Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
- Existence of a surveillance program against the establishment and spread of Xf;
- Presence of potential vectors of Xf;
- Climate suitability to the establishment and spread of Xf;
- Abundance of alternative hosts;
- Abundance of the main crops (olives, grapevines, Citrus spp., and almonds) in agricultural land;
- Availability of national programs for the certification of the plant propagation material of the main crops.
2.2. Assessment Method for Risk of Xf’s Potential Establishment and Spread
2.3. Estimation Approach of The Potential Socio-Economic Impacts of Xf
2.3.1. Methodological Considerations
2.3.2. Yield Losses Estimation
2.3.3. Economic Assessment Impact
2.3.4. Social Impact Assessment
3. Results
3.1. Risk of Xf’s Potential Establishment and Spread
3.2. Potential Economic Impacts of Xf on Target Crops
3.3. Potential Social Impacts of Xf on Target Crops
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop (as Stated by EFSA 2019) | Estimated Yield Loss (Median) | 90% Uncertainty Range | |
---|---|---|---|
5th Percentile | 95th Percentile | ||
Olive trees younger than 30 years | 34.6% | 14.9% | 59.0% |
Olive trees older than 30 years | 69.1% | 36.3% | 91.9% |
Wine grape in southern EU | 2.1% | 0.5% | 5.6% |
Table grape in southern EU | 1.0% | 0.1% | 3.7% |
Citrus spp. | 10.9% | 0.7% | 30.2% |
Almonds | 13.3% | 3.9% | 22.8% |
Type of Parameter | Indicator Available | Unit | Source | Available Year * |
---|---|---|---|---|
Productivity | Area harvested | Ha | FAOSTAT | To 2019 |
Yield | Hg/Ha | FAOSTAT | To 2019 | |
Production | Tons | FAOSTAT | To 2019 | |
Value of production | Gross production value | USD | FAOSTAT | To 2019 |
Producer prices | USD/tons | FAOSTAT RDP ** | To 2019 2014–2020 | |
Agricultural value-added | Gross margin | EUR/Ha | FADN | 2014–2020 |
Employment | Agricultural employment | Hours/Ha | FADN | To 2018 |
Trade | Import | Tons | FAOSTAT | To 2019 |
Export | Tons | FAOSTAT | To 2019 | |
Consumption | Production import Stock variation export | Tons | FAOSTAT | To 2019 |
References
- McDermott, S.M.; Irwin, R.E.; Taylor, B.W. Using economic instruments to develop effective management of invasive species: Insights from a bioeconomic model. Ecol. Appl. 2013, 23, 1086–1100. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.; Purse, B.; Roy, H.; Bullock, J. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 2017, 26, 907–917. [Google Scholar] [CrossRef]
- Zenni, R.D.; Essl, F.; García-Berthou, E.; McDermott, S.M. The economic costs of biological invasions around the world. NeoBiota 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. IJSB 1987, 37, 136–143. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). Plant Pathol. J. 2013, 95, 659–668. [Google Scholar] [CrossRef]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European and Mediterranean Plant Protection Organization. Xylella fastidiosa detected in Coffea spp. plants imported into Switzerland. EPPO Rep. Serv. 2015, 10, 181. Available online: https://gd.eppo.int/reporting/article-5128 (accessed on 2 January 2020).
- European and Mediterranean Plant Protection Organization. First report of Xylella fastidiosa subsp. fastidiosa on Nerium oleander in Germany. EPPO Report. Serv. 2016, 7, 133. Available online: https://gd.eppo.int/reporting/article-5878 (accessed on 2 January 2020).
- European and Mediterranean Plant Protection Organization. First report of Xylella fastidiosa subsp. multiplex in Portugal. EPPO Report. Serv. 2019, 1, 17. Available online: https://gd.eppo.int/reporting/article-6447 (accessed on 2 January 2020).
