Progress on Geographical Distribution, Driving Factors and Ecological Functions of Nepalese Alder
Abstract
:1. Introduction
2. Data and Methods
2.1. Literature Collection
2.2. Geographic Data Analysis
2.3. Bibliometrics Analysis
3. Geographic Distribution of Nepalese Alder and Corresponding Limiting Factors
4. Development History of Nepalese Alder
5. Growth Limiting Factors and Sustainable Utilization of Nepalese Alder
5.1. Growth Limiting Factors of Nepalese Alder
5.2. Physio–Ecological Characteristics and Ecological Functions of Nepalese Alder
5.2.1. Soil Improvement
5.2.2. Effect of Nepalese Alder on Other Plants
5.2.3. Frankia Infection
6. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Forestry and Grassland Bureau of Lanping County. Series of Cultivation Techniques of Main Silvicultural Tree Species in Yunnan Forest Industry (Alnus nepalensis). Available online: https://www.lanping.gov.cn/xxgk/015280551/info/2016-96381.html (accessed on 30 October 2022).
- Zhang, P.C.; Zhang, Y.P.; Yang, G.P.; Zheng, Z.; Liu, Y.H.; Tan, Z.H. Carbon storage and sequestration of tree layer in subtropical evergreen broadleaf forests in Ailao Mountain of Yunnan. Chin. J. Ecol. 2010, 29, 1047–1053. [Google Scholar]
- Zhou, G.L.; Yang, C.H. Alnus nepalensis. Guizhou For. Sci. Technol. 1988, 1, 93–95. [Google Scholar]
- Yang, C.H. Alnus nepalensis. Soil Water Conserv. China 1990, 6, 41–42. [Google Scholar]
- Wang, J.H.; Gu, W.C.; Li, B.; Guo, W.Y.; Xia, L.F. Study on selection of Alnus cremastogyne provenance/ family—Analysis of growth adaptation and genetic atability. Sci. Silvae Sin. 2000, 36, 59–66. [Google Scholar]
- Varghese, R.; Chauhan, V.S.; Misra, A.K. Evolutionary implications of nucleotide sequence relatedness between Alnus nepalensis and Alnus glutinosa and also between corresponding Frankia micro symbionts. Plant Soil 2003, 254, 219–227. [Google Scholar] [CrossRef]
- Chaudhry, S.; Singh, S.P.; Singh, J.S. Performance of Seedlings of Various Life Forms on Landslide-Damaged Forest Sites in Central Himalaya. J. Appl. Ecol. 1996, 33, 109–117. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Pandey, S. Role of Alnus nepalensis in Restoring Soil Fertility: A Case Study in Mokokchung, Nagaland. Natl. Acad. Sci. Lett. 2018, 41, 265–268. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Gui, H.; Xu, J.; Zhang, C.; Barrios, E.; Hyde, K.D. Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Appl. Soil Ecol. 2015, 96, 25–32. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, R.; Sharma, E.; Singh, K.K. Performance of an age series of Alnus-cardamom plantations in the Sikkim Himalaya: Nutrient dynamics. Ann. Bot. 2002, 89, 273–282. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, E.; Sharma, R.; Singh, K.K. Performance of an age series of alnus-cardamom plantations in the Sikkim Himalaya: Productivity, energetics and efficiencies. Ann Bot. 2002, 89, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Guan, X.Y.; Chang, N.N.; Wang, Q.H.; Shu, L.F. Comparative study on combustion characteristics of different size live ranches of Alnus nepalensis. J. Cent. South Univ. For. Technol. 2011, 31, 61–64. [Google Scholar]
- Tang, H.Y.; Xu, L.P.; Li, S.F.; Huang, X.B.; Yang, L.H. Effects of simulated nitrogen deposition on the growth, twig and leaf traits of Alnus nepalensis seedlings in the southern subtropical region. J. Northwest For. Univ. 2018, 33, 162–166. [Google Scholar]
- Liu, Z.N. Effects of nitrogen and phosphorus stress on physiological indexes response and changes of mixed planting seedlings of pinus yunnanensis and Alnus nepalensis. For. Inventory Plan. 2019, 44, 225–230. [Google Scholar]
- Noshiro, S.; Suzuki, M.; Joshi, L.; Ikeda, H.; Ohba, H. Ecological wood anatomy of Alnus nepalensis (Betulaceae) throughout Nepal. Iawa J. 2020, 41, 261–277. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, R.; Sharma, E. Impact of altitudinal gradients on energetics and efficiencies of N2 -fixation in alder–cardamom agroforestry systems of the eastern Himalayas. Ecol. Res. 2010, 25, 1–12. [Google Scholar] [CrossRef]
- Zhao, Z.H. Effect of Fertilization in Late-Season on Physiological Growth of Alnus formosana (Burkill) Makino; Guangxi University: Guangxi, China, 2020. [Google Scholar]
- Zhang, Y.N. Effect of Environmental Factors on Seed Germination and Seedling Growth of the Wetland Plant Alnus trabeculosa; Central China National University: Wuhan, China, 2011. [Google Scholar]
- Yunnan Institute of Forestry Science. Alnus nepalensis. J. West China For. Sci. 1975, 18–19. Available online: https://www.oriprobe.com/journals/caod_2440.html (accessed on 30 October 2022).
