Bertolino, S.; Lurz, P.W.W.; Peters, A.R. The consequences of introducing nonindigenous species: Two case studies, the grey squirrel in Europe and the brushtail possum in New Zealand. Rev. Sci. Tech. Off. Int. Epiz. 2010, 29, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Engel, L.D.; Carlen, E.J.; Losos, J.B.; Winchell, K.M. Eastern gray squirrels (Sciurus carolinensis) differ in abundance and response to humans across urban habitats of St. Louis. Urban Nat. 2020, 33, 1–16. [Google Scholar]
- Pontes, A.R.M.; Soares, M.L. Sleeping sites of common marmosets (Callithrix jacchus) in defaunated urban forest fragments: A strategy to maximize food intake. J. Zool. 2005, 266, 55–63. [Google Scholar] [CrossRef]
- Braz, A.G.; Lorini, M.L.; Vale, M.M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 2019, 25, 536–550. [Google Scholar] [CrossRef] [Green Version]
- Moraes, A.M.; Vancine, M.H.; Moraes, A.M.; De Oliveira Cordeiro, C.L.; Pinto, M.P.; Lima, A.A.; Culot, L.; Silva, T.S.; Collevatti, R.G.; Ribeiro, M.C.; et al. Predicting the potential hybridisation zones between native and invasive marmosets within Neotropical biodiversity hotspots. Glob. Ecol. Conserv. 2019, 20, e00706. [Google Scholar] [CrossRef]
- Teixeira, B.; Hirsch, A.; Goulart, V.D.; Passos, L.; Teixeira, C.P.; James, P.; Young, R. Good neighbours: Distribution of black-tufted marmoset (Callithrix penicillata) in an urban environment. Wildl. Res. 2016, 42, 579–589. [Google Scholar] [CrossRef]
- Heinsohn, R.; Webb, M.; Lacy, R.; Terauds, A.; Alderman, R.; Stojanovic, D. A severe predator-induced population decline predicted for endangered, migratory swift parrots (Lathamus discolor). Biol. Conserv. 2015, 186, 75–82. [Google Scholar] [CrossRef]
- Allen, M.; Webb, M.H.; Alves, F.; Heinsohn, R.; Stojanovic, D. Occupancy patterns of the introduced, predatory sugar glider in Tasmanian forests. Austral Ecol. 2018, 43, 470–475. [Google Scholar] [CrossRef]
- Ragg, J.R. The denning behaviour of feral ferrets (Mustela furo) in a pastoral habitat, South Island, New Zealand. J. Zool. 1998, 246, 471–477. [Google Scholar] [CrossRef]
- Davison, A.; Birks, J.D.S.; Griffiths, H.I.; Kitchener, A.C.; Biggins, D.; Butlin, R.K. Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain. Biol. Conserv. 1999, 87, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Buckley, D.J.; Lundy, M. The current distribution and potential for future range expansion of feral ferret Mustela putorius furo in Ireland. Eur. J. Wildl. Res. 2013, 59, 323–330. [Google Scholar] [CrossRef]
- Buckley, D.J.; Sleeman, D.P.; Murphy, J. Feral ferrets Mustela putorius furo L. in Ireland. Ir. Nat. J. 2007, 28, 356–360. [Google Scholar]
- Ratz, H.; Moller, H.; Fletcher, D. Predator identification from bite marks on penguin and albatross chicks. Mar. Ornithol. 1999, 27, 149–156. [Google Scholar]
- Carneiro, L.R.D.A.; Lima, A.P.; Machado, R.B.; Magnusson, W.E. Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS ONE 2016, 11, e0146543. [Google Scholar] [CrossRef] [Green Version]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Austin, M.P.; Belbin, L.; Meyers, J.A.A.; Doherty, M.D.; Luoto, M. Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecol. Modell. 2006, 199, 197–216. [Google Scholar] [CrossRef]
