Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion
Abstract
:1. Introduction
2. Evolution and Development of the Sternum
2.1. Sternal Anatomy
2.2. Sternum Development
2.3. Sternal Adaptations in Vertebrates
2.4. Sternal Morphology Associated with Powered Flight
2.5. Common Genetic Mechanisms Underlying Sternum and Forelimb Development and Adaptation in Ratites
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, D.B.; Schneider, I. Fins into limbs: Recent insights from sarcopterygian fish. Genesis 2018, 56, e23052. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Zhu, C.; Yang, L.; Ren, Y.; Ruan, J.; Fan, G.; Hu, J.; Xu, W.; Bi, X.; et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021, 184, 1362–1376. [Google Scholar] [CrossRef]
- Bi, X.; Wang, K.; Yang, L.; Pan, H.; Jiang, H.; Wei, Q.; Fang, M.; Yu, H.; Zhu, C.; Cai, Y.; et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 2021, 184, 1377–1391. [Google Scholar] [CrossRef]
- Luo, Z. Origins of the Mammalian Shoulder; The University of Chicago Press: Chicago, IL, USA, 2015; pp. 167–187. [Google Scholar]
- Clack, J.A. Gaining Ground: The Origin and Evolution of Tetrapods; Indiana University Press: Bloomington, IN, USA, 2002; pp. 487–488. [Google Scholar]
- Seno, T. The origin and evolution of the sternum. Anat. Anzeiger. 1961, 110, 97–101. [Google Scholar]
- Li, Q.Y.; Newbury-Ecob, R.A.; Terrett, J.A.; Wilson, D.; Curtis, A.R.; Yi, C.H.; Gebuhr, T.; Bullen, P.J.; Robson, S.C.; Strachan, T.; et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet. 1997, 15, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Bickley, S.R.; Logan, M.P. Regulatory modulation of the T-box gene Tbx5 links development, evolution, and adaptation of the sternum. Proc. Natl. Acad. Sci. USA 2014, 111, 17917–17922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, P.; Wylie, J.N.; Galceran, J.; Arkhitko, O.; Li, C.; Deng, C.; Grosschedl, R.; Bruneau, B. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 2003, 130, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, J.K.; Kawakami, Y.; Büscher, D.; Raya, A.; Itoh, T.; Koth, C.M.; Esteban, C.R.; Leon, J.M.R.; Garrity, D.M.; Fishman, M.C.; et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 2002, 129, 5161–5170. [Google Scholar] [CrossRef]
- Hasson, P.; DeLaurier, A.; Bennett, M.; Grigorieva, E.; Naiche, L.A.; Papaioannou, V.; Mohun, T.J.; Logan, M.P. Tbx4 and Tbx5 Acting in Connective Tissue Are Required for Limb Muscle and Tendon Patterning. Dev. Cell 2010, 18, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Weinstein, M.; Li, C.; Naski, M.; I Cohen, R.; Ornitz, D.M.; Leder, P.; Deng, C. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 1998, 125, 753–765. [Google Scholar] [CrossRef]
- Hasson, P.; Del Buono, J.; Logan, M.P.O. Tbx5 is dispensable for forelimb outgrowth. Development 2007, 134, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizard, A.; Burgon, P.G.; Paul, D.L.; Bruneau, B.G.; Seidman, C.E.; Seidman, J.G. Connexin 40, a Target of Transcription Factor Tbx5, Patterns Wrist, Digits, and Sternum. Mol. Cell. Biol. 2005, 25, 5073–5083. [Google Scholar] [CrossRef] [Green Version]
- Ramfrez-Solis, R.; Zheng, H.; Whiting, J.; Krumlauf, R.; Bradley, A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 1993, 73, 279–294. [Google Scholar] [CrossRef]
- Chen, J.M. Studies on the morphogenesis of the mouse sternum. I. Normal embryonic development. J. Anat. 1952, 86, 373–386. [Google Scholar] [PubMed]
- Eijgelaar, A.; Bijtel, J.H. Congenital cleft sternum. Thorax 1970, 25, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, A.; Donnelly, J.; Kuc, A.; Good, D.; Doros, G.; Matusz, P.; Loukas, M. Ectopia cordis: A rare congenital anomaly. Clin. Anat. 2014, 27, 1193–1199. [Google Scholar] [CrossRef]
- Liakhovitskaia, A.; Lana-Elola, E.; Stamateris, E.; Rice, D.P.; van Hof, R.J.; Medvinsky, A. The essential requirement for Runx1 in the development of the sternum. Dev. Biol. 2010, 340, 539–546. [Google Scholar] [CrossRef]
- Kimura, A.; Inose, H.; Yano, F.; Fujita, K.; Ikeda, T.; Sato, S.; Iwasaki, M.; Jinno, T.; Ae, K.; Fukumoto, S.; et al. Runx1 and Runx2 cooperate during sternal morphogenesis. Development 2010, 137, 1159–1167. [Google Scholar] [CrossRef] [Green Version]
