Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’
Abstract
:1. Introduction
2. Materials and Methods
Study Sites
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruttwell McFadyen, R.E. Biological control of weeds. Annu. Rev. Entomol. 1998, 43, 369–393. [Google Scholar] [CrossRef] [Green Version]
- Hoddle, M.S. Restoring balance: Using exotic species to control invasive exotic species. Conserv. Biol. 2004, 18, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, H.G.; Moran, V.C.; Hoffmann, J.H. Biological control in the management of invasive alien plants in South Africa, and the role of the Working for Water programme. S. Afr. J. Sci. 2004, 100, 34–40. Available online: https://hdl.handle.net/10520/EJC96216 (accessed on 11 November 2022).
- Krug, R.M.; Richardson, D.M. Modelling the effect of two biocontrol agents on the invasive alien tree Acacia cyclops–Flowering, seed production and agent survival. Ecol. Model. 2014, 278, 100–113. [Google Scholar] [CrossRef]
- Pemberton, R.W. Predictable risk to native plants in weed biological control. Oecologia 2000, 125, 489–494. [Google Scholar] [CrossRef] [PubMed]
- van Klinken, R.D.; Edwards, O.R. Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol. Lett. 2002, 5, 590–596. [Google Scholar] [CrossRef]
- Messing, R.M.; Wright, M.G. Biological control of invasive species: Solution or pollution. Front. Ecol. Environ. 2006, 4, 132–140. [Google Scholar] [CrossRef]
- Hinz, H.L.; Winston, R.L.; Schwarzländer, M. How safe is weed biological control? A global review of direct nontarget attack. Q. Rev. Biol. 2019, 94, 1–27. [Google Scholar] [CrossRef]
- Veldtman, R.; Lado, T.F.; Botes, A.; Procheş, Ş.; Timm, A.E.; Geertsema, H.; Chown, S.L. Creating novel food webs on introduced Australian acacias: Indirect effects of galling biological control agents. Divers. Distrib. 2011, 17, 958–967. [Google Scholar] [CrossRef]
- David, P.; Thebault, E.; Anneville, O.; Duyck, P.-F.; Chapuis, E.; Loeuille, N. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar] [CrossRef]
- Louda, S.M.; Kendall, D.; Connor, J.; Simberloff, D. Ecological effects of an insect introduced for the biological control of weeds. Science 1997, 277, 1088–1090. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Buckley, Y.M.; Ventim, R.; Fowler, S.V.; Memmott, J. Apparent competition can compromise the safety of highly specific biocontrol agents. Ecol. Lett. 2008, 11, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, M.; Lesieur, V.; Raghu, S.; Martin, J.-F. Characterizing ecological interaction networks to support risk assessment in classical biological control of weeds. Curr. Opinion Insect Sci. 2020, 38, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Zachariades, C.; Paterson, I.D.; Strathie, L.W.; Hill, M.P.; van Wilgen, B.W. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa. Bothalia 2017, 47, a2142. [Google Scholar] [CrossRef]
- Paterson, I.D.; Den Breeÿen, A.; Martin, G.D.; Olckers, T. An introduction to the fourth decadal review of biological control of invasive alien plants in South Africa (2011–2020). Afr. Entomol. 2021, 29, 685–692. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Chown, S.L. Evidence of competition in a herbivorous, gall-inhabiting moth (Lepidoptera) community. Oikos 1997, 78, 107–115. [Google Scholar] [CrossRef]