- Stockwell, D.R.; Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Gardner, A.S.; Maclean, I.M.; Gaston, K.J. Climatic predictors of species distributions neglect biophysiologically meaningful variables. Divers. Distrib. 2019, 25, 1318–1333. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: Limitations and challenges. Biodivers. Conserv. 2012, 21, 1251–1266. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Maiorano, L.; Čengić, M.; Huijbregts, M.A. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 2021, 27, 1035–1050. [Google Scholar] [CrossRef]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Chang. Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef]
- Massot, M.; Clobert, J.; Ferrière, R. Climate warming, dispersal inhibition and extinction risk. Glob. Chang. Biol. 2008, 14, 461–469. [Google Scholar] [CrossRef]
- Lewis, O. Climate change, species-area curves and the extinction crisis. Philos. Trans. R. Soc. Lond B Biol. Sci. 2006, 361, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, S.J.; White, M.D.; Newell, G.R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 2010, 15, 8. [Google Scholar] [CrossRef]
- DEA, Department of Environmental Affairs. National Environmental Management: Biodiversity Act 2004. In Alien and Invasive Species Regulations; (Act No. 10 of 2004); Government Gazette; DEA: Pretoria, South Africa, 2014; pp. 3–32. [Google Scholar]
- Julius, R.S.; Brettschneider, H.; Chimimba, C.T.; Bastos, A.D. Focus: Zoonotic Disease: Prevalence and Diversity of the Streptobacillus Rat-bite Fever Agent, in Three Invasive, Commensal Rattus Species from South Africa. Yale J. Biol. Med. 2021, 94, 217–226. [Google Scholar] [PubMed]
Order | Scientific Name | Common Name | Species Availability | Native Area | Status in South Africa | Countries Introduced | Introduction Pathways | |
---|---|---|---|---|---|---|---|---|
No. of Pet Store | No. of Online Websites | |||||||
Rodentia | Cavia porcellus | Guinea Pig | 70 | 3 | SA | Captivity | Not invasive | Not invasive |
Meriones unguiculatus | Mongolian gerbil | 10 | 2 | MO, NECN | Captivity | Not invasive | Not invasive | |
Mus musculus | House mouse | 68 | 2 | E | Invasive | All continents except AN | Accidental escape (hitchhikers on trading ships and cargos) [1] | |
Mesocricetus auratus | Golden hamster | 54 | 3 | SY, TR, GR, RO, BE | Captivity | Not invasive | Not invasive | |
Phodopus sungorus | Winter white dwarf hamster | 59 | 3 | MO, NECN | Captivity | Not invasive | Not invasive | |
Rattus norvegicus | Norwegian rat | 78 | 4 | CN, RU, JP | Invasive | All continents except AN | Accidental escape (hitchhikers on trading ships and cargos) [1] | |
Sciurus carolinensis | Eastern gray squirrel | 0 | 1 | ENA | Invasive | RSA, IE, IT, UK, NA | Intentional release and accidental escape (pet, ornamentation) [1,50] | |
Carnivora | Mustela putorius furo | Domesticated ferret | 2 | 2 | WE, NMR | Captivity | RAA, UK, NZ | Intentional release and accidental escape (pet, hunting, fur farming) [1,51,52] |
Diprotodontia | Petaurus breviceps | Sugar glider | 3 | 3 | AU, PNG | Captivity | Tas | Accidental escape (pet) [53,54] |
Eulipotyphla | Atelerix albiventris | African pygmy hedgehog | 29 | 6 | EAF | Captivity | Not invasive | Not invasive |
Lagomorpha | Oryctolagus cuniculus | European rabbit | 101 | 3 | EU | Invasive | All continents except AN | Intentional release and accidental escape (food or farming) [1,55] |
Primates | Callithrix jacchus | Common marmoset | 2 | 4 | ECBR | Captivity | SEBR, NEBR | Release and escape (pet) [42,56] |
