Genetic Parameters of Reproductive Performances in Hungarian Large White, Landrace, and Their Crossbred F1 Pigs from 2010 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Animal Model
3. Results
3.1. Models’ Fit, Estimated Genetic Parameters of the Best Fitting Model
3.2. Heritability, Maternal Permanent Effect, and Genetic Trends
3.3. Index Weighting Factors, Genetic Correlation, and Index by Breeds
4. Discussion
4.1. Heritability, Permanent Environmental Effect
4.2. Genetic Trends
4.3. Genetic Correlation and Index by Breeds
4.4. Genetic Correlations between the Pure-Bred and Cross-Bred Performances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bidanel, J.P. Biology and genetics of reproduction. In The Genetics of the Pig, 2nd ed.; Rothschild, M.F., Ruvinsky, A., Eds.; CABI International: Wallingford, UK, 2011; pp. 218–241. [Google Scholar]
- Houska, L.; Wolfova, M.; Nagy, I.; Csörnyei, Z.; Komlósi, I. Economic values for traits of pigs in Hungary. Czech J. Anim. Sci. 2010, 55, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Krupa, E.; Krupová, Z.; Wolfová, M.; Žáková, E. Estimation of economic values 235 for traits of pig breeds in different breeding systems: II. Model application to a 236 three-way crossing system. Livest. Sci. 2017, 205, 70–78. [Google Scholar] [CrossRef]
- Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thin, N.H.; Hao, T.V.; Bui, A.P.N. Genetic parameters and litter trait trends of Danish pigs in South Vietnam. Anim. Biosci. 2021, 34, 1903–1911. [Google Scholar] [CrossRef]
- Brascamp, E.W. Selection indices with constraints. Anim. Breed. Abstr. 1984, 54, 645–654. [Google Scholar]
- Suzuki, K.; Kadowaki, H.; Shibata, T.; Uchida, H.; Nishida, A. Selection for daily gain, loin-eye area, backfat thickness and intramuscular fat based on desired gains over seven generations of Duroc pigs. Liv. Prod. Sci. 2005, 97, 193–202. [Google Scholar] [CrossRef]
- Groeneveld, E. PEST Users’ Manual. Institute of Animal Husbandry and Animal Behavior Neustadt, Federal Research Centre: Neustadt/Mariensee, Germany, 1990; pp. 1–80. [Google Scholar]
- Groeneveld, E.; Kovac, M.; Mielenz, N. VCE User’s Guide and Reference Manual, Version 6.0; Institute of Farm Genetics: Neustadt, Germany, 2008; pp. 1–125. [Google Scholar]
- SAS. Statistical Analysis Software; Users’ Guide Statistics Version SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Nath, M.; Singh, B.P.; Kataria, M.C.; Singh, R.V. MIX: A software for construction of multi-trait selection index. In Proceedings of the 7th World’s Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; Available online: http://www.wcgalp.org/system/files/proceedings/2002/mix-software-construction-multi-trait-selection-index.pdf (accessed on 1 August 2022).
- Yamada, Y.; Yakouchi, K.; Ishida, A. Selection index when genetic gains are of primary concern. Japan. J. Genet. 1975, 50, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hungarian Pig Breeders Association. Pig Performance Testing Code; Hungarian Pig Breeders Association: Budapest, Hungary, 2017; pp. 1–39. [Google Scholar]
- Wolf, J.; Žáková, E.; Groeneveld, E. Genetic Parameters for a Joint Genetic Evaluation of Production and Reproduction Traits in Pigs. Czech J. Anim. Sci. 2005, 50, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk, A. Estimates of genetic parameters and genetic gain for reproductive traits in the herd of Polish Landrace sows for the period of 25 years of the breeding work. Arch. Tierz. 2007, 50, 116–124. [Google Scholar]
- Suárez, M.; Hermesch, S.; Braun, J.A.; Graser, H.-U. Estimates of genetic parameters for reproductive traits at different parities in Australian Hyperprolific Large White. In Proceedings of the 16th Conference of the Association for the Advancement of Animal Breeding and Genetics, Noosa Lakes, Australia, 25–28 September 2005; pp. 145–148. Available online: http://www.aaabg.org/livestocklibrary/2005/145suarez.pdf (accessed on 1 August 2022).
- Dube, B.; Mulugeta, S.D.; Dzama, K. Evaluating breeding objectives for sow productivity and production traits in Large White pigs. Liv. Sci. 2013, 157, 9–19. [Google Scholar] [CrossRef]
- Suarez, M.; Hermesch, S.; Braun, J.; Graser, H.-U. Genetic Parameters of Reproductive Traits Recorded at Different Parities in Landrace and Large White Sows. In Proceedings of the thes Pig Genetics Workshop, Armidale, Australia, 17–18 November 2004; pp. 89–98. Available online: http://agbu.une.edu.au/pig_genetics/pdf/2004/Paper_11_MS_repro_2004.pdf (accessed on 1 August 2022).