- Bashford, R. The insect fauna inhabiting Uromycladium (Uredinales) rust galls on silver wattle (Acacia dealbata) in Tasmania. Aust. Entomol. 2002, 29, 81–95. [Google Scholar]
- Crawford, K.M.; Crutsinger, G.M.; Sanders, N.J. Host-plant genotypic diversity mediates the distribution of an ecosystem engineer. Ecology 2007, 88, 2114–2120. [Google Scholar] [CrossRef]
- Seymour, C.L.; Veldtman, R. Ecological role of control agent, and not just host-specificity, determine risks of biological control. Austral Ecol. 2010, 35, 704–711. [Google Scholar] [CrossRef]
- Cornelissen, T.; Cintra, F.; Santos, J.C. Shelter-building insects and their role as ecosystem engineers. Neotrop. Entomol. 2016, 45, 1–12. [Google Scholar] [CrossRef]
- Pearson, D.E.; Callaway, R.M. Indirect effects of host-specific biological control agents. Trends Ecol. Evol. 2003, 18, 456–461. [Google Scholar] [CrossRef]
- Thomas, M.B.; Reid, A.M. Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol. Evol. 2007, 22, 447–453. [Google Scholar] [CrossRef] [PubMed]
- López-Núñez, F.A.; Ribeiro, S.; Marchante, H.; Heleno, R.H.; Marchante, E. Life inside a gall: Diversity, phenology and structure of Portuguese gall communities, their hosts, parasitoids and inquilines. Arthropod Plant Interact. 2019, 13, 477–488. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.-J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Milton, S.J.; Hall, A.V. Reproductive biology of Australian acacias in the southwestern Cape Province, South Africa. Trans. R. Soc. S. Afr. 1981, 44, 465–487. [Google Scholar] [CrossRef]
- Strydom, M.; Veldtman, R.; Ngwenya, M.Z.; Esler, K.J. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents. PLoS ONE 2017, 12, e0181763. [Google Scholar] [CrossRef] [Green Version]
- van Wilgen, B.W.; Dyer, C.; Hoffmann, J.H.; Ivey, P.; Le Maitre, D.C.; Moore, J.L.; Richardson, D.M.; Rouget, M.; Wannenburgh, A.; Wilson, J.R.U. National-scale strategic approaches for managing introduced plants: Insights from Australian acacias in South Africa. Divers. Distrib. 2011, 17, 1060–1075. [Google Scholar] [CrossRef] [Green Version]
- Adair, R.J. The biology of Dasineura dielsi Rübsaamen (Diptera: Cecidomyiidae) in relation to the biological control of Acacia cyclops (Mimosaceae) in South Africa. Aust. J. Entomol. 2005, 4, 446–456. [Google Scholar] [CrossRef]
- Post, J.A.; Kleinjan, C.A.; Hoffmann, J.H.; Impson, F.A.C. Biological control of Acacia cyclops in South Africa: The fundamental and realized host range of Dasineura dielsi (Diptera: Cecidomyiidae). Biol. Control 2010, 53, 68–75. [Google Scholar] [CrossRef]
- Strydom, M.; Veldtman, R.; Ngwenya, M.Z.; Esler, K.J. Seed survival of Australian Acacia in the Western Cape of South Africa in the presence of biological control agents and given environmental variation. PeerJ 2019, 7, e6816. [Google Scholar] [CrossRef] [Green Version]
- Impson, F.; Kleinjan, C.A.; Hoffman, J.H.; Post, J.A.; Wood, A.R. Biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Mimosaceae) in South Africa. Afr. Entomol. 2011, 19, 186–207. [Google Scholar] [CrossRef]
- Blignaut, N.; Heyns, K.; Barnard, A. Monthly Report. Fransmanshoek Conservancy, Vleesbaai. 2017. Available online: http://boggomsbaai.co.za/Concervancy_Report_April_2017.pdf (accessed on 4 February 2021).
- Mackintosh, T. Shelley Point News. Shelley Point Home Owners Association (SPHOA): St Helena Bay, South Africa, May 2019. Available online: www.SPHOA.co.za (accessed on 7 December 2022).
