Next Article in Journal
Soil Biological Properties along a Topographic Gradient in Brazil’s Atlantic Forest Biome
Previous Article in Journal
Reconstructing the Paleoenvironmental Evolution of Lake Kolon (Hungary) through Palaeoecological, Statistical and Historical Analyses
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Flea (Insecta: Siphonaptera) Family Diversity

1
Bossard Consulting, Salt Lake City, UT 84104, USA
2
Center of Parasitology and Vectors Studies (CEPAVE) (CONICET-UNPL), Bv. 120 s/n e/60 y 64, La Plata 1900, Argentina
3
National Institute of Tropical Medicine (INMET-ANLIS), Ámbar y Almafuerte s/n, Puerto Iguazú 3370, Argentina
4
Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(10), 1096; https://doi.org/10.3390/d15101096
Submission received: 31 August 2023 / Revised: 13 October 2023 / Accepted: 19 October 2023 / Published: 21 October 2023
(This article belongs to the Section Phylogeny and Evolution)

Abstract

:
This overview of extant Siphonaptera lists 19 families with major hosts and their general distribution, estimated numbers of genera, species, and subspecies, with a brief taxonomic and phylogenetic review. With around 10 new species described annually, extant flea fauna comprises an estimated 249 genera, 2215 species, and 714 subspecies globally, mostly mammal parasites, but 5% of species are on birds. Host specificity varies from euryxenous (i.e., infesting two or more host orders) (e.g., cat fleas, Ctenocephalides felis felis) to monoxenous (e.g., rabbit fleas, Spilopsyllus cuniculi). The largest family is the paraphyletic Hystrichopsyllidae, making up a third of all flea species. The largest monophyletic family, Ceratophyllidae (rodent and bird fleas), comprises another 20% and has dispersed to every continent, including Antarctica. Fleas descend from scorpionflies (Mecoptera), possibly snow scorpionflies (Boreidae) or Nannochoristidae, and even giant fossils found from the Mesozoic could be Siphonaptera. The diversification of fleas shows evidence of taxon cycles. “Relict” families, such as helmet fleas (Stephanocircidae), have a disjunct distribution reflecting the breakup of Gondwanaland 70 million years ago. “Niche specialists” include nest fleas (Anomiopsyllus), bat fleas (Ischnopsyllidae), and burrowing fleas, such as chigoes (Tungidae). By contrast, Ceratophyllidae fleas could be considered “great speciators”. Cat fleas and several other synanthropic flea species are invasive “supertramps”. Although those species are intensively studied, many flea species and their hosts require urgent surveys and conservation.

1. Introduction

With about 10 new species of fleas discovered each year [1], the worldwide, extant flea fauna is estimated to comprise 19 families, 31 subfamilies, 249 genera, 2215 species, and 714 subspecies [2]. These estimates are in flux with hundreds of flea species likely undiscovered [3].
Fleas have been estimated to originate in the Triassic (252 to 201 million years ago), Jurassic (160 million years ago), or Cretaceous (130 million years ago) [4]. Four fossil families of giant Mesozoic insects were identified as Siphonaptera (Pseudopulicidae, Sauropthiridae, Strashiliidae, and Tarwiniidae) [5], disputed [4]. Strashilidae is now identified as an amphibious fly (Diptera: Nematocera). Additionally, several Cenozoic fossil fleas from the late Eocene (50 million years ago) belong to extant families (Hystrichopsyllidae, Pulicidae, and Rhopalopsyllidae) [4,5,6,7].
The ancestors of fleas are probably in Mecoptera, an order of mysterious insects with complete metamorphosis, are mostly winged, and whose candidate families are snow scorpionflies (Boreidae) or aberrant amphibious scorpionflies (Nannochoristidae) [8,9,10]. Whether or not the order Siphonaptera should be demoted in the taxonomic hierarchy and the order Mecoptera be promoted are unresolved questions [9,11].
Flea phylogenies using morphology [12,13,14] or molecular characteristics [4,8] have been proposed. Other aspects of fleas, including their histology, host-finding, feeding, immature stages, life cycle, locomotion, mating, and physiology, have not been the subject of comprehensive phylogenies [15,16,17,18,19,20,21].
Fleas are ecological engineers. They can increase the nest humidity [22], carry “transformer species” such as the plague bacterium, Yersinia pestis (Lehmann & Neumann, 1896) [23], and facilitate forest growth [24]. Only 5% of flea species are associated with birds—most parasitize mammals [8]. Fleas are also associated with a myriad of symbionts, from tapeworms [25] to viruses [26,27].
The host specificity of fleas varies from monoxenous (a flea species restricted to one host species) (e.g., rabbit flea, Spilopsyllus cuniculi (Dale, 1878)) to euryxenous (a flea species occurring on two or more host orders) [28] (e.g., cat flea, Ctenocephalides felis felis (Bouché, 1835)) [29]. Some mammals are free of fleas, such as aquatic mammals (Cetacea, Pinnipedia) and elephants (Proboscidea). Unlike other organisms, fleas are inexplicably most speciose at temperate, not tropical, latitudes [21].
Flea taxa seem to reveal a variety of taxon cycle stages. The taxon cycle theorizes that taxa evolve in their genetic differentiation, specialization, geographic range, and preferred habitats from coastal margins to hinterlands to mountains. The taxon cycle is generalized as Stage I, including “supertramp species”; Stage II “great speciators”; Stage III “niche specialists”; and Stage IV “relicts”. Taxa may skip or repeat stages, such as range expansions and contractions as seen in ants and birds [30,31,32]. We classified flea taxa subjectively with regard to taxon cycle stage.
In this overview, we summarize the main ecology, phylogeny, and taxonomy of the 19 families in the order Siphonaptera. It is a basic introduction for entomologists and for those unfamiliar with the world of fleas.