- Nagyné-Kiszlinger, H.; Farkas, J.; Kövér, G.; Nagy, I. Selection for reproduction traits in Hungarian pig breeding in a two-way cross. Anim. Sci. Pap. Rep. 2013, 31, 315–322. [Google Scholar]
- Krupová, Z.; Krupa, E.; Žáková, E.; Přibyl, J. Selection index for reproduction of Czech Large White and Czech Landrace breeds and the entire population of maternal pig breeds. Res. Pig Breed. 2017, 11, 16–25. [Google Scholar]
- Skorupski, M.T.; Garrick, D.J.; Blair, H.T. Estimates of genetic parameters for production and reproduction traits in three breeds of pigs. N. Zeal. J. Agricul. Res. 1996, 39, 387–395. [Google Scholar] [CrossRef]
- Krupa, E.; Wolf, J. Simultaneous estimation of genetic parameters for production and litter size traits in Czech Large White and Czech Landrace pigs. Czech J. Anim. Sci. 2013, 58, 429–436. [Google Scholar] [CrossRef]
- Chen, P.; Baas, T.J.; Mabry, J.W.; Koehler, K.J.; Dekkers, J.C.M. Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 2003, 81, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chansomboon, C.; Elzo, M.A.; Suwanasopee, T.; Koonawootrittriron, S. Estimation of genetic parameters and trends for weaning-to-first service interval and litter traits in a commercial Landrace-Large White swine population in Northern Thailand. As. Austr. J. Anim. Sci. 2010, 23, 543–555. [Google Scholar] [CrossRef]
- Abell, C.E.; Fernando, R.L.; Serenius, T.V.; Rothschild, M.F.; Gray, K.A.; Stalder, K.J. Genetic relationship between purebred and crossbred sow longevity. J. Anim. Sci. Biotechnol. 2016, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Nakavisut, S.R.; Crump, R.; Suarez, M.; Graser, H.-U. Genetic correlations between the performance of purebred and crossbred pigs. In Proceedings of the 16th Conference of the Association for the Advancement of Animal Breeding and Genetics, Noosa Lakes, Australia, 25–28 September 2005; Volume 16, pp. 99–102. Available online: http://www.aaabg.org/livestocklibrary/2005/099nakavisut.pdf (accessed on 1 August 2022).
Breed/Name | Herds | Sows | Number of Farrowings |
---|---|---|---|
Total | 56 | 27,561 | 73,871 |
Large White | 42 | 16,749 | 50,147 |
Landrace | 23 | 4372 | 12,645 |
F1 | 34 | 6440 | 11,079 |
Model | Traits | Factors (Type) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Animal | Rep | FSA | SWA | FYM | WYM | Breed | Herd | Parity | ||||
NBA | NWE | LWWE | (A) | (R) | (C) | (C) | (F) | (F) | (F) | (F) | (F) | |
1 | x | x | x | x | x | x | x | x | x | |||
2 | x | x | x | x | x | x | x | x | x | x | ||
3 | x | x | x | x | x | x | x | x | x | x | ||
4 | x | x | x | x | x | x | x | x | x | x | x | |
5 | x | x | x | x | x | x | x | x | x | |||
6 | x | x | x | x | x | x | x | x | x | x | ||
7 | x | x | x | x | x | x | x | x |
Group | Trait | Mean | SD | Maximum | Minimum |
---|---|---|---|---|---|
Large White | NBA | 11.23 | 2.81 | 19 | 1 |
NWE | 10.28 | 1.94 | 16 | 1 | |
LWWE | 75.50 | 19.27 | 130 | 5 | |
Landrace | NBA | 11.03 | 2.59 | 19 | 1 |