Callithrix penicillata | Black-tufted ear marmoset | 3 | 2 | ECBR | Captivity | SEBR | Release and escape (pet) [42,57] | |
Saimiri sciureus | Common squirrel monkey | 0 | 1 | SA | Captivity | RJ | Release (pet) [42,58] |
Variables | Mus musculus | Rattus norvegicus |
---|---|---|
Bio 2: Mean Diurnal Range (Mean of monthly (max temp–min temp)) | 2.4 | 0.9 |
Bio 3: Isothermality (BIO2/BIO7) (×100) | 42.7 | 22.2 |
Bio 4: Temperature Seasonality (standard deviation ×100) | 0 | 4.4 |
Bio 5: Max Temperature of Warmest Month | – | – |
Bio 6: Min Temperature of Coldest Month | – | – |
Bio 7: Temperature Annual Range (BIO5–BIO6) | – | – |
Bio 8: Mean Temperature of Wettest Quarter | 1.7 | 1.2 |
Bio 9: Mean Temperature of Driest Quarter | 19.8 | 0 |
Bio 10: Mean Temperature of Warmest Quarter | 0 | 8.3 |
Bio 13: Precipitation of Wettest Month | 8.1 | 4.7 |
Bio 14: Precipitation of Driest Month | 5.5 | 11.4 |
Bio 15: Precipitation Seasonality (Coefficient of Variation) | 0.6 | 6.5 |
Bio 18: Precipitation of Warmest Quarter | 0.3 | 0.8 |
Bio 19: Precipitation of Coldest Quarter | 16.2 | 14.6 |
Human Footprint | 2.7 | 25 |
Species names | Distribution records | AUC | Bio 2 | Bio 3 | Bio 4 | Bio 8 | Bio 9 | Bio 10 | Bio 13 | Bio 14 | Bio 15 | Bio 18 | Bio 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atelerix albiventris | 284 | 0.984 | 3 | 25 | 16 | 1 | 0 | 5 | 20 | 12 | 0 | 10 | 8 |
Callithrix jacchus | 310 | 0.973 | 3.5 | 21.5 | 35 | 4 | 0 | 5 | 7 | 12 | 2 | 0 | 10 |
Callithrix penicillata | 301 | 0.994 | 4 | 30.6 | 0 | 6 | 12.4 | 0 | 11 | 5 | 0 | 26 | 5 |
Cavia porcellus | 69 | 0.824 | 2 | 35.2 | 0 | 6 | 10.8 | 0 | 3 | 34.3 | 1 | 3.2 | 4.5 |
Meriones unguiculatus | 180 | 0.761 | 8 | 7 | 39 | 0 | 0 | 20 | 2 | 1 | 3 | 5 | 25 |
Mus musculus | 10,672 | 0.799 | 0 | 20.3 | 34.7 | 1 | 0 | 3 | 2 | 0 | 2 | 0 | 37 |
Mesocricetus auratus | 64 | 0.862 | 1.5 | 43.7 | 0 | 2.5 | 16.3 | 0 | 4 | 2.3 | 0 | 1 | 28.7 |
Mustela putorius furo | 478 | 0.968 | 13 | 6 | 0 | 1 | 0 | 19.5 | 4.5 | 44 | 10.7 | 0 | 1.3 |
Oryctolagus cuniculus | 946 | 0.948 | 0 | 8 | 0 | 1 | 22 | 0 | 0 | 0 | 4 | 45 | 20 |
Phodopus sungorus | 153 | 0.954 | 0 | 59 | 9 | 5 | 0 | 19.9 | 2 | 3 | 1.7 | 5.4 | 0 |
Petaurus breviceps | 1000 | 0.979 | 4 | 52 | 0 | 0 | 2 | 0 | 1 | 28 | 2 | 8 | 3 |
Rattus norvegicus | 2615 | 0.97 | 3 | 22 | 0 | 2 | 11 | 0 | 1 | 14.2 | 3.8 | 6.8 | 36.2 |
Saimiri sciureus | 837 | 0.924 | 1 | 28 | 0 | 0 | 3 | 0 | 3.1 | 16 | 1.9 | 5 | 42 |
Sciurus carolinensis | 2048 | 0.98 | 13.7 | 22.3 | 0 | 0 | 0 | 0 | 6 | 58 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivambu, N.; Shivambu, T.C.; Downs, C.T. Predicting the Potential Distribution of Non-Native Mammalian Species Sold in the South African Pet Trade. Diversity 2021, 13, 478. https://doi.org/10.3390/d13100478
Shivambu N, Shivambu TC, Downs CT. Predicting the Potential Distribution of Non-Native Mammalian Species Sold in the South African Pet Trade. Diversity. 2021; 13(10):478. https://doi.org/10.3390/d13100478
Chicago/Turabian StyleShivambu, Ndivhuwo, Tinyiko C. Shivambu, and Colleen T. Downs. 2021. "Predicting the Potential Distribution of Non-Native Mammalian Species Sold in the South African Pet Trade" Diversity 13, no. 10: 478. https://doi.org/10.3390/d13100478
APA StyleShivambu, N., Shivambu, T. C., & Downs, C. T. (2021). Predicting the Potential Distribution of Non-Native Mammalian Species Sold in the South African Pet Trade. Diversity, 13(10), 478. https://doi.org/10.3390/d13100478