Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Root Analysis
2.3. Molecular Analysis
2.4. OTU Delimitation
2.5. Data Analysis
2.6. Phylogenetic Analysis and OTU Delimitations of Orchid Mycorrhizal Fungi
3. Results
3.1. Diversity of Mycorrhizal and Root-Associated Endophytic Fungi
3.2. Ecological Roles (Trophic Guilds)
3.3. Phylogenetic Analysis of the Orchid Mycorrhizal Fungi
4. Discussion
4.1. Richness of Mycorrhizal and Endophytic Fungi
4.2. Richness of Orchid Mycorrhizal Fungi
4.3. Ecological Roles (Trophic Guilds)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brundrett, M.C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef] [PubMed]
- Selosse, M.A.; Petrolli, R.; Mujica, M.I.; Laurent, L.; Perez-Lamarque, B.; Figura, T.; Bourceret, A.; Jacquemyn, H.; Li, T.; Gao, J.; et al. The Waiting Room Hypothesis revisited by orchids: Were orchid mycorrhizal fungi recruited among root endophytes? Ann. Bot. 2022, 129, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Petrolli, R.; Augusto Vieira, C.; Jakalski, M.; Bocayuva, M.F.; Vallé, C.; Cruz, E.D.S.; Selosse, M.A.; Martos, F.; Kasuya, M.C.M. A Fine-Scale Spatial Analysis of Fungal Communities on Tropical Tree Bark Unveils the Epiphytic Rhizosphere in Orchids. New Phytol. 2021, 231, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- Herrera, H.; Valadares, R.; Contreras, D.; Bashan, Y.; Arriagada, C. Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 2017, 27, 175–188. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. Micorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008; ISBN 9780123705266. [Google Scholar]
- Yeh, C.M.; Chung, K.M.; Liang, C.K.; Tsai, W.C. New insights into the symbiotic relationship between orchids and fungi. Appl. Sci. 2019, 9, 585. [Google Scholar] [CrossRef] [Green Version]
- Fochi, V.; Chitarra, W.; Kohler, A.; Voyron, S.; Singan, V.R.; Lindquist, E.A.; Barry, K.W.; Girlanda, M.; Grigoriev, I.V.; Martin, F.; et al. Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 2017, 213, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Kang, J.; Nontachaiyapoom, S.; Wen, T.; Hyde, K.D. Non-mycorrhizal endophytic fungi from orchids. Curr. Sci. 2015, 109, 72–87. [Google Scholar] [CrossRef]
- Dearnaley, J.D.W.; Martos, F.; Selosse, M.A. Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In Fungal Associations; Hock, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 207–230. ISBN 978-3-642-30825-3. [Google Scholar]
- Givnish, T.J.; Spalink, D.; Ames, M.; Lyon, S.P.; Hunter, S.J.; Zuluaga, A.; Iles, W.J.D.; Clements, M.A.; Arroyo, M.T.K.; Leebens-Mack, J.; et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151553. [Google Scholar] [CrossRef]
- Millner, H.J.; Bachman, S.P.; Baldwin, T.C. An assessment of the conservation status of Restrepia (Orchidaceae) reveals the threatened status of the genus. Plant Ecol. Divers. 2020, 13, 115–131. [Google Scholar] [CrossRef]
- Fay, M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018, 59, 16. [Google Scholar] [CrossRef] [Green Version]
- Tropicos. Available online: https://tropicos.org (accessed on 28 January 2022).