- Kuriki, M.; Sato, F.; Arai, H.N.; Sogabe, M.; Kaneko, M.; Kiyonari, H.; Kawakami, K.; Yoshimoto, Y.; Shukunami, C.; Sehara-Fujisawa, A. Transient and lineage-restricted requirement of Ebf3 for sternum ossification. Development 2020, 147. [Google Scholar] [CrossRef]
- Sivakamasundari, V.; Kraus, P.; Sun, W.; Hu, X.; Lim, S.L.; Prabhakar, S.; Lufkin, T. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development. Biol. Open 2016, 6, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Pierce, S.E.; Ahlberg, P.E.; Hutchinson, J.R.; Molnar, J.L.; Sanchez, S.; Tafforeau, P.; Clack, J.A. Vertebral architecture in the earliest stem tetrapods. Nature 2013, 494, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Rice, R.; Kallonen, A.; Cebra-Thomas, J.; Gilbert, S.F. Development of the turtle plastron, the order defining skeletal structure. Proc. Natl. Acad. Sci. USA 2016, 113, 5317–5322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, S.F.; Loredo, G.A.; Brukman, A.; Burke, A.C. Morphogenesis of the turtle shell: The development of a novel structure in tetrapod evolution. Evol. Dev. 2001, 3, 47–58. [Google Scholar] [CrossRef]
- Gladstone, R.J.; Wakeley, C.P.G. The Morphology of the Sternum and its Relation to the Ribs. J. Anat. 1932, 66, 508–564. [Google Scholar] [PubMed]
- Westphal, N.; Mahlow, K.; Head, J.J.; Muller, J. Pectoral myology of limb reduced worm lizards (Squamata, Amphisbaenia) suggests decoupling of the musculoskeletal system during the evolution of body elongation. BMC Evol. Biol. 2019, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Broom, R. On a nearly complete therocephalian skeleton. Ann. Transvaal Mus. 1938, 9, 1–5. [Google Scholar]
- Zheng, X.; Wang, X.; O’Connor, J.; Zhou, Z. Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nat. Commun. 2012, 3, 1116. [Google Scholar] [CrossRef]
- Warburton, N.M. Functional Morphology of Marsupial Moles (Marsupialia; Notoryctidae); Verhandlungen des Naturwissenschaftlichen Vereins: Hamburg, Germany, 2006; pp. 39–149. [Google Scholar]
- Edwards, L.F. Morphology of the Forelimb of the Mole (Scalops aquaticus, L.) in Relation to Its Fossorial Habits. Ohio J. Sci. 1937, 37, 20–41. [Google Scholar]
- Mayr, G. Pctoral girdle morphology of Mesozoic birds and the evolution of the avian supracoricodius muscle. J. Ornithol. 2017, 158, 859–867. [Google Scholar] [CrossRef]
- López-Aguirre, C.; Hand, S.J.; Koyabu, D.; Son, N.T.; Wilson, L.A.B. Postcranial heterochrony, modularity, integration and disparity in the prenatal ossification in bats (Chiroptera). BMC Evol. Biol. 2019, 19, 75. [Google Scholar] [CrossRef]
- Geist, N.R.; Hillenius, W.I.; Frey, E.; Jones, T.D.; Elgin, R.A. Breathing in a box: Constraints on lung ventilation in giant prerosaurs. Anat. Rec. 2014, 297, 2233–2253. [Google Scholar] [CrossRef] [PubMed]
- Frey, E.M.B.; Mertill, D.M. Middle and Bottom Decker Cretaceous pterosaurs: Unique Designs in Active Flying Vertebrates; Geological Society: Bath, UK, 2003; pp. 267–274. [Google Scholar]
- Brusatte, S.L.; O’Connor, J.K.; Jarvis, E.D. The Origin and Diversification of Birds. Curr. Biol. 2015, 25, R888–R898. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, S.P.; McGechie, F.R.; Middleton, K.M.; Holliday, C.M. 3D Muscle Architecture of the Pectoral Muscles of European Starling. Integr. Org. Biol. 2019, 1, oby010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zusi, R.L. Introduction to the Skeleton of Hummingbirds (Aves: Apodiformes, Trochilidae) in Functional and Phylogenetic Contexts. Ornithol. Monogr. 2013, 77, 1–94. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Ortega-Jimenez, V.M.; Dudley, R. Structure of the vortex wake in hovering Anna’s hummingbirds (Calypte anna). Proc. Biol. Sci. 2013, 280, 20132391. [Google Scholar] [CrossRef] [Green Version]
- Warrick, D.R.; Tobalske, B.W.; Powers, D. Aerodynamics of the hovering hummingbird. Nature 2005, 435, 1094–1097. [Google Scholar] [CrossRef]
- Biewener, A.A. Muscle function in avian flight: Achieving power and control. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1496–1506. [Google Scholar] [CrossRef] [Green Version]