2. Flea Families

2.1. Ancistropsyllidae (Toumanoff & Fuller, 1947)

  • (Chevrotain fleas)
  • 1 Genus
  • 3 Species
  • 0 Subspecies
The simple morphology of Ancistropsyllidae resembles both the infraorder Ceratophyllomorpha and paraphyletic pulicomorph fleas, but with a curiously “bent” ctenidium, and although it has never been analyzed molecularly, this suggests an early flea family [4,8,33]. Found in Indomalaya and the Palearctic on chevrotains (Artiodactylidae: Tragulidae), primitive ungulates that did not appear until the Oligocene (34 to 23 million years ago) [34], many of this flea’s original hosts may be extinct.
The conservation status of chevrotains is data-deficient, but some chevrotains have been rediscovered [35]. This flea family is a niche specialist and relict, requiring surveys and conservation.

2.2. Ceratophyllidae (Dampf, 1908)

  • (Rodent and bird fleas)
  • 51 Genera
  • 435 Species
  • 132 Subspecies
This, the largest monophyletic flea family, has the most recent origin of any flea family. Its diversification coincided with the recent emergence of squirrels (Sciuridae) and New World rodents (Cricetidae) [4,8,36]. In regard to phylogeny, Leptopsyllidae and Ischnopsyllidae are closely related to this family, with all three families grouped into the monophyletic infraorder Ceratophyllomorpha; however, these families can be discriminated by characteristics such as their genal ctenidia and tentoria [4,8].
With a global distribution, including Antarctica, where the Antarctic petrel flea, Glaciopsyllus antarcticus (Smit & Dunnet, 1962), lives on southern fulmars (Fulmarus glacialoides (Smith, 1840)) and petrels (Aves: Procellariidae) [37,38,39], Ceratophyllidae dispersed back and forth several times between the Nearctic and Palearctic, as did Hystrichopsyllidae [40]. The cold-hardening glycerol found in some Ceratophyllidae [41] may help explain their wide thermal tolerance and distribution [42].
Ceratophyllidae may have originated in the Eocene (45 million years ago) [4] or Oligocene (40–38 million years ago) [36] on the mountain beaver (Rodentia: Aplodontiidae), many genera of which are extinct, or on Nearctic squirrels (Rodentia: Sciuridae); both are Sciuromorpha [8,36,43].
The Ceratophyllidae “morphospecies”, Nosopsyllus fasciatus (Bosc, 1800) (northern rat flea) and Nosopsyllus barbarus (Jordan & Rothschild, 1912), are considered to be the same species based on their morphology and molecular data [44]. Local differentiation and phylogenetic inertia appear to be significant regarding the flea diversity within this family [42]; thus, the Ceratophyllidae family is a great speciator.
The hen flea, Ceratophyllus (Ceratophyllus) gallinae (Schrank, 1803), is a common, widespread, and synanthropic flea [45,46,47], but some Ceratophyllidae are island relicts that need conservation (e.g., Dasypsyllus spp. (Baker, 1905) and the Manx shearwater flea, Ceratophyllus (Emmareus) fionnus (Usher, 1968 [48,49,50])).

