Bird Occupancy of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study site
2.2. Survey and Resurvey Data
2.3. Species Data Set
2.4. Occupancy Analyses
logit(ψ) = β0 + β1era + β2ForestAge + β3elevation
logit(p) = β4 + β5 era
3. Results
4. Discussion
4.1. Occupancy Stability
4.2. Changes in Occupancy
4.3. Forest Age and Elevation Effects on Occupancy
4.4. Alternative Scenarios and Caveats
4.5. Species Detectability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, T.M.; Pimm, S.L.; Oyugi, J.O. Time Lag between Deforestation and Bird Extinction in Tropical Forest Fragments. Conserv. Biol. 1999, 13, 1140–1150. [Google Scholar] [CrossRef]
- Robinson, W.D. Changes in abundance of birds in a neotropical forest fragment over 25 years: A review. Anim. Biodivers. Conserv. 2001, 24, 51–65. [Google Scholar]
- Stouffer, P.C.; Bierregaard, R.O.; Strong, C.; Lovejoy, T.E. Long-term landscape change and bird abundance in Amazonian rainforest fragments. Conserv. Biol. 2006, 20, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, P.C.; Strong, C.; Naka, L.N. Twenty years of understorey bird extinctions from Amazonian rain forest fragments: Consistent trends and landscape-mediated dynamics. Divers. Distrib. 2009, 15, 88–97. [Google Scholar] [CrossRef]
- Kuussaari, M.; Bommarco, R.; Heikkinen, R.K.; Helm, A.; Krauss, J.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; Rodà, F.; et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 2009, 24, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Henle, K.; Davies, K.F.; Kleyer, M.; Margules, C.; Settele, J. Predictors of Species Sensitivity to Fragmentation. Biodivers. Conserv. 2004, 13, 207–251. [Google Scholar] [CrossRef]
- Lees, A.C.; Peres, C.A. Avian life-history determinants of local extinction risk in a hyper-fragmented neotropical forest landscape. Anim. Conserv. 2008, 11, 128–137. [Google Scholar] [CrossRef]
- Blake, J.G.; Loiselle, B.A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ 2015, 3, e1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stouffer, P.C.; Jirinec, V.; Rutt, C.L.; Hernández-Palma, A.; Johnson, E.I.; Midway, S.R.; Powell, L.L.; Wolfe, J.D.; Lovejoy, T. Long-term change in the avifauna of undisturbed Amazonian rainforest: Ground-foraging birds disappear and the baseline shifts. Ecol. Lett. 2020. [Google Scholar] [CrossRef]
- Robinson, W.D.; Sherry, T.W. Mechanisms of avian population decline and species loss in tropical forest fragments. J. Ornithol. 2012, 153, 141–152. [Google Scholar] [CrossRef]
- Greenberg, R.; Gradwohl, J. Constant density and stable territoriality in some tropical insectivorous birds. Oecologia 1986, 69, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Browning, E.; Gibb, R.; Glover-Kapfer, P.; Jones, K.E. Passive acoustic monitoring in ecology and conservation. Methods Ecol. Evol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Deichmann, J.L.; Acevedo-Charry, O.; Barclay, L.; Burivalova, Z.; Campos-Cerqueira, M.; D’Horta, F.; Game, E.T.; Gottesman, B.L.; Hart, P.J.; Kalan, A.K.; et al. It’s time to listen: There is much to be learned from the sounds of tropical ecosystems. Biotropica 2018, 50, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W.; Llusia, D. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience 2019, 69, 15–25. [Google Scholar] [CrossRef]
- Hill, A.P.; Prince, P.; Covarrubias, E.P.; Doncaster, C.P.; Snaddon, J.; Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environmental for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 28 January 2021).
