Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Presence Records
2.3. Environmental Data
2.4. Ecological Niche Modeling
2.5. Diversity Measurements
2.6. Statistical Analysis
2.7. Effectiveness of Protected Areas
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D. Functional Diversity. Encycl. Biodivers. 2001, 3, 109–120. [Google Scholar]
- Véron, S.; Saito, V.; Padilla-García, N.; Forest, F.; Bertheau, Y. The Use of Phylogenetic Diversity in Conservation Biology and Community Ecology: A Common Base but Different Approaches. Q. Rev. Biol 2019, 94, 123–148. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Borges, P.A.V.; Carvalho, J.C. A New Frontier in Biodiversity Inventory: A Proposal for Estimators of Phylogenetic and Functional Diversity. Methods Ecol. Evol. 2014, 5, 452–461. [Google Scholar] [CrossRef]
- Stroud, J.T.; Bush, M.R.; Ladd, M.C.; Nowicki, R.J.; Shantz, A.A.; Sweatman, J. Is a Community Still a Community? Reviewing Definitions of Key Terms in Community Ecology. Ecol. Evol. 2015, 5, 4757–4765. [Google Scholar] [CrossRef] [PubMed]
- Faith, D.P. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Tucker, C.M.; Cadotte, M.W.; Carvalho, S.B.; Jonathan Davies, T.; Ferrier, S.; Fritz, S.A.; Grenyer, R.; Helmus, M.R.; Jin, L.S.; Mooers, A.O.; et al. A Guide to Phylogenetic Metrics for Conservation, Community Ecology and Macroecology. Biol. Rev. 2017, 92, 698–715. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond Species: Functional Diversity and the Maintenance of Ecological Processes and Services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional Diversity: Back to Basics and Looking Forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef]
- Cadotte, M.; Albert, C.H.; Walker, S.C. The Ecology of Differences: Assessing Community Assembly with Trait and Evolutionary Distances. Ecol. Lett. 2013, 16, 1234–1244. [Google Scholar] [CrossRef]
- Pavoine, S.; Gasc, A.; Bonsall, M.B.; Mason, N.W.H. Correlations between Phylogenetic and Functional Diversity: Mathematical Artefacts or True Ecological and Evolutionary Processes? J. Veg. Sci. 2013, 24, 781–793. [Google Scholar] [CrossRef]
- Cardillo, M. Phylogenetic Structure of Mammal Assemblages at Large Geographical Scales: Linking Phylogenetic Community Ecology with Macroecology. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2545–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchi-Melo, L.S.; Meynard, C.N.; Gonçalves-Souza, T.; de Cerqueira Rossa-Feres, D. Integrating Phylogenetic and Functional Biodiversity Facets to Guide Conservation: A Case Study Using Anurans in a Global Biodiversity Hotspot. Biodivers Conserv. 2018, 27, 3247–3266. [Google Scholar] [CrossRef]
- Fritz, S.A.; Rahbek, C. Global Patterns of Amphibian Phylogenetic Diversity. J. Biogeogr. 2012, 39, 1373–1382. [Google Scholar] [CrossRef]
- Holdaway, R.J.; Sparrow, A.D. Assembly Rules Operating along a Primary Riverbed–Grassland Successional Sequence. J. Ecol. 2006, 94, 1092–1102. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef]
- Pavoine, S.; Bonsall, M.B. Measuring Biodiversity to Explain Community Assembly: A Unified Approach. Biol. Rev. 2011, 86, 792–812. [Google Scholar] [CrossRef] [PubMed]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science (1979) 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Yañez-Arenas, C.; Townsend Peterson, A.; Rodríguez-Medina, K.; Barve, N. Mapping Current and Future Potential Snakebite Risk in the New World. Clim. Change 2016, 134, 697–711. [Google Scholar] [CrossRef]
- Menéndez-Guerrero, P.A.; Green, D.M.; Davies, T.J. Climate Change and the Future Restructuring of Neotropical Anuran Biodiversity. Ecography 2020, 43, 222–235. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- IPCC. 2018: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; In Press. Available online: https://www.ipcc.ch/sr15/download/ (accessed on 11 July 2022).
