High-Throughput DNA Metabarcoding as an Approach for Ichthyoplankton Survey in Oujiang River Estuary, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. River Estuary Survey and Sample Collection
2.2. Morphological Assessment
2.3. Metabarcoding Assessment
2.3.1. DNA Extraction
2.3.2. PCR Amplification and DNA Sequencing
2.4. Data Analysis
2.4.1. Morphological Data
2.4.2. DNA Metabarcoding Data
3. Results
3.1. Morphology
Species Identification and Composition
3.2. Ichthyoplankton Spatial and Temporal Distribution
3.3. DNA Metabarcoding
3.3.1. Sequencing and Reads Quality
3.3.2. Species Identification and Composition
3.3.3. Ichthyoplankton Community Structure and Diversity Patterns
3.3.4. Comparison of Assessment Tools and Markers
4. Discussion
4.1. Species Identification and Composition
4.2. Ichthyoplankton Community Structure and Diversity Patterns
4.3. Comparison of Assessment Tools
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, L.A.; Richardson, D.E.; Zakharov, E.V.; Hanner, R. Integrating DNA barcoding of fish eggs into ichthyoplankton monitoring programs. Fish. Bull. 2016, 114, 153–165. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Alemany, F.; García, A. A Guide to the Eggs and Larvae of 100 Common Western Mediterranean Sea Bony Fish Species; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7708e.pdf (accessed on 15 April 2016).
- Ellis, J.R.; Milligan, S.P.; Readdy, L.; Taylor, N.; Brown, M.J. Spawning and nursery grounds of selected fish species in UK waters. Sci. Ser. Tech. Rep. 2012, 147, 56. [Google Scholar]
- Gleason, L.U.; Burton, R. High-throughput molecular identification of fish eggs using multiplex suspension bead arrays. Mol. Ecol. Resour. 2012, 12, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Connolly, P.; Nash, R.D.M.; Pawson, M.G.; Alesworth, E.; Coulahan, P.J.; Dickey-Collas, M.; Milligan, S.P.; O’Neill, M.F.; Witthames, P.R.; et al. An application of the annual egg production method to estimate the spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. ICES J. Mar. Sci. 2001, 58, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.J.; Taylor, M.I.; Pereyra, R.; Villasana, M.I.; Rico, C. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol. Ecol. 2005, 14, 879–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, J.B.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Kumar, G.; Kocour, M. Applications of next-generation sequencing in fisheries research: A review. Fish. Res. 2017, 186, 11–22. [Google Scholar] [CrossRef]
- Bucklin, A.; Lindeque, P.K.; Rodriguez-Ezpeleta, N.; Albaina, A.; Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 2016, 38, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Valdez-Moreno, M.; Vásquez-Yeomans, L.; Elias-Gutierrez, M.; Ivanova, N.V.; Hebert, P. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: Potential in fisheries management. Mar. Freshw. Res. 2010, 61, 655–671. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2014, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Beng, K.C.; Tomlinson, K.W.; Shen, X.H.; Surget-Groba, Y.; Hughes, A.C.; Corlett, R.; Slik, J.W.F. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 2016, 6, 24965. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.P.; Port, J.A.; Yamahara, K.M.; Crowder, L.B. Using Environmental DNA to Census Marine Fishes in a Large Mesocosm. PLoS ONE 2014, 9, e86175. [Google Scholar] [CrossRef] [Green Version]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Møller, P.R.; Rasmussen, M.; Willerslev, E. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE 2012, 7, e41732. [Google Scholar] [CrossRef] [PubMed]
- Hänfling, B.; Handley, L.L.; Read, D.S.; Hahn, C.; Li, J.; Nichols, P.; Blackman, R.C.; Oliver, A.; Winfield, I.J. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 2016, 25, 3101–3119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, H.C.; Maddison, B.C.; Middleditch, D.J.; Patmore, J.R.; Gough, K. REVIEW: The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 2014, 51, 1450–1459. [Google Scholar] [CrossRef]
- Deagle, B.E.; Jarman, S.N.; Coissac, E.; Pompanon, F.; Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 2014, 10, 20140562. [Google Scholar] [CrossRef] [Green Version]
- Zukan, N. An Atlas of the Early-Stage Fishes in Japan; Okiyama, M., Ed.; University of Tokyo Press: Tokyo, Japan, 1989. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High throughput Sequence Data Babraham Bioinformatics. 2010. Available online: https://doi.org/citeulike-article-id:11583827 (accessed on 20 October 2017).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high- throughput community sequencing data Intensity normal-ization improves color calling in SOLiD sequencing. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.C. Entrez Qiime: A Utility for Generating QIIME Input Files from the NCBI Databases. 2017. Available online: https://zenodo.org/record/159607#.Y3mh5HZBw2w (accessed on 26 October 2017).