- Mdlangu, T.L.H. The Influence of Mite Predation on the Efficacy of the Gall Midge, Dasineura sp., as a Biocontrol Agent of Australian Myrtle, Leptospermum laevigatum (Myrtaceae) in South Africa. Master’s Dissertation, University of Fort Hare, Alice, South Africa, April 2010. [Google Scholar]
- Impson, F.; Lyons, C. A re-assessment of mortality factors associated with the bud-galling midge, Dasineura strobila, a biological control agent of Leptospermum laevigatum in South Africa. Afr. Entomol. 2021, 29, 142–149. [Google Scholar] [CrossRef]
- Lyons, C.; Impson, F.; Bam, S.; Mlokoti, T.; Hoffmann, J. Investigations into the efficacy of the biocontrol programme of Australian Myrtle, Leptospermum laevigatum, in South Africa: Lessons learnt and where to now? Afr. Entomol. 2021, 29, 784–790. [Google Scholar] [CrossRef]
- Ramos, L.F.; Solar, R.R.C.; Santos, H.T.; Fagundes, M. Variation in community structure of gall-inducing insects associated with a tropical plant supports the hypothesis of competition in stressful habitats. Ecol. Evol. 2019, 9, 13919–13930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesik, P.; Adair, R.J.; Eick, G. Nine new species of Dasineura (Diptera: Cecidomyiidae) from flowers of Australian Acacia (Mimosaceae). Syst. Entomol. 2005, 30, 454–479. [Google Scholar] [CrossRef]
- Hidayat, P.; Arini; Guntoro, D.; Takasu, K.; Overholt, W.A. Biology and rearing of the cogongrass gall midge, Orseolia javanica Kieffer & Docters van Leeuwen-Reijnvaan (Diptera: Cecidomyiidae). BioRxiv 2020, 28, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Pratt, P.D.; Coombs, E.M.; Croft, B.A. Predation by phytoseiid mites on Teranychus lintearius (Acari: Tetranychidae), an established weed biological control agent of gorse (Ulex europaeus). Biol. Control 2003, 26, 40–47. [Google Scholar] [CrossRef]
- Monfreda, R.; Lekveishvili, M.; Petanovic, R.; Amrine, J.W. Collection and detection of eriophyoid mites. In Eriophyoid Mites: Progress and Prognoses; Ueckermann, E.A., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 273–282. [Google Scholar]
- Ueckermann, E.A.; Grout, T.G. Tydeoid mites (Acari: Tydeidae, Edbakerellidae, Iolinidae) occurring on Citrus in southern Africa. J. Nat. Hist. 2007, 41, 2351–2378. [Google Scholar] [CrossRef]
- Ueckermann, E.A.; Ochoa, R.; Bauchan, G.R.; Neser, S. An amazing sub-cambium flat mite from South Africa (Acari: Trombidiformes: Tenuipalpidae). Acarologia 2019, 59, 507–530. [Google Scholar] [CrossRef]
- Krantz, G.W. A Manual of Acarology, 2nd ed.; Oregon State University (OSU) Bookstore: Corvallis, OR, USA, 1978; p. 509. [Google Scholar]
- Broce, A.B.; Zurek, L.; Kalisch, J.A.; Brown, R.; Keith, D.L.; Gordon, D.; Goedeke, J.; Welbourn, C.; Moser, J.; Ochoa, R.; et al. Pyemotes herfsi (Acari: Pyemitidae), a mite new to North America as the cause of bite outbreaks. J. Med. Entomol. 2006, 43, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Stingeni, L.; Bianchi, L.; Hansel, K.; Neve, D.; Foti, C.; Corazza, M.; Bini, V.; Moretta, I.; Principato, M. Dermatitis caused by arthropods in domestic environment: An Italian multicentre study. J. Eur. Dermatol. Venereol. 2017, 31, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, L.; Spotts, R.A.; Ueckermann, E.A.; Smit, F.J.; Jensen, T.; McLeod, A. The association of Tarsonemus mites (Acari: Heterostigmata) with different apple developmental stages and apple core rot diseases. Int. J. Acarol. 2011, 37, 71–84. [Google Scholar] [CrossRef]
- Da Silva, G.L.; Da-Costa, T.; Ferraz, C.S.; Pallini, A.; Ferla, N.J. First description of iolinid mites (Acari: Tydeoidea) from Brazil. Syst. Appl. Acarol. 2017, 22, 694–701. [Google Scholar] [CrossRef]
- Ueckermann, E.A. A revision of the family Adamystidae Cunliffe (Acari: Prostigmata). Phytophlactica 1989, 21, 227–240. Available online: https://hdl.handle.net/10520/AJA03701263_1258 (accessed on 11 November 2022).