- European and Mediterranean Plant Protection Organization. First report of Xylella fastidiosa in Israel. EPPO Report. Serv. 2019, 6, 121. Available online: https://gd.eppo.int/reporting/article-6551 (accessed on 2 January 2020).
- Denancé, N.; Legendre, B.; Briand, M.; Olivier, V.; Boisseson, C.; Poliakoff, F.; Jacques, M.A. Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol. 2017, 66, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Olmo, D.; Nieto, A.; Adrover, F.; Urbano, A.; Beidas, O.; Juan, A.; Marco-Noales, E.; López, M.; Navarro, I.; Monterde, A.; et al. First detection of Xylella fastidiosa on cherry (Prunus avium) and Polygala myrtifolia plants, in Mallorca Island, Spain. Plant Dis. 2017, 101, 1820. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Plant Health. Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 2015, 13, 3989. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Plant Health. Guidance on quantitative pest risk assessment. EFSA J. 2018, 16, 5350. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [Green Version]
- Tatem, A. The worldwide airline network and the dispersal of exotic species: 2007–2010. Ecography 2009, 32, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frem, M.; Chapman, D.; Fucilli, V.; Choueiri, E.; Moujabber, M.E.; Notte, P.L.; Nigro, F. Xylella fastidiosa invasion of new countries in Europe, the Middle East, and North Africa: Ranking the potential exposure scenarios. NeoBiota 2020, 59, 77–97. [Google Scholar] [CrossRef]
- Cardone, G.; Digiaro, M.; Djelouah, K.; El Bilali, H.; Frem, M.; Fucilli, V.; Ladisa, G.; Rota, C.; Yaseen, T. Potential socio-economic impact of Xylella fastidiosa in the Near East and North Africa (NENA): Risk of introduction and spread, risk perception and socio-economic effects. New Medit. 2021, 20, 27–51. [Google Scholar] [CrossRef]
- International Plant Protection Convention. Facing the Threat of Xylella fastidiosa Together. Factsheet; IPPC: Rome, Italy, 2017; Available online: https://www.ippc.int/static/media/uploads/IPPC_factsheet_Xylella_final.pdf (accessed on 3 January 2020).
- Frem, M.; Santeramo, F.G.; Lamonaca, E.; El Moujabber, M.; Choueiri, E.; La Notte, P.; Nigro, F.; Bozzo, F.; Fucilli, V. Landscape restoration due to Xylella fastidiosa invasion in Italy: Assessing the hypothetical public’s preferences. Neobiota 2021, 66, 31–54. [Google Scholar] [CrossRef]
- Frem, M.; Fucilli, V.; Nigro, F.; El Moujabber, M.; Abou Kubaa, R.; La Notte, P.; Bozzo, F.; Choueiri, E. The potential direct economic impact and private management costs of an invasive alien species: Xylella fastidiosa on Lebanese wine grapes. NeoBiota 2021, 70, 43–67. [Google Scholar] [CrossRef]
- Bozzo, F.; Frem, M.; Fucilli, V.; Cardone, G.; Garofoli, P.F.; Geronimo, S.; Petrontino, A. Landscape and vegetation patterns zoning is a methodological tool for management costs implications due to Xylella fastidiosa invasion. Land 2022, 11, 1105. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Pereira, E.F.; Purcell, A.H.; Lopes, J.R.S. Multiplication and movement of a Citrus Strain of Xylella fastidiosa within sweet orange. Plant Dis. 2001, 85, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Li, Y.; Galvani, C.D.; Hao, G.; Turner, J.N.; Burr, T.J.; Hoch, H.C. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 2005, 187, 5560–5567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, S.A. Scion substitution: A new strategy to control citrus variegated chlorosis disease. Plant Dis. 2020, 104, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Barnard, E.L.; Ash, E.C.; Hopkins, D.L.; McGovern, R.J. Distribution of Xylella fastidiosa in Oaks in Florida and its association with growth decline in Quercus laevis. Plant Dis. 1998, 82, 569–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Ferrin, D.M.; Huang, Q. First Report of Xylella fastidiosa associated with Oleander Leaf Scorch in Louisiana. Plant Dis. 2010, 94, 274. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Pria, W.D., Jr.; Teixeira, D.C.; Miranda, V.S.; Ayres, A.J.; Franco, C.F.; Costa, M.G.; He, C.X.; Costa, P.I.; Hartung, J.S. Coffee Leaf Scorch caused by a strain of Xylella fastidiosa from citrus. Plant Dis. 2001, 85, 501–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, A.B.; Hamilton, G.; Vodak, M.; Grabosky, J.; Lashomb, J. Bacterial leaf scorch of oak in New Jersey: Incidence and economic impact. Phytopathology 2004, 94, S36. [Google Scholar]
- Wittwer, G.; McKirdy, S.; Wilson, R. Regional economic impacts of a plant disease incursion using a general equilibrium approach. Aust. J. Agric. Econ. 2005, 49, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Alston, J.M.; Fuller, K.B.; Kaplan, J.D.; Tumber, K.P. Economic consequences of Pierce’s Disease and related policy in the California wine grape industry. J. Agric. Resour. Econ. 2013, 38, 269–297. [Google Scholar]
- Tumber, K.P.; Alston, J.M.; Fuller, K.B. Pierce’s disease costs California $104 million per year. Calif. Agric. 2014, 68, 20–29. [Google Scholar] [CrossRef]
- Hafi, A.; Randall, L.; Arthur, T.; Addai, D.; Tennant, P.; Gomboso, J. Economic Impacts of Xylella fastidiosa on the Australian Wine Grape and Wine-Making Industries; ABARES: Canberra, Australia, 2017. [Google Scholar] [CrossRef]
- Pratt, C.F.; Constantine, K.L.; Murphy, S.T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Sec. 2017, 14, 31–37. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Plant Health. Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 2019, 17, e5665. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation Database. Available online: http://www.fao.org/statistics/databases (accessed on 1 June 2021).
- Regione Sicilia. Rural Development Programme 2014–2020 of Sicilia Region. Resolution No. 55 of 13 February 2020. Available online: https://www.psrsicilia.it/wp-content/uploads/2020/12/Programme_2014IT06RDRP021_9_1_it.pdf (accessed on 16 June 2021).
- Rogg, H.; Buddenhagen, C.; Causton, C. Experiences and limitations with pest risk analysis in the Galapagos Islands. In IPPC Secretariat. Identification of Risks and Management of Invasive Alien Species Using the IPPC Framework, Proceedings of the Workshop on Invasive Alien Species and the International Plant Protection Convention, Section 4.15, Braunschweig, Germany, 22–26 September 2003; FAO: Rome, Italy, 2016; Available online: http://www.fao.org/3/y5968e/y5968e0m.htm (accessed on 2 June 2021).
- Williamson, K. The Delphi method. In Topics in Australasian Library and Information Studies. Research Methods for Students, Academics and Professionals, 2nd ed.; Williamson, K., Bow, A., Burstein, F., Darke, P., Harvey, R., Johanson, G., McKemmish, S., Oosthuizen, M., Saule, S., Schauder, D., et al., Eds.; Chandos Publishing: Oxford, UK, 2002; pp. 209–220. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. OIV Country Profile Database. 2019. Available online: http://www.oiv.int/en/statistiques (accessed on 2 June 2021).
- Kay, R.D.; Edwards, W.M.; Duffy, P.A. Farm Management, 6th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Augusti, E.; Baglini, M. Prontuario Per il Computo Economico-Estimativo dei Prodotti e dei Beni Agricoli; REDA: Torino, Italy, 1992. [Google Scholar]
- Augusti, E.; Baglini, M.; Bartolini, C.; Cosimi, S. Prontuario, Dati Tecnico-Economici Settore Agricoltura; REDA: Torino, Italy, 2008. [Google Scholar]
- Farm Accountancy Data Network (FADN) Database. Available online: https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en (accessed on 21 July 2021).
