Light-Emitting Diodes (LED): A Promising Street Light System to Reduce the Attraction to Light of Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Lighting Systems to Be Assessed
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Models Predicting Quantity and Family Richness
3.2. Captures in Light Traps Versus Captures in Sticky Traps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cinzano, P.; Falchi, P.F.; Elvidge, C.D. The first World Atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef] [Green Version]
- Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.C. The dark side of light: A transdisciplinary research agenda for light. Ecol. Soc. 2010, 15, 13. [Google Scholar]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Rich, C.; Longcore, T. (Eds.) Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Owens, A.C.S.; Lewis, S.M. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol. Evol. 2018, 8, 11337–11358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaston, K.J.; Blackburn, T.M. Pattern and Process in Macroecology; Blackwell Science: Malden, MA, USA, 2000. [Google Scholar]
- Bruce-White, C.; Shardlow, M. A Review of the Impact of Artificial Light on Invertebrates; Buglife-The Invertebrate Conservation Trust: Peterborough, UK, 2011. [Google Scholar]
- Ditrich, T.; Čihák, P. Efficiency of subaquatic light traps. Aquat. Insects 2017, 38, 171–184. [Google Scholar] [CrossRef]
- Van Langevelde, F.; Van Grunsven, R.H.A.; Veenendaal, E.M.; Fijen, T.P.M. Artificial night lighting inhibits feeding in moths. Biol. Lett. 2017, 13, 20160874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, A.; Rydell, J. Mercury vapour lamps interfere with the bat defence of tympanate moths (Operophtera spp.; Geometridae). Anim. Conserv. 1998, 55, 223–226. [Google Scholar]
- Zhang, J.; Huang, L.; He, J.; Tomberlin, J.K.; Li, J.; Lei, C.; Sun, M.; Liu, Z.; Yu, Z. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens. J. Insect Sci. 2010, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 2011, 144, 2274–2281. [Google Scholar] [CrossRef]
- Eisenbeis, G.; Eick, K. Attraction of nocturnal insects to street lights with special regard to LEDs. In Proceedings of the 24th Annual Meeting of the Society for Conservation Biology Conservation for a Changing Planet, Edmonton, AB, Canada, 3–7 July 2010. [Google Scholar]
- Poiani, S.; Dietrich, C.; Barroso, A.; Costa-Leonardo, A. Effects of residential energy-saving lamps on the attraction of nocturnal insects. Light. Res. Technol. 2014, 47, 338–348. [Google Scholar] [CrossRef]
- Spoelstra, K.; Van Grunsven, R.H.A.; Donners, M.; Gienapp, P.; Huigens, M.E.; Slaterus, R.; Berendse, F.; Visser, M.E.; Veenendaal, E. Experimental illumination of natural habitat—An experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. B 2015, 370, 20140129. [Google Scholar] [CrossRef] [Green Version]
- Van Grunsven, R.H.A.; Becker, J.; Peter, S.; Heller, S.; Hölker, F. Long-term comparison of attraction of flying insects to streetlights after the transition from traditional light sources to light-emitting diodes in urban and peri-urban settings. Sustainability 2019, 11, 6198. [Google Scholar] [CrossRef] [Green Version]
- Altermatt, F.; Baumeyer, A.; Ebert, D. Experimental evidence for male biased flight-to-light behavior in two moth species. Entomol. Exp. Appl. 2009, 130, 259–265. [Google Scholar] [CrossRef]
- Kolligs, D. Ökologische Auswirkungen künstlicher Lichtquellen auf nachtaktive Insekten, insbesondere Schmetterlinge (Lepidoptera). Faun.-Okol. Mitt. 2000, 28, 1–136. [Google Scholar]
- Lind, O.; Henze, M.J.; Kelber, A.; Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. B 2017, 372, 20160338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima-Neto, A.R.; Costa-Neta, B.M.; Da Silva, A.A.; Brito, J.M.; Aguiar, J.V.C.; Ponte, I.S.; Silva, F.S. The effect of luminous intensity on the attraction of phlebotomine sand flies to light traps. J. Med. Entomol. 2017, 55, 731–734. [Google Scholar] [CrossRef]
- Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J. Potential biological and ecological effects of flickering artificial light. PLoS ONE 2014, 9, e98631. [Google Scholar] [CrossRef] [Green Version]
- Donners, M.; Van Grunsven, R.H.; Groenendijk, D.; Van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E. Colors of attraction: Modeling insect flight to light behavior. J. Exp. Zool. Part. A Ecol. Integr. Physiol. 2018, 329, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Seymoure, B.M.; Linares, C.; White, J. Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms. J. Zool. 2019, 308, 93–110. [Google Scholar] [CrossRef]