- Tingley, M.W.; Koo, M.S.; Moritz, C.; Rush, A.C.; Beissinger, S.R. The Push and Pull of Climate Change Causes Heterogeneous Shifts in Avian Elevational Ranges. Glob. Change Biol. 2012, 18, 3279–3290. [Google Scholar] [CrossRef]
- Berg, M.P.; Kiers, E.T.; Driessen, G.; van der HEIJDEN, M.; Kooi, B.W.; Kuenen, F.; Liefting, M.; Verhoef, H.A.; Ellers, J. Adapt or Disperse: Understanding Species Persistence in a Changing World. Glob. Change Biol. 2010, 16, 587–598. [Google Scholar] [CrossRef]
- Peterson, A.T.; Ortega-Huerta, M.A.; Bartley, J.; Sánchez-Cordero, V.; Soberón, J.; Buddemeier, R.H.; Stockwell, D.R.B. Future Projections for Mexican Faunas under Global Climate Change Scenarios. Nature 2002, 416, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, M.; Moilanen, A. Site-selection Algorithms and Habitat Loss. Conserv. Biol. 2003, 17, 1402–1413. [Google Scholar] [CrossRef]
- Margules, C.R.; Pressey, R.L. Systematic Conservation Planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation Planning in a Changing World. Trends Ecol. Evol. 2007, 22, 583–592. [Google Scholar] [CrossRef]
- Cooper, N.; Bielby, J.; Thomas, G.H.; Purvis, A. Macroecology and Extinction Risk Correlates of Frogs. Glob. Ecol. Biogeogr. 2008, 17, 211–221. [Google Scholar] [CrossRef]
- Pounds, J.A.; Fogden, M.P.L.; Savage, J.M.; Gorman, G.C. Tests of Null Models for Amphibian Declines on a Tropical Mountain. Conserv. Biol. 1997, 11, 1307–1322. [Google Scholar] [CrossRef]
- Pounds, J.A.; Fogden, M.P.L.; Campbell, J.H. Biological Response to Climate Change on a Tropical Mountain. Nature 1999, 398, 611–615. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science (1979) 2004, 306, 1783–1786. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Loarie, S.R.; Cornwell, W.K.; Weiss, S.B.; Hamilton, H.; Branciforte, R.; Kraft, N.J.B. The Geography of Climate Change: Implications for Conservation Biogeography: Geography of Climate Change. Divers. Distrib. 2010, 16, 476–487. [Google Scholar] [CrossRef]
- Hof, C.; Araújo, M.B.; Jetz, W.; Rahbek, C. Additive Threats from Pathogens, Climate and Land-Use Change for Global Amphibian Diversity. Nature 2011, 480, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cohen, J.M.; Rohr, J.R. Review and Synthesis of the Effects of Climate Change on Amphibians. Integr. Zool. 2013, 8, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Ochoa, L.M.; Rodríguez, P.; Mora, F.; Flores-Villela, O.; Whittaker, R.J. Climate Change and Amphibian Diversity Patterns in Mexico. Biol. Conserv. 2012, 150, 94–102. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Walls, S.C.; Bancroft, B.A.; Lawler, J.J.; Searle, C.L.; Gervasi, S.S. Direct and Indirect Effects of Climate Change on Amphibian Populations. Diversity 2010, 2, 281. [Google Scholar] [CrossRef]
- Parra-Olea, G.; Flores-Villela, O.; Mendoza-Almeralla, C. Biodiversidad de anfibios en México. Rev. Mex. Biodivers. 2014, 85, 460–466. [Google Scholar] [CrossRef]
- González-Sánchez, V.H.; Johnson, J.D.; García-Padilla, E.; Mata-Silva, V.; DeSantis, D.L.; Wilson, L.D. The Herpetofauna of the Mexican Yucatan Peninsula: Composition, Distribution, and Conservation. Mesoam. Herpetol. 2017, 4, 264–380. [Google Scholar]