- Froese, R.; Papasissi, C. The use of modern relational databases for identification of fish larvae. J. Appl. Ichthyol. 1990, 6, 37–45. [Google Scholar] [CrossRef]
- Ko, H.-L.; Wang, Y.-T.; Chiu, T.-S.; Lee, M.-A.; Leu, M.-Y.; Chang, K.-Z.; Chen, W.-Y.; Shao, K.-T. Evaluating the Accuracy of Morphological Identification of Larval Fishes by Applying DNA Barcoding. PLoS ONE 2013, 8, e53451. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.E.; Bond, C.E. Methods for Fish Biology, Taxonomic Methods: Morphology; Moyle, P., Schreck, C., Eds.; American Fisheries Society: Bethesda, MD, USA, 1971; pp. 109–140. [Google Scholar]
- Lin, H.-Y.; Chiu, M.-Y.; Shih, Y.-M.; Chen, I.-S.; Lee, M.-A.; Shao, K.-T. Species composition and assemblages of ichthyoplankton during summer in the East China Sea. Cont. Shelf Res. 2016, 126, 64–78. [Google Scholar] [CrossRef]
- Zhou, M.; Lin, Y.; Yang, S.; Cao, W.; Zheng, L. Ecological distribution of ichthyoplankton around Oujiang estuary in spring and autumn in 2015. J. Mar. Sci. 2015, 30, 94–105. [Google Scholar]
- Zhou, Y.D.; Jin, H.W.; Zhang, H.L.; Jiang, R.J.; Pan, G.L. The category composition and abundance distributions of ichthyoplankton along the north central coast of Zhejiang province in spring and summer. J. Fish. China 2011, 35, 880–889. [Google Scholar] [CrossRef]
- Wan, R.J.; Zeng, D.Y.; Bian, X.D.; Ni, X.B. Species composition and abundance distribution pattern of ichthyoplankton and their relationship with environmental factors in the East China Sea ecosystem. J. Fish. China 2015, 38, 1375–1398. [Google Scholar] [CrossRef]
- Zhou, M.; Lin, Y.; Yang, S.; Cao, W.; Zheng, L. Composition and ecological distribution of ichthyoplankton in eastern Beibu Gulf. Acta Oceanol. Sin. 2011, 30, 94–105. [Google Scholar] [CrossRef]
- Andruszkiewicz, E.A.; Starks, H.A.; Chavez, F.P.; Sassoubre, L.M.; Block, B.A.; Boehm, A.B. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 2017, 12, e0176343. [Google Scholar] [CrossRef] [Green Version]
- Cowart, D.A.; Pinheiro, M.; Mouchel, O.; Maguer, M.; Grall, J.; Miné, J.; Arnaud-Haond, S. Metabarcoding Is Powerful yet Still Blind: A Comparative Analysis of Morphological and Molecular Surveys of Seagrass Communities. PLoS ONE 2015, 10, e0117562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, Y.; Nakata, H. Effect of the mesoscale hydrographic features on larval fish distribution across the shelf break of East China Sea. Cont. Shelf Res. 2007, 27, 1616–1628. [Google Scholar] [CrossRef]
- Leray, M.; Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 2076–2081. [Google Scholar] [CrossRef] [Green Version]
- Lindeque, P.; Parry, H.E.; Harmer, R.A.; Somerfield, P.; Atkinson, A. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages. PLoS ONE 2013, 8, e81327. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.L.; Clarke, L.J.; Wedderburn, S.D.; Barnes, T.C.; Weyrich, L.S.; Cooper, A. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 2016, 197, 131–138. [Google Scholar] [CrossRef]
Fish Eggs | Fish Larvae | |||||
---|---|---|---|---|---|---|
Number of Species | Number of Eggs | Average Density Eggs/100 m3 | Number of Species | Number Larvae | Average Density Larvae/100 m3 | |