- Arditti, J.; Ghani, A.K.A. Numerical and Physical Properties of Orchid Seeds and Their Biological Implications. New Phytol. 2000, 145, 367–421. [Google Scholar] [CrossRef] [Green Version]
- Cevallos, S.; Herrera, P.; Sánchez-Rodríguez, A.; Declerck, S.; Suárez, J.P. Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecol. 2018, 34, 67–75. [Google Scholar] [CrossRef]
- Maldonado, G.P.; Yarzábal, L.A.; Cevallos-Cevallos, J.M.; Chica, E.J.; Peña, D.F. Root endophytic fungi promote in vitro seed germination in Pleurothallis coriacardia (Orchidaceae). Lankesteriana 2020, 20, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Suárez, J.P.; Weiß, M.; Abele, A.; Garnica, S.; Oberwinkler, F.; Kottke, I. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol. Res. 2006, 110, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, W.; Wu, S.; Selosse, M.A.; Gao, J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Front. Plant Sci. 2021, 12, 820. [Google Scholar] [CrossRef]
- Cevallos, S.; Sánchez-Rodríguez, A.; Decock, C.; Declerck, S.; Suárez, J.P. Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids? Mycorrhiza 2017, 27, 225–232. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B.; Bolchacova, E.; Voigt, K.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Novotná, A.; Benítez, Á.; Herrera, P.; Cruz, D.; Filipczyková, E.; Suárez, J.P. High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience 2018, 59, 24–32. [Google Scholar] [CrossRef]
- Riofrío, L.R.; Naranjo, C.N.; Iriondo, J.M.I.; Torres, E.T. Spatial structure of Pleurothallis, Masdevallia, Lephanthes and Epidendrum epiphytic orchids in a fragment of montane cloud forest in South Ecuador. Lankesteriana 2007, 7, 102–106. [Google Scholar] [CrossRef]
- Bendix, J.; Rollenbeck, R.; Richter, M.; Fabian, P.; Emck, P. Climate. In Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies, No. 198; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Springer: Heidelberg, Germany, 2008; pp. 63–73. [Google Scholar]
- Turenne, C.; Sanche, S.; Hoban, D.; Karlowsky, J.; Kabani, A. Rapid Identification of Fungi by Using the ITS2 Genetic Region and an Automated Fluorescent Capillary Electrophoresis System. J. Clin. Microbiol. 1999, 37, 1846–1851. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomial RNA genes for phyologenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D., Sninsky, J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Jacquemyn, H.; Brys, R.; Merckx, V.S.F.T.; Waud, M.; Lievens, B.; Wiegand, T. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol. 2014, 202, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Waud, M.; Lievens, B.; Brys, R. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann. Bot. 2016, 118, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waud, M.; Busschaert, P.; Ruyters, S.; Jacquemyn, H.; Lievens, B. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Mol. Ecol. Resour. 2014, 14, 679–699. [Google Scholar] [CrossRef] [PubMed]
- Waud, M.; Wiegand, T.; Brys, R.; Lievens, B.; Jacquemyn, H. Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytol. 2016, 211, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- BLAST. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 2 January 2021).
- MYCOBANK. Available online: http://www.mycobank.org/quicksearch.aspx (accessed on 2 January 2021).
- Colwell, R. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Versión 9. [On line]. 2013. Available online: http://purl.oclc.org/estimates (accessed on 10 May 2020).
- Jiménez-Valverde, A.; Hortal, J. Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev. Ibérica Aracnol. 2003, 8, 151–161. [Google Scholar]
- FunGuild. Available online: http://www.funguild.org (accessed on 10 January 2021).
- Suárez, J.P.; Weiß, M.; Abele, A.; Oberwinkler, F.; Kottke, I. Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol. Prog. 2008, 7, 75–85. [Google Scholar] [CrossRef]
- Kottke, I.; Suárez, J.P.; Herrera, P.; Cruz, D.; Bauer, R.; Haug, I.; Garnica, S. Atractiellomycetes belonging to the “rust” lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc. R. Soc. 2010, 277, 1289–1298. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Whelan, S.; Liò, P.; Goldman, N. Molecular phylogenetics: State-of-the-art methods for looking into the past. Trends Genet. 2001, 17, 262–272. [Google Scholar] [CrossRef]
- Douady, C.J.; Delsuc, F.; Boucher, Y.; Doolittle, W.F.; Douzery, E.J.P. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 2003, 20, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huelsenbeck, J.P.; Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 2004, 53, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, P.; Kottke, I.; Molina, M.C.; Méndez, M.; Suárez, J.P. Generalism in the interaction of Tulasnellaceae mycobionts with orchids characterizes a biodiversity hotspot in the tropical Andes of Southern Ecuador. Mycoscience 2018, 59, 38–48. [Google Scholar] [CrossRef]
- FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 1 June 2021).