- Van Grunsven, R.H.A.; Donners, M.; Boekee, K.; Tichelaar, I.; Van Geffen, K.G.; Groenendijk, D.; Berendse, F.; Veenendaal, E.M. Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. J. Insect Conserv. 2014, 18, 225–231. [Google Scholar] [CrossRef]
- Blomberg, O.; Itämies, J.; Kuusela, K. Insect catches in a blended and a black light-trap in Northern Finland. Oikos 1976, 27, 57. [Google Scholar] [CrossRef]
- Hollingsworth, J.; Hartstack, W., Jr.; Lindquist, D. Influence of near-ultraviolet output of attractant lamps on catches of insects by light traps. J. Econ. Entomol. 1968, 61, 515–521. [Google Scholar] [CrossRef]
- Mikkola, K. Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near-ultraviolet and visible light. Ann. Zool. Fenn. 1972, 9, 225–254. [Google Scholar]
- Eisenbeis, G. Artificial night lighting and insects: Attraction of insects to streetlamps in a rural setting in Germany. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006; pp. 281–304. [Google Scholar]
- Barghini, A.; De Medeiros, B.A.S. UV radiation as an attractor for insects. LEUKOS 2012, 9, 47–56. [Google Scholar] [CrossRef]
- Longcore, T.; Aldern, H.L.; Eggers, J.F.; Flores, S.; Franco, L.; Hirshfield-Yamanishi, E.; Petrinec, L.N.; Yan, W.A.; Barroso, A.M. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos. Trans. R. Soc. B 2015, 370, 20140125. [Google Scholar] [CrossRef]
- Justice, M.J.; Justice, T.C. Attraction of insects to incandescent, compact fluorescent, halogen, and led lamps in a light trap: Implications for light pollution and urban ecologies. Entomol. News 2016, 125, 315–326. [Google Scholar] [CrossRef]
- Lima, D.C.B.; Costa, A.A.V.; Silva, F.S. Abundance and night hourly dispersal of the vesicating beetles of the Genus Paederus (Coleoptera: Staphylinidae) attracted to fluorescent, incandescent, and black light sources in the Brazilian savanna. J. Med. Entomol. 2015, 52, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, M.; Honda, K.-I. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Steele, R. Strategically speaking: LCD backlights and lighting drive largest growth yet seen in HB-LED market. LEDs Mag. 2010, 2, 3–26. [Google Scholar]
- Shoshany, M. Satellite remote sensing of natural Mediterranean vegetation: A review within an ecological context. Prog. Phys. Geogr. 2000, 24, 153–178. [Google Scholar] [CrossRef]
- Lamphar, H.A.S.; Kocifaj, M. Light pollution in ultraviolet and visible spectrum: Effect on different visual perceptions. PLoS ONE 2013, 8, e56563. [Google Scholar] [CrossRef]
- Nowinszky, L. The Handbook of Light Trapping; Savaria University Press: Szombathely, Austria, 2003. [Google Scholar]
- Williams, C.B. IX—The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by a light trap. Philos. Trans. R. Soc. Lond. Ser. B 1936, 226, 357–389. [Google Scholar] [CrossRef] [Green Version]
- Nowinszky, L.; Puskás, J.; Kúti, Z. Light trapping as a dependent of moonlight and clouds. Appl. Ecol. Environ. Res. 2010, 8, 301–312. [Google Scholar] [CrossRef]
- Williams, C. An analysis of four years captures of insects in a light trap. Part II. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Trans. R. Entomol. Soc. Lond. 1940, 90, 227–306. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; Volume xxvi, p. 488. [Google Scholar]
- Venables, W.; Ripley, B. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2020; Available online: http://www.r-project.org/index.html (accessed on 4 February 2021).
- Van Der Kooi, C.J.; Stavenga, D.G.; Arikawa, K.; Belušič, G.; Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021, 66, 435–461. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R. Spectral sensitivity and color vision in invertebrates. In Handbook of Sensory Physiology; Autrum, H., Ed.; Springer: Berlin, Germany, 1979; pp. 503–566. [Google Scholar]
- Froy, O.; Gotter, A.L.; Casselman, A.L.; Reppert, S.M. Illuminating the circadian clock in monarch butterfly migration. Science 2003, 300, 1303–1305. [Google Scholar] [CrossRef]
- Briscoe, A.D.; Chittka, L. The evolution of colour vision in insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.L.; Jones, G.; Harris, S. Street lighting disturbs commuting bats. Curr. Biol. 2009, 19, 1123–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austrian Energy Agency. LED Street Lighting Procurement and Design Guidelines. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b6d1cf07&appId=PPGMS (accessed on 3 February 2021).
- SdN—Schutz der Nacht—Lichtverschmutzung, Biodiversität und NachtlandschaftHeld, M.; Hölker, F.; Jessel, B. (Eds.) SdN—Schutz der Nacht—Lichtverschmutzung, Biodiversität und NachtlandschaftBfN-Skripten 336; Bundesamt für Naturschutz: Bonn, Germany, 2013.