- Situngu, S.; Barker, N.P.; Vetter, S. A snap-shot of domatial mite diversity of Coffea arabica in comparison to the adjacent Umtamvuna Forest in South Africa. Diversity 2020, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.-H.; George, S.; Kumarasinghe, L. Genus Acalvolia (Acari: Winterschmidtiidae), with the description of a new species from the USA. Zootaxa 2010, 2719, 41–61. [Google Scholar] [CrossRef]
- Tixier, M.-S. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: A review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front. Ecol. Evol. 2018, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Norton, R.A.; Behan-Pelletier, V.M. Oribatida: Chapter 15. In A Manual of Acarology; Krantz, G.W., Walter, D.E., Eds.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 430–564. [Google Scholar]
- Walter, D.E.; Lindquist, E.E.; Smith, I.M.; Cook, D.R.; Krantz, G.W. Order Trombidiformes. In A Manual of Acarology; Krantz, G.W., Walter, D.E., Eds.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 233–420. [Google Scholar]
- Cross, E.A.; Moser, J.C.; Rack, G. Some new forms of Pyemotes (Acarina: Pyemotidae) from forest insects, with remarks on polymorphism. Int. J. Acarol. 1981, 7, 179–196. [Google Scholar] [CrossRef]
- Scott, H.G.; Fine, R.M. Straw itch mite dermatitis caused by Pyemotes ventricosus. Dermatol. Trop. Ecol. Geogr. 1963, 15, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kalisch, J.A.; Keith, D.L.; Broce, A.R. NF05-653 Pyemotes Itch Mites. Historical Materials from University of Nebraska-Lincoln Extension. 2005, p. 1737. Available online: https://digitalcommons.unl.edu/extensionhist/1737 (accessed on 24 February 2021).
- O’Donel, A.J. Pyemotes Infestation. In Arthropods and Human Skin; Springer: London, UK, 1984. [Google Scholar] [CrossRef]
- Heyne, H.; Ueckermann, E.A.; Coetzee, L. First report of a parasitic mite, Leptotrombidium (Hypotrombidium) subquadratum (Lawerence) (Acari: Trombiculidae: Trombiculinae), from dogs and children in the Bloemfontein area, South Africa. J. S. Afr. Vet. Assoc. 2001, 72, 105–106. [Google Scholar] [CrossRef] [Green Version]
- Beck, W.; Fölster-Holst, R. Tropical rat mites (Ornithonyssus bacoti)—serious ectoparasites. JDDG—J. German Soc. Dermatol. 2009, 7, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Cafiero, M.A.; Raele, D.A.; Mancini, G.; Galante, D. Dermatitis by tropical rat mite, Ornithonyssus bacoti (Mesostigmata, Macronyssidae) in Italian city-dwellers: A diagnostic challenge. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Impson, F.; Kleinjan, C.A.; Hoffman, J.H.; Post, J.A. Dasineura rubiformis (Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South Africa. S. Afr. J. Sci. 2008, 104, 247–249. Available online: https://hdl.handle.net/10520/EJC96827 (accessed on 11 November 2022).
- Gordon, A.J. Biological control endeavours against Australian myrtle, Leptospermum laevigatum (Gaertn.) F.Muell. (Myrtaceae), in South Africa. Afr. Entomol. 2011, 19, 349–355. [Google Scholar] [CrossRef]
- Pearson, D.E.; Clark, T.J.; Hahn, P.G. Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management. Conserv. Biol. 2022, 36, e13734. [Google Scholar] [CrossRef]
- Fowler, S.V.; Paynter, Q.; Dodd, S.; Groenteman, R. How can ecologists help practitioners minimize non-target effects in weed biocontrol? J. Appl. Ecol. 2012, 49, 307–310. [Google Scholar] [CrossRef]
- Downey, P.O.; Paterson, I.D. Encompassing the relative non-target risks from agents and their alien plant targets in biological control assessments. BioControl 2016, 61, 615–630. [Google Scholar] [CrossRef]
- Henriksen, M.V.; Chapple, D.G.; Chown, S.L.; McGeoch, M.A. Gall wasp biocontrol of invasive Acacia longifolia: Implications of strong bottom-up effects. Ecosphere 2017, 8, e02043. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.; Fernandes, G.W.; Morris, R.J. Interaction engineering: Non-trophic effects modify interactions in an insect galler community. J. Anim. Ecol. 2019, 88, 1168–1177. [Google Scholar] [CrossRef]