2.3. Chimaeropsyllidae (Ewing & I. Fox, 1943)

  • (Elephant shrew fleas)
  • 7 Genera
  • 29 Species
  • 5 Subspecies
This monophyletic flea family was formerly known as Hypsophthalmidae, and it appears to be a progenitor to Pulicidae, with morphological similarities involving their sensilla and setae [8].
Fleas belonging to this group are niche specialists for elephant shrews (Macroscelidea: Macroscelididae) and Muridae rodents in the arid regions of East and South Africa [51,52,53]. Some elephant shrews are endangered relicts that have been rediscovered [54].

2.4. Coptopsyllidae (Wagner, 1928)

  • 2 Genera
  • 18 Species
  • 9 Subspecies
Niche specialists in desert areas of the Palearctic (Central Asia and North Africa), these fleas infest gerbils (Rodentia: Gerbillinae), which first appeared in the Miocene (23 to 5 million years ago) [51,55,56]. However, this flea family is estimated to have originated 50 million years ago in the Eocene [4,8], so its original host is unknown.
Certain species of roundworms (nematodes) (Secenentea: Tylenchida) cause castration and neutering when hyperparasitizing female and male fleas from various families, especially Coptopsyllidae [50,57,58].
Because only one species (Coptopsylla africana (Wagner, 1932)) was included in the molecular phylogeny [8], this family remains neglected phylogenetically. Along with Coptopsylla, a second genus (monotypic) has been recognized with Neocoptopsylla wassiliewi (Wagner, 1932) [55].

2.5. Hystrichopsyllidae (Tiraboschi, 1904)

  • 47 Genera
  • 634 Species
  • 284 Subspecies
Although the catchall, paraphyletic Ctenophthalmidae (Rothschild, 1915) is subsumed through the recognition of its subfamilies as Hystrichopsyllidae (except Macropsyllinae and Stenoponiinae in their own families), Hystrichopsyllidae remains paraphyletic but has “natural groupings” that may serve as a basis for a revised taxonomy (sensu [13], Ctenophthalmidae, in part [8]). This family includes species of “nest fleas” that infest micromammals with underground nests and often lack key diagnostic characteristics, apparently due to the evolutionary reduction in their sheltered environment [12,59,60].
Although the family has a cosmopolitan distribution, Hystrichomorpha rodents in the Nearctic and Neotropics (i.e., Caviomorpha) tend to be infested with Rhopalopsyllidae fleas and not Hystrichopsyllidae. In fact, Hystrichopsyllidae have the “broadest host spectrum” of any flea family [43]. Hystrichopsyllidae is the largest flea family and includes Ctenophthalmus, which is the largest flea genus comprising 170 species.
Hystrichopsyllidae probably originated in the Gondwanaland subtropics 75 million years ago (Cretaceous), but it is now global, except in Antarctica [8,28,43,61,62]. Four species exist as fossils only [5].
This family appears to show a mixture of taxon cycle stages. Fleas such as Hystrichopsylla orientalis orientalis (Smit, 1956) could be in Stage I dispersal via invasive hosts [63]. Possible Stage II speciators have a high percentage of subspecies (Hystrichopsylla spp., Typhloceras spp.). Stage III niche specialists include fleas on “mammals having no permanent shelters (e.g., marsupials and insectivores)” [43] (e.g., Doratopsyllinae spp.), and nest fleas (e.g., Anomiopsyllus spp., Ctenophtalmus spp., Neopsylla spp. and Rhadinopsylla spp.). Stage IV relicts are the Nearctic mountain beaver flea, Hystrichopsylla schefferi (Chapin, 1919), celebrated as the world’s largest flea, and Australian endemics on marsupials, the nest fleas Acedestia chera (Jordan, 1937) and Idilla caelebs (Smit, 1957).

2.6. Ischnopsyllidae (Wahlgren, 1907)

  • (Bat fleas)
  • 20 Genera
  • 128 Species
  • 22 Subspecies
With their specialized morphology and behavior, bat fleas are niche specialists with distinctive genal ctenidia on adults. Their evolution onto microchiroptera and megachiroptera followed bat diversification in the Eocene (56 to 34 million years ago) [19,51,64,65]. Bat fleas may have originated in Asia as a monophyletic family closely related to Leptopsyllidae and Ceratophyllidae [4,8].
Unusual phoretic bat fleas were observed on earwigs (Dermaptera) in Indomalayan caves [66]. Collecting fleas and other parasites permits the non-invasive surveying of bats’ microbial communities [67].