NWE | 10.34 | 1.71 | 16 | 1 | |
LWWE | 69.76 | 15.38 | 130 | 6 | |
F1 | NBA | 11.16 | 2.80 | 19 | 1 |
NWE | 10.23 | 1.58 | 16 | 1 | |
LWWE | 78.98 | 18.28 | 130 | 6 |
Trait | NBA | NWE | LWWE | ||
---|---|---|---|---|---|
Type | A | 0.20 | 1.45 | ||
Models/log likelihood down | 31.1 | ||||
1 | 154 325 | ||||
2 | 156 095 | Pe | 0.06 | 0.56 | |
3 | 167 132 | 5.66 | |||
4 | 169 370 | ||||
5 | 145 979 | Res | 2.59 | 16.9 | |
6 | 148 224 | 203.8 | |||
7 | 95 842 |
Model | h2 | Pe | ||||
---|---|---|---|---|---|---|
NBA | NWE | LWWE | NBA | NWE | LWWE | |
1 | 0.08 ± 0.004 | 0.07 ± 0.004 | 0.07 ± 0.004 | 0.02 ± 0.003 | ||
2 | 0.08 ± 0.004 | 0.07 ± 0.005 | 0.06 ± 0.004 | 0.01 ± 0.004 | ||
3 | 0.07 ± 0.003 | 0.07 ± 0.003 | 0.13 ± 0.004 | 0.07 ± 0.003 | 0.02 ± 0.003 | 0.02 ± 0.003 |
4 | 0.08 ± 0.002 | 0.06 ± 0.003 | 0.12 ± 0.004 | 0.06 ± 0.002 | 0.02 ± 0.004 | 0.02 ± 0.003 |
5 | 0.08 ± 0.005 | 0.14 ± 0.005 | 0.07 ± 0.005 | 0.02 ± 0.005 | ||
6 | 0.08 ± 0.005 | 0.14 ± 0.005 | 0.06 ± 0.005 | 0.01 ± 0.004 | ||
7 | 0.07 ± 0.004 | 0.13 ± 0.005 | 0.02 ± 0.004 | 0.02 ± 0.005 |
Models | NBA | NWE | LWWE | |||
---|---|---|---|---|---|---|
Pr > |t| | B | Pr > |t| | B | Pr > |t| | B | |
1 | <0.0001 | 0.04 | <0.0001 | 0.02 | ||
2 | <0.0001 | 0.04 | <0.0001 | 0.02 | ||
3 | <0.0001 | 0.04 | <0.0001 | 0.01 | <0.0001 | 0.09 |
4 | <0.0001 | 0.05 | <0.0001 | 0.02 | <0.0001 | 0.1 |
5 | <0.0001 | 0.04 | <0.0001 | 0.1 | ||
6 | <0.0001 | 0.05 | <0.0001 | 0.1 | ||
7 | <0.0001 | 0.01 | <0.0001 | 0.08 |
Models | NBA | NWE | LWWE | |||
---|---|---|---|---|---|---|
Pr > |t| | B | Pr > |t| | B | Pr > |t| | B | |
1 | <0.0001 | −0.02 | 0.04 | 0.003 | ||
2 | <0.0001 | −0.01 | 0.0007 | 0.005 | ||
3 | <0.0001 | −0.02 | 0.005 | 0.004 | 0.5 | −0.02 |
4 | <0.0001 | −0.02 | <0.0001 | 0.006 | 0.3 | 0.02 |
5 | <0.0001 | −0.02 | 0.7 | −0.009 | ||
6 | <0.0001 | −0.01 | 0.1 | 0.03 | ||
7 | 0.001 | 0.005 | 0.6 | −0.01 |
Models | NBA | NWE | LWWE | |||
---|---|---|---|---|---|---|
Pr > |t| | B | Pr > |t| | B | Pr > |t| | B | |
1 | <0.0001 | −0.02 | <0.0001 | −0.02 | ||
2 | <0.0001 | −0.02 | <0.0001 | −0.02 | ||
3 | <0.0001 | −0.02 | <0.0001 | −0.02 | 0.004 | −0.06 |
4 | <0.0001 | −0.01 | <0.0001 | −0.01 | 0.2 | −0.02 |
5 | <0.0001 | −0.02 | <0.0001 | −0.08 | ||
6 | <0.0001 | −0.01 | 0.007 | −0.05 | ||
7 | <0.0001 | −0.02 | 0.002 | −0.06 |
Models | Index |
---|---|
1 | 15.6805 × ebv1 + 26.3388 × ebv2 |
2 | 15.1689 × ebv1 + 25.9797 × ebv2 |
3 | 14.4687 × ebv1 + 11.2599 × ebv2 + 1.7521 × ebv3 |
4 | 13.8544 × ebv1 + 12.3412 × ebv2 + 1.8160 × ebv3 |
5 | 16.8858 × ebv1 + 2.1646 × ebv3 |
6 | 16.2625 × ebv1 + 2.1174 × ebv3 |
7 | 25.2420 × ebv2 + 2.0141 × ebv3 |
Models | Traits | |||
---|---|---|---|---|
Traits | NWE | LWWE | Index | |
1 | NBA | 0.48 | 0.85 | |
NWE | 0.88 | |||
2 | NBA | 0.50 | 0.86 | |
NWE | 0.88 | |||
3 | NBA | 0.48 | 0.32 | 0.74 |
NWE | 0.58 | 0.78 | ||
LWWE | 0.85 | |||
4 | NBA | 0.48 | 0.33 | 0.74 |
NWE | 0.57 | 0.77 | ||
LWWE | 0.86 | |||
5 | NBA | 0.32 | 0.74 | |