- Fiske, I.J.; Chandler, R.B. Unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. J. Stat. Softw. 2011, 43, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Campos-Cerqueira, M.; Aide, T.M. Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods Ecol. Evol. 2016, 7, 1340–1348. [Google Scholar] [CrossRef]
- Shonfield, J.; Heemskerk, S.; Bayne, E.M. Utility of Automated Species Recognition For Acoustic Monitoring of Owls. J. Raptor Res. 2018, 52, 42. [Google Scholar] [CrossRef]
- Campos-Cerqueira, M.; Aide, T.M. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 5, e4059. [Google Scholar] [CrossRef]
- Campos-Cerqueira, M.; Arendt, W.J.; Wunderle, J.M.; Aide, T.M. Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecol. Evol. 2017, 7, 9914–9924. [Google Scholar] [CrossRef] [Green Version]
- Dobbins, M.T.; Sollmann, R.; Menke, S.; Zambrano, A.A.; Broadbent, E. An integrated approach to measure hunting intensity and assess its impacts on mammal populations. J. Appl. Ecol. 2020, 57, 2100–2111. [Google Scholar] [CrossRef]
- Álvarez-Berríos, N.L.; Campos-Cerqueira, M.; Hernández-Serna, A.; Delgado, C.A.; Román-Dañobeytia, F.; Aide, T.M. Impacts of Small-Scale Gold Mining on Birds and Anurans Near the Tambopata Natural Reserve, Peru, Assessed Using Passive Acoustic Monitoring. Trop. Conserv. Sci. 2016, 9, 832–851. [Google Scholar] [CrossRef] [Green Version]
- Deichmann, J.L.; Hernández-Serna, A.; Campos-Cerqueira, M.; Aide, T.M. Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecol. Indic. 2017, 74, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Campos-Cerqueira, M.; Mena, J.L.; Tejeda-Gómez, V.; Aguilar-Amuchastegui, N.; Gutierrez, N.; Aide, T.M. How does FSC forest certification affect the acoustically active fauna in Madre de Dios, Peru? Remote Sens. Ecol. Conserv. 2020, 6, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Chapman, F.M. Life in an Air Castle: Nature Studies in the Tropics; D. Appleton-Century Company: New York, NY, USA, 1938. [Google Scholar]
- Willis, E.O. Populations and Local Extinctions of Birds on Barro Colorado Island, Panama. Ecol. Monogr. 1974, 44, 153–169. [Google Scholar] [CrossRef]
- Willis, E.O.; Eisenmann, E. A revised list of birds of Barro Colorado Island, Panamá. Smithson. Contrib. Zool. 1979, 1–30. [Google Scholar] [CrossRef]
- Robinson, W.D. Long-Term Changes in the Avifauna of Barro Colorado Island, Panama, a Tropical Forest Isolate. Conserv. Biol. 1999, 13, 85–97. [Google Scholar] [CrossRef]
- Curtis, J.R. Human Alteration of a Neotropical Landscape Drives Long-Term Changes in Its Forest Bird Communities. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2019. [Google Scholar]
- Mascaro, J.; Asner, G.P.; Muller-Landau, H.C.; Van Breugel, M.; Hall, J.; Dahlin, K. Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences 2011, 8, 1615–1629. [Google Scholar] [CrossRef] [Green Version]
- Leigh, E.G. Tropical Forest Ecology: A View from Barro Colorado Island; Oxford University Press on Demand: New York, NY, USA, 1999. [Google Scholar]
- Foster, R.B.; Brokaw, N.V.L. Structure and History of the vegetation of Barro Colorado Island. In The Ecology of a Tropical Forest: Seasonal Rhythms and Long–Term Changes; Leigh, E.N., Jr., Rand, E.G., Windsor, D.M., Eds.; Smithsonian Institution: Washington, DC, USA, 1996; pp. 67–82. [Google Scholar]
- Robinson, W.D.; Brawn, J.D.; Robinson, S.K. Forest bird community structure in central Panama: Influence of spatial scale and biogeography. Ecol. Monogr. 2000, 70, 209–235. [Google Scholar] [CrossRef]