- Pérez-Sarabia, J.E.; de Stefano, R.; Fernández-Concha, G.C.; Ramírez Morillo, I.; Méndez-Jiménez, N.; Zamora-Crescencio, P.; Gutiérrez-Baez, C.; Cetzal-Ix, W. The floristic knowledge of the Yucatan peninsula, Mexico. Polibotanica 2017, 44, 39–49. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Rehfeldt, G.E.; Crookston, N.L.; Duval, P.; St-Amant, R.; Beaulieu, J.; Richardson, B.A. Spline Models of Contemporary, 2030, 2060 and 2090 Climates for Mexico and Their Use in Understanding Climate-Change Impacts on the Vegetation. Clim. Change 2010, 102, 595–623. [Google Scholar] [CrossRef]
- Islebe, G.A.; Calmé, S.; León-Cortés, J.L.; Schmook, B. Biodiversity and Conservation of the Yucatán Peninsula, 1st ed.; Springer: Cham, Switzerland, 2015; Volume 1, ISBN 978-3-319-06528-1/978-3-319-06529-8. [Google Scholar]
- Ochoa-Ochoa, L.M.; Mejía-Domínguez, N.R.; Velasco, J.A.; Dimitrov, D.; Marske, K.A. Dimensions of Amphibian Alpha Diversity in the New World. J. Biogeogr. 2020, 47, 2293–2302. [Google Scholar] [CrossRef]
- Vázquez-Domínguez, E.; Arita, H.T. The Yucatan Peninsula: Biogeographical History 65 Million Years in the Making. Ecography 2010, 33, 212–219. [Google Scholar] [CrossRef]
- Morrone, J.J. Hacia Una Síntesis Biogeográfica de México. Rev. Mex. Biodivers. 2005, 76, 207–252. [Google Scholar] [CrossRef]
- INEGI Uso Del Suelo y Vegetación de México, (Serie VI), INEGI, 2014–2017. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 24 May 2021).
- White, D.A.; Hood, C.S. Vegetation Patterns and Environmental Gradients in Tropical Dry Forests of the Northern Yucatan Peninsula. J. Veg. Sci. 2004, 15, 151–160. [Google Scholar] [CrossRef]
- Köhler, G. Amphibians of Central America; Herpeton Verlag Elke Köhler: Offenbach, Germany, 2011; ISBN 978-3-936180-33-6. [Google Scholar]
- Soberon, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Cooper, J.C.; Soberón, J. Creating Individual Accessible Area Hypotheses Improves Stacked Species Distribution Model Performance. Glob. Ecol. Biogeogr. 2018, 27, 156–165. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial Ecoregions of the World: A New Map of Life on EarthA New Global Map of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Cheng, J.; Summer, M.; Mattiuzzi, M. Raster: Geographic Data Analysis and Modeling. R Package Version 2.7-15. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 22 February 2019).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the “Geospatial” Data Abstraction Library. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 22 February 2019).
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial Filtering to Reduce Sampling Bias Can Improve the Performance of Ecological Niche Models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Varela, S.; Anderson, R.P.; García-Valdés, R.; Fernández-González, F. Environmental Filters Reduce the Effects of Sampling Bias and Improve Predictions of Ecological Niche Models. Ecography 2014, 37, 1084–1091. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Ashraf, U.; Peterson, A.T.; Chaudhry, M.N.; Ashraf, I.; Saqib, Z.; Rashid Ahmad, S.; Ali, H. Ecological Niche Model Comparison under Different Climate Scenarios: A Case Study of Olea Spp. in Asia. Ecosphere 2017, 8, e01825. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Diniz-Filho, J.A.F.; Mauricio Bini, L.; Fernando Rangel, T.; Loyola, R.D.; Hof, C.; Nogués-Bravo, D.; Araújo, M.B. Partitioning and Mapping Uncertainties in Ensembles of Forecasts of Species Turnover under Climate Change. Ecography 2009, 32, 897–906. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V. ENMGadgets: Tools for Pre and Post Processing in ENM Workflows. Available online: https://github.com/narayanibarve/ENMGadgets. (accessed on 22 February 2019).