LWWE | 0.87 | |||
6 | NBA | 0.37 | 0.77 | |
LWWE | 0.88 | |||
7 | NWE | 0.56 | 0.86 | |
LWWE | 0.91 |
Models | Traits | |||
---|---|---|---|---|
Traits | NWE | LWWE | Index | |
1 | NBA | 0.59 | 0.90 | |
NWE | 0.88 | |||
2 | NBA | 0.60 | 0.91 | |
NWE | 0.88 | |||
3 | NBA | 0.56 | 0.34 | 0.83 |
NWE | 0.31 | 0.68 | ||
LWWE | 0.77 | |||
4 | NBA | 0.56 | 0.33 | 0.83 |
NWE | 0.28 | 0.67 | ||
LWWE | 0.77 | |||
5 | NBA | 0.36 | 0.83 | |
LWWE | 0.82 | |||
6 | NBA | 0.39 | 0.83 | |
LWWE | 0.83 | |||
7 | NWE | 0.28 | 0.76 | |
LWWE | 0.84 |
Models | Traits | |||
---|---|---|---|---|
Traits | NWE | LWWE | Index | |
1 | NBA | 0.40 | 0.85 | |
NWE | 0.82 | |||
2 | NBA | 0.44 | 0.87 | |
NWE | 0.83 | |||
3 | NBA | 0.38 | 0.23 | 0.73 |
NWE | 0.43 | 0.66 | ||
LWWE | 0.81 | |||
4 | NBA | 0.41 | 0.23 | 0.75 |
NWE | 0.38 | 0.66 | ||
LWWE | 0.79 | |||
5 | NBA | 0.20 | 0.73 | |
LWWE | 0.81 | |||
6 | NBA | 0.24 | 0.76 | |
LWWE | 0.81 | |||
7 | NWE | 0.41 | 0.78 | |
LWWE | 0.89 |
Models | Traits | ||
---|---|---|---|
Traits | NWE | LWWE | |
1 | NBA | 0.50 | |
2 | NBA | 0.52 | |
3 | NBA | 0.49 | 0.31 |
NWE | 0.59 | ||
4 | NBA | 0.49 | 0.29 |
NWE | 0.56 | ||
5 | NBA | 0.30 | |
6 | NBA | 0.32 | |
7 | NWE | 0.58 |
Models | Group | Scores |
---|---|---|
1 | Large White | −3.97–190.79 |
Landrace | 13.37–173.78 | |
F1 | 27.74–171.60 | |
2 | Large White | −0.93–188.99 |
Landrace | 17.25–175.70 | |
F1 | 24.88–175.98 | |
3 | Large White | −4.15–175.12 |
Landrace | 18.79–181.15 | |
F1 | 14.63–161.33 | |
4 | Large White | −1.81–178.63 |
Landrace | 23.49–178.71 | |
F1 | 14.66–160.63 | |
5 | Large White | −2.30–179.89 |
Landrace | 18.00–182.61 | |
F1 | 5.22–163.98 | |
6 | Large White | −1.03–187.16 |
Landrace | 22.74–180.79 | |
F1 | 6.51–164.31 | |
7 | Large White | −23.77–172.39 |
Landrace | 37.18–168.76 | |
F1 | 13.14–159.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodak, O.; Nagyne-Kiszlinger, H.; Farkas, J.; Köver, G.; Nagy, I. Genetic Parameters of Reproductive Performances in Hungarian Large White, Landrace, and Their Crossbred F1 Pigs from 2010 to 2018. Diversity 2022, 14, 1030. https://doi.org/10.3390/d14121030
Kodak O, Nagyne-Kiszlinger H, Farkas J, Köver G, Nagy I. Genetic Parameters of Reproductive Performances in Hungarian Large White, Landrace, and Their Crossbred F1 Pigs from 2010 to 2018. Diversity. 2022; 14(12):1030. https://doi.org/10.3390/d14121030
Chicago/Turabian StyleKodak, Oleksandr, Henrietta Nagyne-Kiszlinger, Janos Farkas, György Köver, and Istvan Nagy. 2022. "Genetic Parameters of Reproductive Performances in Hungarian Large White, Landrace, and Their Crossbred F1 Pigs from 2010 to 2018" Diversity 14, no. 12: 1030. https://doi.org/10.3390/d14121030
APA StyleKodak, O., Nagyne-Kiszlinger, H., Farkas, J., Köver, G., & Nagy, I. (2022). Genetic Parameters of Reproductive Performances in Hungarian Large White, Landrace, and Their Crossbred F1 Pigs from 2010 to 2018. Diversity, 14(12), 1030. https://doi.org/10.3390/d14121030