- Guo, L.Q.; Wang, Q.H.; Zhou, H.C.; Yang, W. Rainfall interception of forest plants of main forest types in central Yunnan plateau. Yunnan For. Sci. Tech. 1999, 1, 13–22. [Google Scholar]
- Yang, L.P.; Ye, Q.Y.; Yang, S.H.; Wang, B.R. The features of Alnus nepalensis community in phosphate mining wasteland and its role in vegetation restoration. J. Yunnan Univ. 2004, 26, 234–237. [Google Scholar]
- Zhou, Q.H.; Duan, X.M.; Yue, F. Effects of Alnus nepalensis plantation on soil physical and chemical properties in the cutting area of Kunming phosphate mine. Jiangsu Agric. Sci. 2012, 40, 324–325. [Google Scholar]
- Li, M.P.; Liao, N.; Liu, S.R. Effect of nitrogen-fixing tree species Alnus nepalensis on the degraded soils and understory restoration in the upper reaches of the Jinsha River, China. Acta Ecol. Sin. 2022, 42, 2321–2330. [Google Scholar]
- Zhao, C.; He, L.P.; Li, G.X.; Shao, J.P.; Chai, Y. Impacts of vegetation restoration on the soil organic carbon storage in Kunyang phosphorite mine. Res. Soil Water Conserv. 2017, 24, 168–171. [Google Scholar]
- Noshiro, S.; Joshi, L.; Suzuki, M. Ecological wood anatomy of Alnus nepalensis (Betulaceae) in East Nepal. J. Plant Res. 1994, 107, 399–408. [Google Scholar] [CrossRef]
- Jha, D.K.; Sharma, G.D.; Mishra, R.R. Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol. 1993, 123, 307–311. [Google Scholar] [CrossRef]
- Hou, E.Q.; Luo, Y.Q.; Kuang, Y.W.; Chen, C.R.; Liu, X.K.; Jiang, L.F.; Luo, X.Z.; Wen, D.Z. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.L.; Cao, Z.L.; Zhu, X. Allelopathy of water extract of Alnus nepalensis on the seedling growth of Pinus yunnanensis. J. Gansu Agric. Univ. 2012, 47, 76–79. [Google Scholar]
- Tang, X.M.; Dai, Y.M.; Xiong, Z.; Zhang, Z.Z.; Zhang, C.G. Effect of nature stress on genetic diversity of Frankia in Alnus nodules. Chin. J. Appl. Ecol. 2003, 14, 1743–1746. [Google Scholar]
- Wu, L.T.; Zhang, Z.H.; Xie, G.L.; Di, X.Y.; Shi, H. Contents of soil nutrients and characteristics of enzyme activities in different vegetation types of the Yuanyang terraces. Guangdong Agric. Sci. 2022, 49, 86–95. [Google Scholar]
- Ramesh, T.; Manjaiah, K.M.; Tomar, J.M.S.; Ngachan, S.V. Effect of multipurpose tree species on soil fertility and CO2 efflux under hilly ecosystems of Northeast India. Agrofor. Syst. 2013, 87, 1377–1388. [Google Scholar] [CrossRef]
- Li, M.R.; Li, T.G.; Li, B.; Qin, L.; Jiang, M. Soil microorganisms quantities and nutrients contents of different forest communication at core zone on Yuanyang terrace. J. West China For. Sci. 2019, 48, 49–55. [Google Scholar]
- Wang, X.L.; Cao, Z.L.; Zhu, X. Allelopathic effect of ether ethano extraction from Alnus nepalensis organs on pinus yunnanensis seed germination. J. Southwest For. Univ. 2010, 30, 21–23. [Google Scholar]