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological Niche Modeling in Maxent: The Importance of Model Complexity and the Performance of Model Selection Criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Velasco, J.A.; González-Salazar, C. Akaike Information Criterion Should Not Be a “Test” of Geographical Prediction Accuracy in Ecological Niche Modelling. Ecol. Inform. 2019, 51, 25–32. [Google Scholar] [CrossRef]
- Gaston, K.J. The Structure and Dynamics of Geographic Ranges; Oxford University Press: Oxford, UK, 2003; ISBN 0-19-852641-5. [Google Scholar]
- Osorio-Olvera, L.; Lira-Noriega, A.; Soberón, J.; Peterson, A.T.; Falconi, M.; Contreras-Díaz, R.G.; Martínez-Meyer, E.; Barve, V.; Barve, N. Ntbox: An r Package with Graphical User Interface for Modelling and Evaluating Multidimensional Ecological Niches. Methods Ecol. Evol. 2020, 11, 1199–1206. [Google Scholar] [CrossRef]
- Owens, H.L.; Campbell, L.P.; Dornak, L.L.; Saupe, E.E.; Barve, N.; Soberón, J.; Ingenloff, K.; Lira-Noriega, A.; Hensz, C.M.; Myers, C.E.; et al. Constraints on Interpretation of Ecological Niche Models by Limited Environmental Ranges on Calibration Areas. Ecol. Model. 2013, 263, 10–18. [Google Scholar] [CrossRef]
- Vilela, B.; Villalobos, F. LetsR: A New R Package for Data Handling and Analysis in Macroecology. Methods Ecol. Evol. 2015, 6, 1229–1234. [Google Scholar] [CrossRef]
- D’Amen, M.; Mateo, R.G.; Pottier, J.; Thuiller, W.; Maiorano, L.; Pellissier, L.; Ndiribe, C.; Salamin, N.; Guisan, A. Improving Spatial Predictions of Taxonomic, Functional and Phylogenetic Diversity. J. Ecol. 2018, 106, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.R. Diversity and Dissimilarity Coefficients: A Unified Approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- de Bello, F.; Carmona, C.P.; Lepš, J.; Szava-Kovats, R.; Pärtel, M. Functional Diversity through the Mean Trait Dissimilarity: Resolving Shortcomings with Existing Paradigms and Algorithms. Oecologia 2016, 180, 933–940. [Google Scholar] [CrossRef]
- Jetz, W.; Pyron, R.A. The Interplay of Past Diversification and Evolutionary Isolation with Present Imperilment across the Amphibian Tree of Life. Nat. Ecol. Evol. 2018, 2, 850–858. [Google Scholar] [CrossRef]
- Pavoine, S.; Vallet, J.; Dufour, A.-B.; Gachet, S.; Daniel, H. On the Challenge of Treating Various Types of Variables: Application for Improving the Measurement of Functional Diversity. Oikos 2009, 118, 391–402. [Google Scholar] [CrossRef]
- Sodhi, N.S.; Bickford, D.; Diesmos, A.C.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Sekercioglu, C.H.; Bradshaw, C.J.A. Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline. PLoS ONE 2008, 3, e1636. [Google Scholar] [CrossRef]
- Oliveira, B.F.; São-Pedro, V.A.; Santos-Barrera, G.; Penone, C.; Costa, G.C. AmphiBIO, a Global Database for Amphibian Ecological Traits. Sci. Data 2017, 4, 170123. [Google Scholar] [CrossRef] [PubMed]
- Jost, L. Partitioning Diversity into Independent Alpha and Beta Components. Ecology 2007, 88, 2427–2439. [Google Scholar] [CrossRef]
- de Bello, F.; Lavergne, S.; Meynard, C.N.; Lepš, J.; Thuiller, W. The Partitioning of Diversity: Showing Theseus a Way out of the Labyrinth. J. Veg. Sci. 2010, 21, 992–1000. [Google Scholar] [CrossRef]
- Vallejos, R.; Osorio, F.; Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables With Applications in R; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Clifford, P.; Richardson, S.; Hemon, D. Assessing the Significance of the Correlation between Two Spatial Processes. Biometrics 1989, 45, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Dutilleul, P.; Clifford, P.; Richardson, S.; Hemon, D. Modifying the t Test for Assessing the Correlation between Two Spatial Processes. Biometrics 1993, 49, 305–314. [Google Scholar] [CrossRef]