- World Bank. Employement in Agriculture. Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?view=map (accessed on 21 July 2021).
- Global Food Security Index (GFSI)—Economist Impact. Available online: https://impact.economist.com/sustainability/project/food-security-index/index (accessed on 22 July 2021).
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- United Nations Development Programme. Human Development Reports. Available online: https://hdr.undp.org/data-center/documentation-and-downloads (accessed on 22 July 2021).
- Feil, H.; Purcell, A. Temperature-dependent growth and survival of Xylella fastidiosa in vitro and in potted grapevines. Plant Dis. 2001, 85, 1230–1234. [Google Scholar] [CrossRef] [Green Version]
- Afechtal, M.; Vicent, A.; Saponari, M.; D’Onghia, A.M. Pest Risk Analysis on Xylella fastidiosa in Morocco. J. Plant. Prot. Res. 2018, 58, 215–219. [Google Scholar]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions. 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.P. Xylella fastidiosa: Climate suitability of European continent. Sci. Rep. 2019, 9, 8844. [Google Scholar] [CrossRef] [Green Version]
- Kourantidou, M.; Cuthbert, R.N.; Haubrock, P.J.; Novoa, A.; Taylor, N.G.; Leroy, B.; Capinha, C.; Renault, D.; Angulo, E.; Diagne, C.; et al. Economic costs of invasive alien species in the Mediterranean basin. NeoBiota 2021, 67, 427–458. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Turbelin, A.J.; Cuthbert, R.N.; Novoa, A.; Taylor, N.G.; Angulo, E.; Ballesteros-Mejia, L.; Bodey, T.W.; Capinha, C.; Diagne, C.; et al. Economic costs of invasive alien species across Europe. NeoBiota 2021, 67, 153–190. [Google Scholar] [CrossRef]
- Italia Olivicola. Proposta Per un Piano Straordinario di Riconversione e di Ristrutturazione Degli Oliveti Salentini. Available online: https://www.italiaolivicola.it/wp-content/uploads/2019/02/Studio-piano-xylella.pdf (accessed on 2 January 2020).
- Bové, J.M.; Ayres, A.J. Etiology of three recent diseases of citrus in São Paulo state: Sudden death, variegated chlorosis and Huanglongbing. IUBMB Life 2007, 59, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; van der Werf, W.; Cendoya, M.; Mourits, M.; Navas-Cortés, J.A.; Vicent, A.; Oude Lansink, A. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. USA 2020, 117, 9250–9259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, B.L.; Purcell, A.H. Populations of Xylella fastidiosa in plants required for transmission by an efficient vector. Phytopathology 1997, 87, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
Country | Percentile (in %) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.5 | 5 | 10 | 17 | 25 | 33 | 50 | 67 | 79 | 83 | 90 | 95 | 97.5 | 99 | |