- Dai, Y.M.; He, X.Y.; Zhang, C.G.; Zhang, Z.Z. Characterization of genetic diversity of Frankia strains in nodules of Alnus nepalensis (D. Don) from the Hengduan Mountains on the basis of PCR-RFLP analysis of thenif D-nif KIGS. Plant Soil 2004, 267, 207–212. [Google Scholar] [CrossRef]
- Cai, M.J.; Feng, H.Y.; An, L.Z.; Wang, X.L. Present status and prospects in research on effect of enhanced UV-B radiation on plants. Chin. J. Appl. Ecol. 2002, 13, 359–364. [Google Scholar]
- Nevo, E. Evolution of genome–phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA 2001, 98, 6233–6240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Z.; Tang, X.M.; Dai, Y.M.; Zhang, C.G.; Zhang, Z.Z.; Xu, L.H. Genetic diversity of Frankia strains in Alnus nepalensis nodules in Yunnan revealed by rep-PCR. Chin. J. Appl. Environ. 2006, 12, 623–627. [Google Scholar]
- Khan, A.; Myrold, D.D.; Misa, A.K. Distribution of Frankia genotypes occupying Alnus nepalensis nodules with respect to altitude and soil characteristics in the Sikkim Himalayas. Physiol. Plant. 2007, 130, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Li, W.J.; Zhang, Z.Z.; Jiang, C.L. The influence of altitude on the genetic diversity of microsymbionts of Alnus nepalensis—Frankia. J. Southwest For. Univ. 2001, 21, 205–209. [Google Scholar]
- Ranjitkar, S.; Sujakhu, N.M.; Lu, Y.; Wang, Q.; Wang, M.C.; He, J.; Mortimer, P.E.; Xu, J.C.; Kindt, R.; Zomer, R.J. Climate modelling for agroforestry species selection in Yunnan Province, China. Environ. Model. Softw. 2016, 75, 263–272. [Google Scholar] [CrossRef]
- Dand, C.; Sun, X.F.; Cheng, Z.L. Vertical zonality characteristics of debris flow along ZhaMo highway in Tibet. Bull. Soil Water Conserv. 2018, 38, 328–333. [Google Scholar]
- Yang, T.J. Characteristics and control measures of debris flow along the ZhaMo highway. China Sci. 2018, 13, 1055–1059. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Zhao, W.; Wang, J.; Sun, J.; Cui, G.; Zhang, L. Progress on Geographical Distribution, Driving Factors and Ecological Functions of Nepalese Alder. Diversity 2023, 15, 59. https://doi.org/10.3390/d15010059
Xia C, Zhao W, Wang J, Sun J, Cui G, Zhang L. Progress on Geographical Distribution, Driving Factors and Ecological Functions of Nepalese Alder. Diversity. 2023; 15(1):59. https://doi.org/10.3390/d15010059
Chicago/Turabian StyleXia, Chenxi, Wanglin Zhao, Jinniu Wang, Jian Sun, Guangshuai Cui, and Lin Zhang. 2023. "Progress on Geographical Distribution, Driving Factors and Ecological Functions of Nepalese Alder" Diversity 15, no. 1: 59. https://doi.org/10.3390/d15010059
APA StyleXia, C., Zhao, W., Wang, J., Sun, J., Cui, G., & Zhang, L. (2023). Progress on Geographical Distribution, Driving Factors and Ecological Functions of Nepalese Alder. Diversity, 15(1), 59. https://doi.org/10.3390/d15010059