- LeBien, J.; Zhong, M.; Campos-Cerqueira, M.; Velev, J.P.; Dodhia, R.; Ferres, J.L.; Aide, T.M. A pipeline for identification of bird and frog species in tropical soundscape recordings using a convolutional neural network. Ecol. Inform. 2020, 59, 101113. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Mazerolle, M.J.; Mazerolle, M.M.J. Package ‘AICcmodavg’; R Package: New York, NY, USA, 2017. [Google Scholar]
- Tingley, M.W.; Beissinger, S.R. Detecting range shifts from historical species occurrences: New perspectives on old data. Trends Ecol. Evol. 2009, 24, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Pratical Information-Theoretic Approach; Springer: Berlin, Germany, 2002. [Google Scholar]
- Arnold, T.W. Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. J. Wildl. Manag. 2010, 74, 1175–1178. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Wake, D.B.; Sousa, W.P. Amphibian declines: Judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv. Biol. 1994, 8, 60–71. [Google Scholar] [CrossRef]
- Schoener, T.W.; Spiller, D.A. Is Extinction Rate Related to Temporal Variability in Population Size? An Empirical Answer for Orb Spiders. Am. Nat. 1992, 139, 1176–1207. [Google Scholar] [CrossRef]
- Moore, R.P.; Robinson, W.D.; Lovette, I.J.; Robinson, T.R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 2008, 11, 960–968. [Google Scholar] [CrossRef]
- Rodgers, T.W.; Giacalone, J.; Heske, E.J.; Janečka, J.E.; Phillips, C.A.; Schooley, R.L. Comparison of Noninvasive Genetics and Camera Trapping for Estimating Population Density of Ocelots (Leopardus Pardalis) on Barro Colorado Island, Panama. Trop. Conserv. Sci. 2014, 7, 690–705. [Google Scholar] [CrossRef] [Green Version]
- Amudio, R.A.S.; Dengo, C.O.; Rica, C. Competitive Release in Diets of Ocelot (Leopardus Pardalis) and Puma (Puma Con-color) After Jaguar (Panthera Onca) Decline. J. Mammal. 2006, 87, 808–816. [Google Scholar]
- Brennan, P. Clutch predation in great tinamous Tinamus major and implications for the evolution of egg color. J. Avian Biol. 2010, 41, 419–426. [Google Scholar] [CrossRef]
- Kaufman, J.H. Ecology and social behavior of the coati (Nausia narica) on Barro Colorado Island. Univ. Cali. Publ. Zool. 1962, 60, 95–222. [Google Scholar]
- Foster, R.B. Famine on Barro Colorado Island. In Ecology of a Tropical Forest; Leigh, E.G., Rand, A.S., Windsor, D.M., Eds.; Smithsonian Institute Press: Washington, DC, USA, 1982; pp. 201–212. [Google Scholar]
- Wright, S.J.; Carrasco, C.; Calderon, O.; Paton, S. The El Nino Southern Oscillation, Variable Fruit Production, and Famine in a Tropical Forest. Ecology 1999, 80, 1632. [Google Scholar] [CrossRef]
- Milton, K.; Giacalone, J. Differential effects of unusual climatic stress on capuchin (Cebus capucinus) and howler monkey (Alouatta palliata) populations on Barro Colorado Island, Panama. Am. J. Primatol. 2014, 76, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, D.I. Modeling the probability of resource use: The effect of, and dealing with, detecting a species imperfectly. J. Wildl. Manag. 2006, 70, 367–374. [Google Scholar] [CrossRef]
- Acevedo-Charry, O.; Aide, T.M. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 2019, 128, 1065–1078. [Google Scholar] [CrossRef] [Green Version]
- Borges, S.H.; do RSTavares, T.; Crouch, N.M.A.; Baccaro, F. Sucessional trajetories of bird assemblages in Amazonian secondary forests: Perspectives from complementary biodiversity dimensions. For. Ecol. Manag. 2020, 118731. [Google Scholar] [CrossRef]
- Gaston, K.J.; Blackburn, T.M.; Greenwood, J.J.D.; Gregory, R.D.; Quinn, R.; Lawton, J.H. Abundance-occupancy relationships. J. Appl. Ecol. 2000, 37, 39–59. [Google Scholar] [CrossRef]