Fitted Establishment and Spread Score Values (Scale Range: 1–6) | |||||||||||||||
1.05 | 1.13 | 1.25 | 1.50 | 1.85 | 2.25 | 2.65 | 3.50 | 4.35 | 4.75 | 5.15 | 5.50 | 5.75 | 5.88 | 5.95 | |
Associated percentage loss in yield based on scale range score | |||||||||||||||
Algeria | 1.70 | ||||||||||||||
Egypt | 2.10 | ||||||||||||||
Libya | 1.40 | ||||||||||||||
Jordan | 1.70 | ||||||||||||||
Tunisia | 3.00 | ||||||||||||||
Morocco | 3.25 | ||||||||||||||
Palestine state | 3.45 | ||||||||||||||
Lebanon | 3.75 | ||||||||||||||
Syria | 4.35 | ||||||||||||||
Albania | 4.80 | ||||||||||||||
Bosnia and Herzegovina | 3.45 | ||||||||||||||
Croatia | 4.00 | ||||||||||||||
France | 4.20 | ||||||||||||||
Greece | 4.50 | ||||||||||||||
Israel | 2.40 | ||||||||||||||
Italy | 4.50 | ||||||||||||||
Montenegro | 4.50 | ||||||||||||||
North Macedonia | 2.50 | ||||||||||||||
Portugal | 4.50 | ||||||||||||||
Serbia | 1.70 | ||||||||||||||
Slovenia | 3.75 | ||||||||||||||
Spain | 4.50 | ||||||||||||||
Turkey | 4.00 | ||||||||||||||
Olive trees (<30 years) | 9.4 | 12.1 | 14.9 | 18.5 | 22.0 | 25.6 | 28.7 | 34.6 | 40.9 | 44.5 | 48.9 | 53.6 | 59.0 | 63.5 | 68.5 |
Olive trees (>30 years) | 24.4 | 30.6 | 36.3 | 43.4 | 49.8 | 55.8 | 60.7 | 69.1 | 76.7 | 80.5 | 84.6 | 88.4 | 91.9 | 94.3 | 96.3 |
Wine grapes | 0.2 | 0.3 | 0.5 | 0.7 | 0.95 | 1.2 | 1.5 | 2.1 | 2.8 | 3.3 | 3.9 | 4.7 | 5.6 | 6.8 | 8.1 |
Table grapes | 0.0 | 0.1 | 0.1 | 0.2 | 0.4 | 0.5 | 0.7 | 1.0 | 1.5 | 1.9 | 2.3 | 2.9 | 3.7 | 4.4 | 5.4 |
Citrus spp. | 0.1 | 0.3 | 0.7 | 1.5 | 2.8 | 4.5 | 6.4 | 10.9 | 16.2 | 19.4 | 23.1 | 26.7 | 30.2 | 32.5 | 34.4 |
Almonds | 1.8 | 2.8 | 3.9 | 5.5 | 7.2 | 8.9 | 10.4 | 13.3 | 16.2 | 17.7 | 19.5 | 21.2 | 22.8 | 24.0 | 25.0 |
Region | Country | Production Loss (Average Values of 2015–2019) | |
---|---|---|---|
In Tons | In USD | ||
European Balkans | Albania | 93,584 | 134,054,631 |
Bosnia and Herzegovina | 633 | 337,761 | |
Croatia | 22,448 | 28,643,729 | |
Montenegro | 2625 | 0 | |
North Macedonia | 6382 | 759,827 | |
Serbia | 889 | 554,609 | |
Slovenia | 2643 | 1.194,567 | |
Subtotal | 129,204 | 165,545,124 | |
European Mediterranean | France | 189,886 | 434,440,258 |
Greece | 1,685,631 | 3,938,480,439 | |
Italy | 2,347,814 | 2,273,802,603 | |
Portugal | 655,615 | 405,854,601 | |
Spain | 6,184,653 | 5,392,861,391 | |
Subtotal | 11,063,653 | 12,445,439,319 | |
MENA | Algeria | 290,334 | 407,274,281 |
Egypt | 492,376 | 174,969,969 | |
Jordan | 67,290 | 87,553,802 | |
Lebanon | 122,114 | 207,477,909 | |
Libya | 41,372 | 41,393,923 | |
Morocco | 917,538 | 585,755,556 | |
Palestine | 34,411 | 68,192,398 | |
Syria | 656,283 | 827,460,116 | |
Tunisia | 547,732 | 308,736,982 | |
Israel | 48,830 | 99,271,118 | |