April | 0 | 0 | 0 | 9 | 71 | 1.82 |
May | 7 | 184 | 5.27 | 15 | 1997 | 46.65 |
June | 4 | 1585 | 24.33 | 13 | 18,882 | 299.89 |
July | 3 | 332 | 4.26 | 17 | 5054 | 66 |
August | 3 | 361 | 5.19 | 12 | 1672 | 21.32 |
Total | 9 | 2462 | 7.84 | 36 | 27,676 | 87.1 |
OTU Statistics | OTU Diversity and Abundance | |||||
---|---|---|---|---|---|---|
Sample | Number of Clean Reads | Number of OTUs | Identified OTUs (%) | Chao1 | Simpson | Shannon |
F5 (4) | 57,291/39,856 | 201/116 | 99.94/2.40 | 236.04/136.31 | 0.79/0.11 | 2.97/0.61 |
F3 (5) | 35,468/37,845 | 126/137 | 99.99/83.10 | 198.06/168.32 | 0.19/0.46 | 0.79/1.54 |
F5 (7) | 19,155 | 165 | 99.94 | 201.12 | 0.83 | 3.32 |
F5 (8) | 32,023/10,867 | 124/98 | 99.95/5.90 | 148.23/205.63 | 0.59/0.25 | 1.94/1.2 |
F3 (4) | 3559/21,629 | 128/73 | 99.99/97.7 | 179.75/143.2 | 0.57/0.17 | 1.75/0.8 |
F3 (6) | 15,119/11,770 | 69/119 | 99.99/35.70 | 128.5/150.71 | 0.14/0.54 | 0.58/1.86 |
F2 (5) | 49,057/5850 | 175/105 | 99.98/55.00 | 246.32/150.56 | 0.68/0.74 | 2.15/2.85 |
F2 (6) | 24,758/8542 | 118/88 | 99.98/21.00 | 151.79/113 | 0.55/0.41 | 1.74/1.65 |
F2 (7) | 92,620/13,868 | 184/54 | 99.99/9.30 | 203.12/67.2 | 0.66/0.27 | 2.24/1.11 |
F3 (7) | 67,985 | 214 | 99.99 | 254.53 | 0.74 | 2.42 |
F3 (8) | 21,767/7532 | 191/62 | 99.97/94.60 | 262.36/83.11 | 0.81/0.27 | 2.92/1.19 |
F4 (5) | 56,326/9371 | 174/77 | 100/97.90 | 244/100.21 | 0.69/0.63 | 2.29/2 |
F4 (6) | 17,017 | 117 | 100 | 247.71 | 0.42 | 1.67 |
F4 (7) | 49,670/10,904 | 96/31 | 100/98.00 | 137.35/41.5 | 0.02/0.12 | 0.15/0.57 |
F4 (8) | 10,946 | 53 | 100 | 80.08 | 0.04 | 0.23 |
F9 (5) | 31,835 | 135 | 100 | 227.81 | 0.32 | 1.14 |
F9 (6) | 17,341/11,816 | 154/86 | 99.98/12.90 | 197.56/123.19 | 0.7/0.32 | 2.82/1.25 |
F9 (7) | 38,062/90,137 | 137/213 | 99.99/34.30 | 168.95/228.4 | 0.71/0.56 | 2.32/1.9 |
F7 (4) | 14,804/15,338 | 98/47 | 100/18.10 | 152.38/58.25 | 0.77/0.34 | 2.41/1.33 |
F7 (8) | 11,196/21,467 | 111/34 | 99.95/3.20 | 144/45 | 0.61/0.08 | 2.35/0.39 |
F7 (6) | 45,304/14,296 | 131/61 | 100/18.20 | 136.83/70 | 0.68/0.34 | 2.18/1.25 |
F9 (8) | 14,553/9977 | 167/94 | 99.60/9.90 | 238.5/172 | 0.71/0.26 | 2.88/1.2 |
F5 (5) | 12,316 | 98 | 5.30 | 112.29 | 0.24 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Lusana, J.L.; Chen, Y. High-Throughput DNA Metabarcoding as an Approach for Ichthyoplankton Survey in Oujiang River Estuary, China. Diversity 2022, 14, 1111. https://doi.org/10.3390/d14121111
Jiang R, Lusana JL, Chen Y. High-Throughput DNA Metabarcoding as an Approach for Ichthyoplankton Survey in Oujiang River Estuary, China. Diversity. 2022; 14(12):1111. https://doi.org/10.3390/d14121111
Chicago/Turabian StyleJiang, Rijin, James Leonard Lusana, and Yongjiu Chen. 2022. "High-Throughput DNA Metabarcoding as an Approach for Ichthyoplankton Survey in Oujiang River Estuary, China" Diversity 14, no. 12: 1111. https://doi.org/10.3390/d14121111
APA StyleJiang, R., Lusana, J. L., & Chen, Y. (2022). High-Throughput DNA Metabarcoding as an Approach for Ichthyoplankton Survey in Oujiang River Estuary, China. Diversity, 14(12), 1111. https://doi.org/10.3390/d14121111