- Gotelli, N.J.; McCabe, D.J. Species Co-occurrence: A Meta-analysis of JM Diamond’s Assembly Rules Model. Ecology 2002, 83, 2091–2096. [Google Scholar] [CrossRef]
- Nori, J.; Villalobos, F.; Loyola, R. Global Priority Areas for Amphibian Research. J. Biogeogr. 2018, 45, 2588–2594. [Google Scholar] [CrossRef]
- Ferro, V.G.; Lemes, P.; Melo, A.S.; Loyola, R. The Reduced Effectiveness of Protected Areas under Climate Change Threatens Atlantic Forest Tiger Moths. PLoS ONE 2014, 9, e107792. [Google Scholar] [CrossRef] [PubMed]
- Lemes, P.; Melo, A.S.; Loyola, R.D. Climate Change Threatens Protected Areas of the Atlantic Forest. Biodivers. Conserv. 2014, 23, 357–368. [Google Scholar] [CrossRef]
- Ribeiro, B.R.; Sales, L.P.; de Marco, P.; Loyola, R. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon. PLoS ONE 2016, 11, e0165073. [Google Scholar] [CrossRef]
- Devictor, V.; Mouillot, D.; Meynard, C.; Jiguet, F.; Thuiller, W.; Mouquet, N. Spatial Mismatch and Congruence between Taxonomic, Phylogenetic and Functional Diversity: The Need for Integrative Conservation Strategies in a Changing World. Ecol. Lett. 2010, 13, 1030–1040. [Google Scholar] [CrossRef]
- Safi, K.; Cianciaruso, M.V.; Loyola, R.D.; Brito, D.; Armour-Marshall, K.; Diniz-Filho, J.A.F. Understanding Global Patterns of Mammalian Functional and Phylogenetic Diversity. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2536–2544. [Google Scholar] [CrossRef]
- Buckley, L.B.; Jetz, W. Environmental and Historical Constraints on Global Patterns of Amphibian Richness. Proc. R. Soc. B Biol. Sci. 2007, 274, 1167–1173. [Google Scholar] [CrossRef]
- Lion, M.B.; Mazzochini, G.G.; Garda, A.A.; Lee, T.M.; Bickford, D.; Costa, G.C.; Fonseca, C.R. Global Patterns of Terrestriality in Amphibian Reproduction. Glob. Ecol. Biogeogr. 2019, 28, 744–756. [Google Scholar] [CrossRef]
- Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate Warming and the Decline of Amphibians and Reptiles in Europe. J. Biogeogr. 2006, 33, 1712–1728. [Google Scholar] [CrossRef]
- Redding, D.W.; Mooers, A.O. Incorporating Evolutionary Measures into Conservation Prioritization. Conserv. Biol. 2006, 20, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Weiher, E.; Keddy, P.A. Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos 1995, 74, 159. [Google Scholar] [CrossRef]
- Ochoa-Ochoa, L.M.; Munguía, M.; Lira-Noriega, A.; Sánchez-Cordero, V.; Flores-Villela, O.; Navarro-Sigüenza, A.; Rodríguez, P. Spatial Scale and β-Diversity of Terrestrial Vertebrates in Mexico. Rev. Mex. Biodivers. 2014, 85, 918–930. [Google Scholar] [CrossRef]
- Emerson, B.C.; Gillespie, R.G. Phylogenetic Analysis of Community Assembly and Structure over Space and Time. Trends Ecol. Evol. 2008, 23, 619–630. [Google Scholar] [CrossRef]
- Sobral, F.L.; Cianciaruso, M.V. Functional and Phylogenetic Structure of Forest and Savanna Bird Assemblages across Spatial Scales. Ecography 2016, 39, 533–541. [Google Scholar] [CrossRef]