Turkey | 1,845,693 | 1,727,804,586 | |
Subtotal | 5,063,993 | 4,535,890,640 |
Region | Country | Gross Margin Loss (Average Values of 2015–2019) |
---|---|---|
European Balkans | Albania | 37,028,027 |
Bosnia and Herzegovina | 1,694,147 | |
Croatia | 19,826,607 | |
Montenegro | 1,632,292 | |
North Macedonia | 6,497,631 | |
Serbia | 4,972,013 | |
Slovenia | 5,405,747 | |
Subtotal | 77,057,094 | |
European Mediterranean | France | 260,426,626 |
Greece | 1,097,022,789 | |
Italy | 1,941,725,143 | |
Portugal | 547,338,626 | |
Spain | 4,538,900,744 | |
Subtotal | 8,385,413,928 | |
MENA | Algeria | 184,646,860 |
Egypt | 64,845,989 | |
Jordan | 33,294,057 | |
Lebanon | 73,572,082 | |
Libya | 119,212,449 | |
Morocco | 754,985,614 | |
Palestine | 0 | |
Syria | 0 | |
Tunisia | 646,052,940 | |
Israel | 53,644,139 | |
Turkey | 706,513,255 | |
Subtotal | 2,636,767,384 |
Region | Country | Loss of Production in % (Average Values of 2015–2019) | |
---|---|---|---|
Agriculture Value (in USD, Livestock Excluded) | % | ||
European Balkans | Albania | 1,361,171,800 | 9.85 |
Bosnia and Herzegovina | 1,156,920,400 | 0.03 | |
Croatia | 1,037,008,600 | 2.76 | |
Montenegro | - | - | |
North Macedonia | 791,495,800 | 0.10 | |
Serbia | 3,340,724,000 | 0.02 | |
Slovenia | 361,000,000 | 0.33 | |
Subtotal | 8,048,320,600 | 2.06 | |
European Mediterranean | France | 42,035,106,000 | 1.03 |
Greece | 11,645,832,000 | 33.82 | |
Italy | 30,309,234,000 | 7.50 | |
Portugal | 4,212,530,600 | 9.63 | |
Spain | 31,519,855,200 | 17.11 | |
Subtotal | 119,722,558,200 | 10.40 | |
MENA | Algeria | 16,645,583,600 | 2.45 |
Egypt | 17,512,204,600 | 1.00 | |
Jordan | 1,313,911,200 | 6.66 | |
Lebanon | 2,216,981,200 | 9.36 | |
Libya | - | - | |
Morocco | 8,588,718,000 | 6.82 | |
Palestine | 785,026,400 | 8.69 | |
Syria | - | - | |
Tunisia | 3,091,055,600 | 9.99 | |
Israel | 3,933,751,600 | 2.49 | |
Turkey | 50,437,915,800 | 3.43 | |
Subtotal | 104,585,147,400 | 4.34 |
Index | Partial Index to Social Vulnerability Index | Weight | Palestine | Syria | Egypt | Libya | Tunisia | Jordan | Algeria | Lebanon | Morocco | Turkey | Israel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | |||
1 | Agricultural employment | 0.20 | 6 | 1.2 | 3 | 0.6 | 6 | 1.2 | 5 | 1 | 4 | 0.8 | 2 | 0.4 | 3 | 0.6 | 4 | 0.8 | 6 | 1.2 | 5 | 1.0 | 1 | 0.2 |
2 | GFI affordability | 0.10 | 0.0 | 4 | 0.4 | 3 | 0.3 | 0.0 | 2 | 0.2 | 1 | 0.1 | 1 | 0.1 | 0.0 | 1 | 0.1 | 2 | 0.2 | 1 | 0.1 | |||
GFI availability | 0.10 | 0.0 | 4 | 0.4 | 1 | 0.1 | 0.0 | 3 | 0.3 | 3 | 0.3 | 3 | 0.3 | 0.0 | 3 | 0.3 | 2 | 0.2 | 1 | 0.1 | ||||
GFI quality and safety | 0.05 | 0.0 | 3 | 0.2 | 2 | 0.1 | 0.0 | 2 | 0.1 | 2 | 0.1 | 2 | 0.1 | 0.0 | 2 | 0.1 | 1 | 0.1 | 1 | 0.1 | ||||