2.7. Leptopsyllidae (Rothschild & Jordan, 1915)

  • (Scaled fleas)
  • 29 Genera
  • 267 Species
  • 147 Subspecies
Originating in the Palearctic, fleas of this paraphyletic family and Ceratophyllidae are linked by another relict mountain beaver flea, Dolichopsyllus stylosus (Baker, 1904) [4]. Leptopsyllidae are great speciators and nearly global (except in the Neotropics and Antarctica), mostly parasitizing rodents, with some on birds, insectivores, hares, rabbits, and pikas [4,8,33,68,69].
One of the most studied Leptopsyllidae species has been the monoxenous house-mouse flea, Leptopsylla segnis (Schönherr, 1811). It is a supertramp species with a cosmopolitan distribution [68,69,70].

2.8. Lycopsyllidae (Baker, 1905)

  • 4 Genera
  • 8 Species
  • 0 Subspecies
This flea family is likely primitive within the infraorder Pygiopsyllomorpha, a group that also includes Pygiopsyllidae and Stivaliidae [8]. Fleas of this family live on Australian echidnas (Monotremata: Tachyglossidae) and marsupials, such as the wombat (Diprotodontia: Vombatidae) and Tasmanian devil (Dasyuromorphia: Dasyuridae). One atypical species (Uropsylla tasmanica (Rothschild, 1905)) has parasitic larvae [43,68,71,72].
Lycopsyllidae is monophyletic [8], with few recent studies of its epidemiology and phylogeny [73,74]. This flea family is a relict that needs conservation, as do many of its hosts [75,76].

2.9. Macropsyllidae (Oudemans, 1909)

  • (Australian giant fleas)
  • 2 Genera
  • 3 Species
  • 0 Subspecies
These giant fleas infest marsupials and appear primitive, with origins in the Cretaceous (95 million years ago) and a disjunct distribution that isolated them from other fleas [4]. Macropsyllidae share some morphological characters with Hystrichopsyllidae and some with Stephanocircidae [8,51,77].
Macropsylla novaehollandiae (Hastriter, 2002) appears monoxenous on the New Holland mouse, Pseudomys novaehollandiae, a host that is endangered itself [77]. Fleas of this family are vulnerable and threatened relicts that require conservation [77,78].

2.10. Malacopsyllidae (Baker, 1905)

  • (Armadillo fleas)
  • 2 Genera
  • 2 Species
  • 0 Subspecies
The Malacopsyllidae genera have one species each, Malacopsylla grossiventris (Weyenbergh, 1879) and Phthiropsylla agenoris (Rothschild, 1904). These Neotropical fleas attach to the ventral regions of armadillos (Dasypodidae: Cingulata), so the fleas do not bore through the osteoderms like Tungidae. Although Malacopsyllidae are mainly associated with armadillos, these fleas have also been collected on Caviomorpha rodents and Carnivora [79].
Malacopsyllidae have unusually strong legs, expandable abdomens via neosomy, and large eggs [80,81,82,83]. From a phylogenetic point of view, there is a close relationship between Malacopsyllidae and Rhopalopsyllidae, but Malacopsyllidae is monophyletic [4,83]. Because many Cingulata are extinct, especially the larger ones like pampatheriids and glyptodonts, Malacopsyllidae survive as relictual niche specialists on extant armadillos.