- USDOE. Street Light and Blue Light—Frequently Asked Questions; Department of Energy; Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2017. [Google Scholar]
- Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. The LED paradox: How light pollution challenges experts to reconsider sustainable lighting. Sustainability 2019, 11, 6160. [Google Scholar] [CrossRef] [Green Version]
- Pimputkar, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Prospects for LED lighting. Nat. Photon. 2009, 3, 180–182. [Google Scholar] [CrossRef]
- Barghini, A. Influência da Iluminação Artificial Sobre a Vida Silvestre: Técnicas para Minimizar os Impactos, com Especial Enfoque Sobre os Insetos; Universidade de São Paulo: São Paulo, Brazil, 2008. [Google Scholar] [CrossRef] [Green Version]
- Land, M.F. Visual acuity in insects. Annu. Rev. Entomol. 1997, 42, 147–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
System | Brand | Model | Power (W) | Luminous Flux (lm) | Colour Temperature (°K) | Peak WaveLength (nm) | Others |
---|---|---|---|---|---|---|---|
High pressure mercury vapor lamps (HPMV) | Sylvania | HSL-BW 250 W Basic | 250 | 13,000 | 4000 | 724 | |
High pressure sodium vapor lamps (HPSV) | Sylvania | SHP-T 150 W | 150 | 16,394 | 2050 | 1414 | |
Metal halide lamps (MH) | F-Bright lamp | 2601340 | 150 | 11,250 | 6000 | 483 | |
Light-emitting diode lamps (LED) | LEDworldgroup | Epistar E40 LED 70 W | 70 | 5600 | 5000 | 580 | Number of LEDs: 70; type: powerLED |
Variable | Definition |
---|---|
Wind direction | The direction of the prevailing wind conditions (East–West) |
Moon visibility | % of visible moon in the sky |
Wind speed | Maximum wind speed during sampling at microhabitat level—Beaufort scale |
Temperature | Temperature (°C) at the end of the sampling event (four hours after sunset) |
Lighting system | Type of lighting system: High-pressure mercury vapor lamps (HPMV), high-pressure sodium vapor lamps (HPSV), metal halide lamps (MH), and LED (LED). |
Season | Spring (March–May), summer (June–August), and winter (December–February) |
Quantity * | The total number of individuals captured per trapping session. |
Variables | Df | Deviance | AIC | |
---|---|---|---|---|
(a) | <none> | 41.04 | 524.98 | |
- Temperature | 1 | 43.137 | 525.07 | |
- Wind direction | 1 | 45.946 | 527.88 | |
- Moon visibility | 1 | 49.115 | 531.05 | |
- Wind speed | 1 | 69.095 | 551.03 | |
- Lighting system | 3 | 126.249 | 604.19 | |
(b) | <none> | 438.53 | 227.30 | |
- Moon visibility | 1 | 466.21 | 227.75 | |
- Lighting system | 3 | 521.69 | 228.24 | |
- Abundance | 1 | 512.97 | 231.57 | |
- Wind speed | 1 | 584.78 | 236.81 | |
- Temperature | 1 | 1189.21 | 265.20 |
Coefficient | ES | Z | p-Value | ||
---|---|---|---|---|---|
(a) | (Intercept) | 6.98 | 0.30 | 23.57 | <0.001 |
HPSV vs HPMV | −0.20 | 0.20 | −0.99 | 0.323 | |
HM vs HPMV | −0.44 | 0.20 | −2.23 | 0.026 | |
LEDs vs HPMV | −2.10 | 0.21 | −10.11 | <0.001 | |
Wind direction | −0.41 | 0.17 | −2.32 | 0.020 | |
Moon visibility | −1.68 | 0.53 | −3.15 | 0.002 | |
Temperature | 0.03 | 0.02 | 1.69 | 0.092 | |
Wind speed | −0.43 | 0.08 | −5.55 | <0.001 | |
(b) | (Intercept) | 0.64 | 3.31 | 0.19 | 0.847 |
HPSV vs HPMV | 2.71 | 1.69 | 1.60 | 0.119 | |
HM vs HPMV | 0.06 | 1.79 | 0.03 | 0.974 | |
LEDs vs HPMV | −2.31 | 2.30 | −1.01 | 0.322 | |
Quantity | 0.004. | 0.002. | 2.33 | 0.026. | |
Moon visibility | 6.43 | 4.52 | 1.42 | 0.165 | |
Temperature | 1.09 | 0.15 | 7.40 | <0.001 | |
Wind speed | −2.01 | 0.61 | −3.27 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, B.; Pérez, H.; Ferrer, M. Light-Emitting Diodes (LED): A Promising Street Light System to Reduce the Attraction to Light of Insects. Diversity 2021, 13, 89. https://doi.org/10.3390/d13020089
Martín B, Pérez H, Ferrer M. Light-Emitting Diodes (LED): A Promising Street Light System to Reduce the Attraction to Light of Insects. Diversity. 2021; 13(2):89. https://doi.org/10.3390/d13020089
Chicago/Turabian StyleMartín, Beatriz, Héctor Pérez, and Miguel Ferrer. 2021. "Light-Emitting Diodes (LED): A Promising Street Light System to Reduce the Attraction to Light of Insects" Diversity 13, no. 2: 89. https://doi.org/10.3390/d13020089
APA StyleMartín, B., Pérez, H., & Ferrer, M. (2021). Light-Emitting Diodes (LED): A Promising Street Light System to Reduce the Attraction to Light of Insects. Diversity, 13(2), 89. https://doi.org/10.3390/d13020089