- Razmadze, D.; Panyutina, A.; Zelenkov, N.V. Anatomy of the forelimb musculature and ligaments of Psittacus erithacus (Aves: Psittaciformes). J. Anat. 2018, 233, 496–530. [Google Scholar] [CrossRef]
- Gingerich, P.D.; Antar, M.S.M.; Zalmout, I.S. Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales. PLoS ONE 2019, 14, e0225391. [Google Scholar] [CrossRef] [Green Version]
- Struthers, J. The Form of the Sternum in the Greenland Right-Whale (Balœna mysticetus). J. Anat. Physiol. 1895, 29, 593–612. [Google Scholar] [PubMed]
- Stor, T.; Rebstock, G.A.; Borboroglu, P.G.; Boersma, P.D. Lateralization (handedness) in Magellanic penguins. PeerJ 2019, 7, e6936. [Google Scholar] [CrossRef]
- Strickland, H.E.; Melville, A.G. The Dodo and Its Kindred; or, the History, Affinities, and Osteology of the Dodo, Solitaire, and Other Extinct Birds of the Islands Mauritius, Rodriguez and Bourbon; Strickland, H.E., Melville, A.G., Eds.; Reeve, Benham and Reeve: London, UK, 1848. [Google Scholar]
- Livezey, B.C. Morphological corollaries and ecological implications of flightlessness in the kakapo (Psittaciformes: Strigops habroptilus). J. Morphol. 1992, 213, 105–145. [Google Scholar] [CrossRef] [PubMed]
- Warrick, D.; Hedrick, T.; Fernandez, M.J.; Tobalske, B.; Biewener, A. Hummingbird flight. Curr. Biol. 2012, 22, R472–R477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, H.; Mak, S.-S.; Weng, W.; Nakaya, Y.; Ladher, R.; Sheng, G. Embryonic development of the emu, Dromaius novaehollandiae. Dev. Dyn. 2011, 240. [Google Scholar] [CrossRef]
- Smith, C.A.; Farlie, P.G.; Davidson, N.M.; Roeszler, K.N.; Hirst, C.; Oshlack, A.; Lambert, D.M. Limb patterning genes and heterochronic development of the emu wing bud. EvoDevo 2016, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Young, J.; Grayson, P.; Edwards, S.V.; Tabin, C.J. Attenuated Fgf Signaling Underlies the Forelimb Heterochrony in the Emu Dromaius novaehollandiae. Curr. Biol. 2019, 29, 3681–3691.e5. [Google Scholar] [CrossRef] [PubMed]
- Keyte, A.L.; Smith, K.K. Developmental origins of precocial forelimbs in marsupial neonates. Development 2010, 137, 4283–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bakker, M.A.; Fowler, D.A.; den Oude, K.; Dondorp, E.M.; Navas, M.C.; Horbanczuk, J.O.; Sire, J.-Y.; Szczerbińska, D.; Richardson, M.K. Digit loss in archosaur evolution and the interplay between selection and constraints. Nature 2013, 500, 445–448. [Google Scholar] [CrossRef]
- Duboc, V.; Logan, M.P.O. Regulation of limb bud initiation and limb-type morphology. Dev. Dyn. 2011, 240, 1017–1027. [Google Scholar] [CrossRef]
- Sheeba, C.; Logan, M. The Roles of T-Box Genes in Vertebrate Limb Development. Curr. Top. Dev. Biol. 2017, 122, 355–381. [Google Scholar] [CrossRef]
- Farlie, P.G.; Davidson, N.M.; Baker, N.L.; Raabus, M.; Roeszler, K.N.; Hirst, C.; Major, A.; Mariette, M.M.; Lambert, D.M.; Oshlack, A.; et al. Co-option of the cardiac transcription factor Nkx2.5 during development of the emu wing. Nat. Commun. 2017, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harshman, J.; Braun, E.L.; Braun, M.J.; Huddleston, C.J.; Bowie, R.; Chojnowski, J.L.; Hackett, S.J.; Han, K.-L.; Kimball, R.; Marks, B.D.; et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc. Natl. Acad. Sci. USA 2008, 105, 13462–13467. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feneck, E.M.; Bickley, S.R.B.; Logan, M.P.O. Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion. Diversity 2021, 13, 481. https://doi.org/10.3390/d13100481
Feneck EM, Bickley SRB, Logan MPO. Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion. Diversity. 2021; 13(10):481. https://doi.org/10.3390/d13100481
Chicago/Turabian StyleFeneck, Eleanor M., Sorrel R. B. Bickley, and Malcolm P. O. Logan. 2021. "Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion" Diversity 13, no. 10: 481. https://doi.org/10.3390/d13100481
APA StyleFeneck, E. M., Bickley, S. R. B., & Logan, M. P. O. (2021). Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion. Diversity, 13(10), 481. https://doi.org/10.3390/d13100481