2.11. Pulicidae (Billberg, 1820)

  • 23 Genera
  • 164 Species
  • 38 Subspecies
After diversifying 65 million years ago (Cretaceous) with the appearance of Afrotheria, Pulicidae have switched hosts via the food chain or shared habitats [65] several times as great speciators and niche specialists onto rodents (Xenopsylla spp.), carnivores (Ctenocephalides spp.), insectivores (e.g., the hedgehog flea, Archaeopsylla 6allinace (Bouché, 1835)) [84], humans, domestic animals (Pulex spp.), rabbits, and hares (e.g., Cediopsylla inaequalis (Baker, 1895), Spilopsyllus cuniculi (Dale, 1878) [85]). Neotunga is a burrowing Pulicidae that appears morphologically convergent with Tungidae and parasitizes threatened pangolins (Mammalia: Pholidota) [8,81].
This monophyletic family probably has an African origin, where it is most diverse, with some authors placing the Pulicidae near Leptopsyllidae [4,8]. Several well-studied Pulicidae fleas accompany humans as invasive supertramp species, notably the cat flea, Ctenocephalides felis felis (Bouché, 1835) [29,86,87,88,89,90,91,92,93,94,95,96,97]; dog flea, Ctenocephalides canis (Curtis, 1926) [29,96,98]; sticktight flea, Echidnophaga 6allinacean (Westwood, 1875) [99]; human flea, Pulex irritans (L., 1758) [11,100,101,102]; Xenopsylla brasiliensis (Baker, 1904) [68]; and the oriental rat flea, Xenopsylla cheopis (Rothschild, 1903). the last species is a historic plague vector [103,104], though disputed by [105]. These synanthropic flea species are involved as vectors of pathogens associated with emerging and re-emerging diseases in animals and humans [106].
Three species and two genera of Pulicidae exist as fossils only [5]. The Christmas Island flea, Xenopsylla nesiotes (Jordan & Rothschild, 1908), is extinct [78].

2.12. Pygiopsyllidae (Wagner, 1939)

  • 10 Genera
  • 56 Species
  • 12 Subspecies
Grouped within the infraorder Pygiopsyllomorpha, along with Lycopsyllidae and Stivaliidae, Pygiopsyllidae may have its origin on ancient prototherian or metatherian mammals [4,8]. They show a disjunct distribution in Australia, Indomalaya, the Neotropics, and sub-Antarctica on a variety of hosts [43,68,107].
There is a monophyletic origin for this family, with Stivaliidae as a sister group [8,43]. Recent studies of Pygiopsyllidae epidemiology and phylogeny include [108,109,110,111,112,113,114]. Some Pygiopsyllidae fleas and their hosts require conservation as vulnerable, endangered, or critically endangered relicts [75,78,115].

2.13. Rhopalopsyllidae (Oudemans, 1909)

  • (Club fleas)
  • 11 Genera
  • 141 Species
  • 30 Subspecies
Rhopalopsyllidae are mostly on Hystrichomorpha and Myomorpha (Cricetidae) rodents in South America (i.e., Caviomorpha and Sigmodontinae) as well as marsupials [43,116]. Parapsyllus is a genus of Rhopalopsyllidae associated with seabirds fringing the Southern Ocean [82]. Rhopalopsyllidae can be considered great speciators.
Apparently, Hystrichomorpha rodents emigrated from the Afrotropics to the Neotropics, perhaps via rafting, where they largely escaped their fleas, with the niche taken up by Rhopalopsyllidae [43]. Both rodents and fleas diversified in the New World. This is reminiscent of other hosts escaping from their fleas temporarily, such as the hedgehog in New Zealand and squirrels in Europe and South America [3,117,118].
Flea phylogenies tend to show that Rhopalopsyllidae is closely related to Malacopsyllidae (both are in the Malacopsylloidea superfamily) and Vermipsyllidae [8]. Recently, Rhopalopsyllidae was found to be paraphyletic [83], contra [8].

2.14. Stenoponiidae (Cunha, 1914)

  • 1 Genus
  • 20 Species
  • 7 Subspecies
These are large, dark fleas with distinct genetics and morphologies (e.g., full genal comb, eggs with hard extrachorions) that are related to Rhadinopsylla spp. (Hystrichopsyllidae) [8,16,119,120]. They live in the Palearctic, Nearctic, and some Indomalayan areas as fall and winter niche specialists on rodents (Muridae and Cricetidae) [43,121,122].

2.15. Stephanocircidae (Wagner, 1928)

  • (Helmet fleas)
  • 9 Genera
  • 57 Species
  • 6 Subspecies
The functions of these fleas’ bizarre helmets and crowns of thorns remain unknown [51]. Stephanopsylla thomasi (Rothschild, 1903) (Macropsyllidae) and Smitella thambetosa (Traub, 1968) (Stivaliidae) also have helmets, but it appears the three families are not closely related [8,123,124].
The disjunct distribution of Stephanocircidae in Australia and the Neotropics appears to result from the Gondwanaland breakup 70 million years ago [125]. The original hosts of Stephanocircidae were likely marsupials that are now extinct [43]. In South America, these fleas mainly parasitize sigmodontine rodents (Cricetidae), like the grass mouse, Akodon, which entered the Neotropics during the Great American Interchange, and opossums (Didelphimorphia: Didelphidae) [51,79,126,127]. In the Neotropics, Stephanocircidae has many genera, species, host species, and a wide distribution, whereas in Australia, it is a relict with only a few genera and with many of its species and their hosts endangered [75,78].