GFI—natural resources and resilience | 0.05 | 0.0 | 4 | 0.2 | 3 | 0.2 | 0.0 | 3 | 0.2 | 3 | 0.2 | 4 | 0.2 | 0.0 | 3 | 0.2 | 3 | 0.2 | 3 | 0.2 | ||||
3 | Average size per agr. holding | 0.20 | 5 | 1.0 | 3 | 0.6 | 1 | 0.2 | 1 | 0.2 | 1 | 0.2 | 1 | 0.2 | 1 | 0.2 | 1 | 0.2 | 3 | 0.6 | 3 | 0.6 | 1 | 0.2 |
4 | Gross national income per capita | 0.30 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 | 6 | 1.8 |
Total social vulnerability index | 1 | n.a. | 4.2 | 3.9 | n.a. | 3.6 | 3.1 | 3.3 | n.a. | 4.3 | 4.0 | 2.6 | ||||||||||||
5 | Pest risk (establishment and spread) | - | 3.5 | 4.4 | 2.1 | 1.4 | 3.0 | 1.7 | 1.7 | 3.8 | 3.3 | 4.0 | 2.4 | |||||||||||
6 | Social vulnerability index post-Xf | - | n.a. | 18.1 | 8.1 | n.a. | 10.7 | 5.2 | 5.6 | n.a. | 13.8 | 16.0 | 6.2 |
Index | Partial Index to Social Vulnerability Index | Weight | France | Greece | Italy | Portugal | Spain | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | Risk score | Risk weighted | |||
1 | Agricultural employment | 0.2 | 2 | 0.4 | 4 | 0.8 | 2 | 0.4 | 3 | 0.6 | 2 | 0.4 |
2 | GFI affordability | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 | 1 | 0.1 |
GFI availability | 0.1 | 2 | 0.2 | 2 | 0.2 | 1 | 0.1 | 2 | 0.2 | 2 | 0.2 | |
GFI quality and safety | 0.05 | 1 | 0.05 | 1 | 0.05 | 1 | 0.05 | 1 | 0.05 | 1 | 0.05 | |
GFI—natural resources and resilience | 0.05 | 2 | 0.1 | 3 | 0.15 | 3 | 0.15 | 3 | 0.15 | 2 | 0.1 | |
3 | Average size per agr. holding | 0.2 | 1 | 0.2 | 4 | 0.8 | 2 | 0.4 | 1 | 0.2 | 1 | 0.2 |
4 | Gross national income per capita | 0.3 | 1 | 0.3 | 1 | 0.3 | 1 | 0.3 | 1 | 0.3 | 1 | 0.3 |
Total social vulnerability index | 1 | 1.35 | 2.4 | 1.5 | 1.6 | 1.35 | ||||||
5 | Pest risk (establishment and spread) | 4.2 | 4.5 | 4.5 | 4.5 | 4.5 | ||||||
6 | Social vulnerability index post-Xf | 5.67 | 10.80 | 6.75 | 7.20 | 6.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, G.; Digiaro, M.; Djelouah, K.; Frem, M.; Rota, C.; Lenders, A.; Fucilli, V. Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin. Diversity 2022, 14, 975. https://doi.org/10.3390/d14110975
Cardone G, Digiaro M, Djelouah K, Frem M, Rota C, Lenders A, Fucilli V. Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin. Diversity. 2022; 14(11):975. https://doi.org/10.3390/d14110975
Chicago/Turabian StyleCardone, Gianluigi, Michele Digiaro, Khaled Djelouah, Michel Frem, Cosimo Rota, Alessia Lenders, and Vincenzo Fucilli. 2022. "Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin" Diversity 14, no. 11: 975. https://doi.org/10.3390/d14110975
APA StyleCardone, G., Digiaro, M., Djelouah, K., Frem, M., Rota, C., Lenders, A., & Fucilli, V. (2022). Socio-Economic Risks Posed by a New Plant Disease in the Mediterranean Basin. Diversity, 14(11), 975. https://doi.org/10.3390/d14110975