- He, F.; Gaston, K.J. Occupancy-abundance relationships and sampling scales. Ecography 2000, 23, 503–511. [Google Scholar] [CrossRef]
- Holt, A.R.; Gaston, K.J.; He, F. Occupancy-abundance relationships and spatial distribution: A review. Basic Appl. Ecol. 2002, 3, 1–13. [Google Scholar] [CrossRef]
- Rota, C.T.; Fletcher, R.J.; Dorazio, R.M.; Betts, M.G. Occupancy estimation and the closure assumption. J. Appl. Ecol. 2009, 46, 1173–1181. [Google Scholar] [CrossRef]
- Raxworthy, C.J.; Pearson, R.G.; Rabibisoa, N.; Rakotondrazafy, A.M.; Ramanamanjato, J.-B.; Raselimanana, A.P.; Wu, S.; Nussbaum, R.A.; Stone, D.A. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Chang. Biol. 2008, 14, 1703–1720. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-C.; Shiu, H.-J.; Benedick, S.; Holloway, J.D.; Chey, V.K.; Barlow, H.S.; Hill, J.K.; Thomas, C.D. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 2009, 106, 1479–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forero-Medina, G.; Terborgh, J.; Socolar, S.J.; Pimm, S.L. Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures. PLoS ONE 2011, 6, e28535. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.R. Avian extinction on Barro Colorado island, Panama: A reassessment. Am. Nat. 1982, 119, 220–239. [Google Scholar] [CrossRef]
- Mayhew, R.J.; Tobias, J.A.; Bunnefeld, L.; Dent, D.H. Connectivity with primary forest determines the value of secondary tropical forests for bird conservation. Biotropica 2019, 51, 219–233. [Google Scholar] [CrossRef]
- MacKenzie, D.; Reardon, J. Occupancy Methods for Conservation Management. In Biodiversity Monitoring and Conservation: Bridging the Gap between Global Commitment and Local Action; Collen, B., Pettorelli, N., Baillie, J.E.M., Durant, S.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA; Willey-Blackwell: Cambridge, UK, 2013; pp. 248–264. [Google Scholar]
- Darras, K.; Batáry, P.; Furnas, B.; Fitriawan, I.; Mulyani, Y.; Tscharntke, T. Autonomous bird sound recording outperforms direct human observation: Syn-thesis and new evidence. bioRXiv 2017, 1–37. [Google Scholar] [CrossRef]
- Darras, K.; Batáry, P.; Furnas, B.; Celis-Murillo, A.; Van Wilgenburg, S.L.; Mulyani, Y.A.; Tscharntke, T. Comparing the sampling performance of sound recorders versus point counts in bird surveys: A meta-analysis. J. Appl. Ecol. 2018, 55, 2575–2586. [Google Scholar] [CrossRef]
- Kułaga, K.; Budka, M. Bird species detection by an observer and an autonomous sound recorder in two different environments: Forest and farmland. PLoS ONE 2019, 14, e0211970. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Cerqueira, M.; Robinson, W.D.; Augusto Leite, G.; Mitchell Aide, T. Bird Occupancy of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age. Diversity 2021, 13, 50. https://doi.org/10.3390/d13020050
Campos-Cerqueira M, Robinson WD, Augusto Leite G, Mitchell Aide T. Bird Occupancy of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age. Diversity. 2021; 13(2):50. https://doi.org/10.3390/d13020050
Chicago/Turabian StyleCampos-Cerqueira, Marconi, W. Douglas Robinson, Gabriel Augusto Leite, and T. Mitchell Aide. 2021. "Bird Occupancy of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age" Diversity 13, no. 2: 50. https://doi.org/10.3390/d13020050
APA StyleCampos-Cerqueira, M., Robinson, W. D., Augusto Leite, G., & Mitchell Aide, T. (2021). Bird Occupancy of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age. Diversity, 13(2), 50. https://doi.org/10.3390/d13020050