2.16. Stivaliidae (Mardon, 1978)

  • 26 Genera
  • 172 Species
  • 13 Subspecies
This flea family is grouped with Lycopsyllidae and Pygiopsyllidae into the monophyletic infraorder Pygiopsyllomorpha [8]. It is considered an advanced flea family with characteristic genitalia that was able to spread through Australia, Indomalaya, the Palearctic, and the Afrotropics as it “switched from metatherians” [8] onto eutherian mammals, such as squirrels (Mammalia: Sciuridae) and tree shrews (Mammalia: Scandentia) [8,43,68]. Its symbionts include phoretic mites [128].
Stivaliidae is likely a great speciator, but although a new genus in Stivaliidae (Musserellus) was described in Indonesia recently [129], this family remains “incompletely studied” [28,130].

2.17. Tungidae (Taschenberg, 1880)

  • (Chigoe fleas)
  • 3 Genera
  • 28 Species
  • 0 Subspecies
Chigoes embed into and live under their hosts’ skin using female swelling (neosomy) [85,131]. Even the bony plates of armadillos (Mammalia: Cingulata) can be bored through [132]; holes in fossilized osteoderms of the extinct glyptodont (Cingulata) were likely caused by Tungidae [133,134,135,136].
The unusual Tungidae family shows a broad host range, affecting edentates (Xenarthra), including armadillos and sloths, as well as rodents, humans, domestic animals [81,131], and, in the case of Hectopsylla, bats (Chiroptera) and birds [68,137]. The Tungidae family has proven to be hard to place phylogenetically [4,8].
Tunga are paradoxically the “most specialized” of the flea genera [81] but infest many orders of mammals and birds [131]. There are 14 Tunga species, most of Neotropical, with many discovered only recently [2,81].
A euryxenous supertramp species Tunga penetrans (L., 1758) was spread by humans from South America to Africa and elsewhere in the 1800s [138]. Tungiasis is affected by public health policy, economics, animal health, and climate change [139,140,141].

2.18. Vermipsyllidae (Wagner, 1889)

  • (Ungulate and carnivore fleas)
  • 3 Genera
  • 43 Species
  • 7 Subspecies
Fleas of this family are niche specialists: Dorcadia spp. and Vermipsylla spp. parasitize even-toed ungulates (Artiodactyla), and Chaetopsylla spp. parasitize predators of Artiodactyla, such as the weasel family (Carnivora: Mustelidae), bears (Carnivora: Ursidae), and pumas (Carnivora: Felidae) in the Nearctic and Palearctic [43,142]. This is another example of fleas switching hosts via the food chain.
These fleas have unusual frontal tubercles and female swelling (neosomy) while still attached to the host [81]. Vermipsyllidae is related to Malacopsyllidae and Rhopalopsyllidae [4,8].

2.19. Xiphiopsyllidae (Wagner, 1939)

  • (Brush-furred mouse fleas)
  • 1 Genus
  • 8 Species
  • 2 Subspecies
Though they have never been analyzed molecularly, based on their morphology, Xiphiopsyllidae are placed at the base of the Ceratophyllomorpha infraorder [8,51].
Because of host movement and insufficient sampling, Harmsen and Jabbal surmised that these fleas are “unlikely” to be relicts [52]. However, they are niche specialists for the brush-furred mouse, Lophuromys (Rodentia: Muridae), several species of which are in fragmented mountain populations in East Africa [143,144]. Both fleas and rodents appear to include relict species that require conservation.

3. Conclusions

Flea taxa appear to display various stages of taxon cycles. Dispersal onto novel hosts and into new areas, differentiation involving speciation, niche specialization, fragmentation and vicariance, and the extinction of fleas and their hosts during tens of millions of years have complicated the diversification of fleas.
Molecular studies of fleas are increasing, but most taxa are described only morphologically. They could be re-examined using new techniques in order to clarify their systematics. Better knowledge on fleas may help manage diseases caused by some fleas that are parasitic pests and vectors of pathogens [27,56,86,106,145,146,147,148,149].
Vertebrate hosts can often be aided and conserved through monitoring their fleas [38,67,99,150,151,152,153,154,155,156,157]. Even in well-studied areas, like Europe, where much biodiversity is still undescribed [158], surveys for vertebrates could also collect voucher specimens of fleas and other parasites [159]. For example, a collecting protocol can be made for non-parasitologists [160].
Conservation is needed urgently for some fleas, their hosts, and their ecosystems [48,49,76,77,78,116,128,159,161,162,163,164,165,166,167,168], and fleas could play important but poorly understood roles in their communities [169,170,171,172,173]. Therefore, flea surveys would be helpful in every biogeographical realm.