- Meynard, C.N.; Devictor, V.; Mouillot, D.; Thuiller, W.; Jiguet, F.; Mouquet, N. Beyond Taxonomic Diversity Patterns: How Do α, β and γ Components of Bird Functional and Phylogenetic Diversity Respond to Environmental Gradients across France? Glob. Ecol. Biogeogr. 2011, 20, 893–903. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Enriquez-Urzelai, U.; Bernardo, N.; Moreno-Rueda, G.; Montori, A.; Llorente, G. Are Amphibians Tracking Their Climatic Niches in Response to Climate Warming? A Test with Iberian Amphibians. Clim. Change 2019, 154, 289–301. [Google Scholar] [CrossRef]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.M.; Butchart, S.H.M.; Kovacs, K.M.; Scheffers, B.R.; Hole, D.G.; Martin, T.G.; Akçakaya, H.R.; et al. Assessing Species Vulnerability to Climate Change. Nat Clim. Change 2015, 5, 215–225. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J. Incorporating Uncertainty in Predictive Species Distribution Modelling. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cárdenas, G.; Villaseñor, J.L.; López-Mata, L.; Martínez-Meyer, E.; Ortiz, E. Selection of Environmental Predictors for Species Distribution Modeling in Maxent. Rev. Chapingo Ser. Cienc. For. Ambiente 2014, 20, 188–201. [Google Scholar] [CrossRef]
- Peterson, A.T.; Nakazawa, Y. Environmental Data Sets Matter in Ecological Niche Modelling: An Example with Solenopsis Invicta and Solenopsis Richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making Better MAXENT Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Peterson, A.T.; Cobos, M.E.; Jiménez-García, D. Major Challenges for Correlational Ecological Niche Model Projections to Future Climate Conditions. Ann. N. Y. Acad. Sci. 2018, 1429, 66–77. [Google Scholar] [CrossRef]
- Martinez-Meyer, E. Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in Species’ Potential Distributions. Biodivers. Inform. 2005, 2, 42–55. [Google Scholar] [CrossRef]
- Thuiller, W.; Maiorano, L.; Mazel, F.; Guilhaumon, F.; Ficetola, G.F.; Lavergne, S.; Renaud, J.; Roquet, C.; Mouillot, D. Conserving the Functional and Phylogenetic Trees of Life of European Tetrapods. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140005. [Google Scholar] [CrossRef]
- Nori, J.; Lemes, P.; Urbina-Cardona, N.; Baldo, D.; Lescano, J.; Loyola, R. Amphibian Conservation, Land-Use Changes and Protected Areas: A Global Overview. Biol. Conserv. 2015, 191, 367–374. [Google Scholar] [CrossRef]
- Zupan, L.; Cabeza, M.; Maiorano, L.; Roquet, C.; Devictor, V.; Lavergne, S.; Mouillot, D.; Mouquet, N.; Renaud, J.; Thuiller, W. Spatial Mismatch of Phylogenetic Diversity across Three Vertebrate Groups and Protected Areas in Europe. Divers. Distrib. 2014, 20, 674–685. [Google Scholar] [CrossRef]
- Forest, F.; Grenyer, R.; Rouget, M.; Davies, T.J.; Cowling, R.M.; Faith, D.P.; Balmford, A.; Manning, J.C.; Procheş, Ş.; van der Bank, M.; et al. Preserving the Evolutionary Potential of Floras in Biodiversity Hotspots. Nature 2007, 445, 757–760. [Google Scholar] [CrossRef] [PubMed]
Scenario | TD–PD | F-Stat | TD–FD | F-Stat | PD–FD | F-Stat |
---|---|---|---|---|---|---|
Present | 0.616 *** | 0.611 | 0.500 *** | 0.334 | 0.910 *** | 4.812 |
2050-rcp45 | 0.508 *** | 0.349 | 0.319 * | 0.113 | 0.813 *** | 1.952 |
2050-rcp85 | 0.565 *** | 0.469 | 0.352 ** | 0.142 | 0.784 *** | 1.594 |
2070-rcp45 | 0.790 *** | 1.660 | 0.569 *** | 0.479 | 0.856 *** | 2.747 |
2070-rcp85 | 0.519 *** | 0.370 | 0.056 | 0.003 | 0.633 *** | 0.668 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaño-Quintero, S.M.; Escobar-Luján, J.; Villalobos, F.; Ochoa-Ochoa, L.M.; Yáñez-Arenas, C. Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts. Diversity 2022, 14, 813. https://doi.org/10.3390/d14100813
Castaño-Quintero SM, Escobar-Luján J, Villalobos F, Ochoa-Ochoa LM, Yáñez-Arenas C. Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts. Diversity. 2022; 14(10):813. https://doi.org/10.3390/d14100813
Chicago/Turabian StyleCastaño-Quintero, Sandra Milena, Jazmín Escobar-Luján, Fabricio Villalobos, Leticia Margarita Ochoa-Ochoa, and Carlos Yáñez-Arenas. 2022. "Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts" Diversity 14, no. 10: 813. https://doi.org/10.3390/d14100813