Family (/Order) | Species | Feeding Guild a | Total Abundance |
---|---|---|---|
Trombidiformes | |||
Pyemotidae | Pyemotes cf. ventricosus | Parasitic [45,46] | 91 |
Tarsonemidae | Tarsonemus sp. | Fungivorous * | 47 |
Tarsonemus waitei | Fungivorous [47] | 4 | |
Tydeidae | Tydeus grabouwi | Generalist [42] | 22 |
Genus indet. | unknown | 15 | |
Iolinidae | Lourus sp. * | Predatory [48] | 2 |
Pausia sp. * | Predatory [48] | 19 | |
Adamystidae | Adamystis sp. * | Predatory [49] | 6 |
Triophtydeidae | Triophtydeus immanis | Generalist [50] | 15 |
Sarcoptiformes | |||
Acaridae | Tyrophagus fanetzhangorum | Mycophagous | 4 |
Winterschmidtiidae | Acalvolia sp. | Mycophagous [50,51] | 203 |
Cheyletidae | Genus indet. | Predatory [50] | 2 |
Mesostigmata | |||
Phytoseiidae | Typhlodromus (Anthoseius) sp. | Predatory [52] | 2 |
Ueckermannseius munsteriensis | Predatory [50] | 4 | |
Family indet. | Genus indet. | unknown | 1 |
Oripodidae | Dometorina (Siculobata) sicula b | Mycophagous [53] | 4 |
Dometorina (Dometorina) plantivaga c | Mycophagous, predatory [53] | 8 | |
Ceratozetidae | Antarctozetes sp. d | Mycophagous, detritophagous, necrophagous [53] | 2 |
Feeding Guild | Sampling Sites | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | SP1 | SP2 | SP3 | FC1 | FC2 | FC3 | MKB1 | MKB2 | MKB3 |
Parasitic | |||||||||
Pyemotes cf. ventricosus | 1(1) | 0 | 5 | 1(8) | 1(3) | 0 | 1(34) | 0(11) | 1(17) |
Fungivorous | |||||||||
Tarsonemus sp. | 3 | 0 | 1 | 3(9) | 2(2) | 0(16) | 0(2) | 0(4) | 3 |
Tarsonemus waitei | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
Generalists | |||||||||
Triophtydeus immanis | 0 | 1 | 3 | 0 | 0 | 0 | 0(1) | 0(6) | 4 |
Tydeus grabouwi | 1(1) | 1 | 0 | 0(3) | 7 | 0 | 0 | 0 | 1 |
Mycophagous | |||||||||
Acalvolia sp. | 0 | 0 | 0 | 54(41) | 35(13) | 0(36) | 0(4) | 0(5) | 0 |
Dometorina (Siculobata) sicula | 0 | 0 | 0 | 0(1) | 1 | 2 | 0 | 0 | 0 |
Tyrophagus fanetzhangorum | 0 | 0 | 0 | 0 | 0(1) | 0(3) | 0 | 0 | 0(1) |
Mycophagous, predatory | |||||||||
Dometorina (Dometorina) plantivaga | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Mycophagous, detritophagous, necrophagous | |||||||||
Antarctozetes sp. | 0 | 0 | 0 | 0(1) | 0 | 0 | 0 | 1 | 0 |
Predatory | |||||||||
Adamystis sp. * | 0 | 0 | 0 | 0(3) | 0(1) | 0(1) | 0 | 0 | 0 |
Cheyletidae | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0(1) |
Lourus sp. * | 0 | 0 | 0 | 0(1) | 0 | 0 | 0 | 0 | 0 |
Pausia sp. * | 2 | 1 | 6 | 0 | 0 | 0 | 2(4) | 0(1) | 1(2) |
Typhlodromus (Anthoseius) sp. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Ueckermannseius munsteriensis | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
Unknown | |||||||||
Tydeidae | 0(1) | 0 | 0 | 0 | 0 | 0 | 7(5) | 0 | 1 |
Species richness | 4(3) | 4 | 5 | 4(6) | 6(5) | 1(4) | 5(5) | 2(5) | 7(4) |
Total abundance | 7(3) | 9 | 16 | 59(25) | 49(20) | 2(55) | 15(41) | 2(27) | 11(21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldtman, R.; Ueckermann, E.; Liebenberg, K. Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’. Diversity 2023, 15, 73. https://doi.org/10.3390/d15010073
Veldtman R, Ueckermann E, Liebenberg K. Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’. Diversity. 2023; 15(1):73. https://doi.org/10.3390/d15010073
Chicago/Turabian StyleVeldtman, Ruan, Eddie Ueckermann, and Kayla Liebenberg. 2023. "Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’" Diversity 15, no. 1: 73. https://doi.org/10.3390/d15010073
APA StyleVeldtman, R., Ueckermann, E., & Liebenberg, K. (2023). Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’. Diversity, 15(1), 73. https://doi.org/10.3390/d15010073