- Göker, M.; García-Blazquez, G.; Voglmayr, H. Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PLoS ONE 2009, 4, e6319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedersoo, L.; Nilsson, R.H.; Abarenkov, K.; Jairus, T.; Sadam, A.; Saar, I. Methods 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 2010, 188, 291–301. [Google Scholar] [CrossRef]
- Pellegrino, G.; Luca, A.; Bellusci, F. Relationships between orchid and fungal biodiversity: Mycorrhizal preferences in Mediterranean orchids. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2014, 3504, 180–189. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Deja, A.; de Hert, K.; Cachapa Bailarote, B.; Lievens, B. Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species. PLoS ONE 2012, 7, e42212. [Google Scholar] [CrossRef] [Green Version]
- McCormick, M.; Whigham, D.; Sloan, D.; O’Malley, K.; Hodkinson, B. Orchid–fungus fidelity: A marriage meant to last? Ecology 2006, 87, 903–911. [Google Scholar] [CrossRef]
- Qin, J.; Feng, J.Q.; Zhang, W.; Zhang, S.B. Mycorrhizal fungal partners remain constant during a root lifecycle of Pleione bulbocodioides (Orchidaceae). J. Fungi 2021, 7, 994. [Google Scholar] [CrossRef]
- Herrera-Rus, I.; Pastor, J.E.; Juan, R. Fungal colonization associated with phenological stages of a photosynthetic terrestrial temperate orchid from the Southern Iberian Peninsula. J. Plant Res. 2020, 133, 807–825. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Yokoya, K.; Kendon, J.P.; Sarasan, V. Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics. PeerJ 2020, 8, e8695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottke, I.; Setaro, S.; Haug, I.; Herrera, P.; Cruz, D.; Fries, A.; Gawlik, J.; Homeier, J.; Werner, F.A.; Gerique, A.; et al. Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities. In Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2013; Volume 221, pp. 187–203. ISBN 978-3-642-38136-2. [Google Scholar]
- Suárez, J.P.; Kottke, I. Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forest of Ecuador. Lankesteriana 2016, 16, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Riofrío, M.L.; Cruz, D.; Torres, E.; de la Cruz, M.; Iriondo, J.M.; Suárez, J.P. Mycorrhizal preferences and fine spatial structure of the epiphytic orchid Epidendrum rhopalostele. Am. J. Bot. 2013, 100, 2339–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, P.; Suárez, J.P.; Sánchez-Rodríguez, A.; Molina, M.C.; Prieto, M.; Méndez, M. Many broadly-shared mycobionts characterize mycorrhizal interactions of two coexisting epiphytic orchids in a high elevation tropical forest. Fungal Ecol. 2019, 39, 26–36. [Google Scholar] [CrossRef]
- Garnica, S.; Riess, K.; Schön, M.E.; Oberwinkler, F.; Setaro, S.D. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage. PLoS ONE 2016, 11, e0149531. [Google Scholar] [CrossRef]
- Weiß, M.; Waller, F.; Zuccaro, A.; Selosse, M.-A. Sebacinales—One thousand and one interactions with land plants. New Phytol. 2016, 211, 20–40. [Google Scholar] [CrossRef]
- Cruz, D.J.; Suárez, J.P.; Kottke, I.; Piepenbring, M. Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella. Mycologia 2014, 106, 708–722. [Google Scholar] [CrossRef]
- Pandey, M.; Sharma, J.; Taylor, D.L.; Yadon, V.L. A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol. Ecol. 2013, 22, 2341–2354. [Google Scholar] [CrossRef]
- Mujica, M.I.; Saez, N.; Cisternas, M.; Manzano, M.; Armesto, J.J.; Pérez, F. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Ann. Bot. 2016, 118, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, P.; Torres, C. Determinación y comparación de microhongos del suelo de un bosque húmedo premontano en Dagua, Valle del Cauca. Rev. Cienc. 2016, 20, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, J.; Martin, J.; Angulo, D.; Barbosa, J.; Perea, R.; Arias, R.; Dirzo, R. Community composition and diversity of Neotropical root-associated fungi in common and rare trees. Biotropica 2018, 50, 694–703. [Google Scholar] [CrossRef]
- Illyés, Z.; Halász, K.; Rudnóy, S.; Ouanphanivanh, N.; Garay, T.; Bratek, Z. Changes in the Diversity of the Mycorrhizal Fungi of Orchids as a Function of the Water Supply of the Habitat. J. Appl. Bot. Food Qual. 2009, 83, 28–36. [Google Scholar]
- Oliveira, S.F.; Bocayuva, M.F.; Veloso, T.G.R.; Bazzolli, D.M.S.; da Silva, C.C.; Pereira, O.L.; Kasuya, M.C.M. Endophytic and mycorrhizal fungi associated with roots of endangered native orchids from the Atlantic Forest, Brazil. Mycorrhiza 2014, 24, 55–64. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.-H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T.; et al. The UNITE database for molecular identification of fungi recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevallos, S.; Herrera, P.; Vélez, J.; Suárez, J.P. Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador. Diversity 2022, 14, 478. https://doi.org/10.3390/d14060478
Cevallos S, Herrera P, Vélez J, Suárez JP. Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador. Diversity. 2022; 14(6):478. https://doi.org/10.3390/d14060478
Chicago/Turabian StyleCevallos, Stefania, Paulo Herrera, Johanna Vélez, and Juan Pablo Suárez. 2022. "Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador" Diversity 14, no. 6: 478. https://doi.org/10.3390/d14060478
APA StyleCevallos, S., Herrera, P., Vélez, J., & Suárez, J. P. (2022). Root-Associated Endophytic and Mycorrhizal Fungi from the Epiphytic Orchid Maxillaria acuminata in a Tropical Montane Forest in Southern Ecuador. Diversity, 14(6), 478. https://doi.org/10.3390/d14060478