Author Contributions

Conceptualization, R.B; validation, R.L.B., A.Z., C.C., M.U. and M.L.; investigation, R.L.B., A.Z., C.C., M.U. and M.L.; data curation, R.L.B., A.Z., C.C., M.U. and M.L.; writing—original draft preparation, R.L.B., A.Z., C.C., M.U. and M.L.; writing—review and editing, R.L.B., A.Z., C.C., M.U. and M.L.; visualization, R.L.B., A.Z., C.C., M.U. and M.L.; supervision, R.L.B., A.Z., C.C., M.U. and M.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data are contained within the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bernard, E.C.; Whittington, A.E. Papers and new species of minor insect orders published in Zootaxa, 2001–2020. Zootaxa 2021, 4979, 232–235. [Google Scholar] [CrossRef] [PubMed]
  2. Hastriter, M.W.; Bossard, R.L.; Lewis, R.E. World Flea (Siphonaptera) Species List (Spreadsheet). 2023. Available online: https://esanetworks.org/groups/fleanews (accessed on 1 February 2023).
  3. Beaucournu, J.C.; Gomez-Lopez, M.S. Ordre Siphonaptera. Rev. Ibero Divers. Entomológica 2015, 61B, 1–10. [Google Scholar]
  4. Zhu, Q.; Hastriter, M.W.; Whiting, M.F.; Dittmar, K. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol. Phylogenet. Evol. 2015, 90, 129–139. [Google Scholar] [CrossRef] [PubMed]
  5. Zhang, Y.; Shih, C.; Rasnitsyn, A.P.; Ren, D.; Gao, T. A new flea from the Early Cretaceous of China. Acta Palaeontol. Pol. 2020, 65, 99–107. [Google Scholar] [CrossRef]
  6. Huang, D.; Nel, A.; Cai, C.; Lin, Q.; Engel, M.S. Amphibious flies and paedomorphism in the Jurassic period. Nature 2013, 495, 94–97. [Google Scholar] [CrossRef]
  7. Pielowska, A.; Sontag, E.; Szadziewski, R. Haematophagous arthropods in Baltic amber. Ann. Zool. 2018, 68, 237–249. [Google Scholar] [CrossRef]
  8. Whiting, M.F.; Whiting, A.S.; Hastriter, M.W.; Dittmar, K. A molecular phylogeny of fleas (Insecta: Siphonaptera): Origins and host associations. Cladistics 2008, 24, 677–707. [Google Scholar] [CrossRef]
  9. Tihelka, E.; Giacomelli, M.; Huang, D.; Pisani, D.; Donoghue, P.; Cai, C.Y. Fleas are parasitic scorpionflies. Palaeoentomology 2020, 3, 641–653. [Google Scholar] [CrossRef]
  10. Meusemann, K.; Trautwein, M.; Friedrich, F.; Beutel, R.G.; Wiegmann, B.M.; Donath, A.; Podsiadlowski, L.; Petersen, M.; Niehuis, O.; Mayer, C.; et al. Are fleas highly modified Mecoptera? Phylogenomic resolution of Antliophora (Insecta: Holometabola). BioRxiv 2020, 11, 390666. [Google Scholar]
  11. Zhang, Y.; Fu, Y.T.; Yao, C.; Deng, Y.P.; Nie, Y.; Liu, G.H. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. Parasites Vectors 2022, 15, 223. [Google Scholar] [CrossRef]
  12. Holland, G.P. Evolution, classification, and host relationships of Siphonaptera. Annu. Rev. Entomol. 1964, 9, 123–146. [Google Scholar] [CrossRef]
  13. Medvedev, S.G. Classification of fleas (Order Siphonaptera) and its theoretical foundations. Entomol. Rev. 1998, 78, 1080–1093. [Google Scholar]
  14. Medvedev, S.G. Morphological diversity of the skeletal structures of fleas (Siphonaptera). Part 1: The general characteristic and features of the head. Entomol. Rev. 2015, 95, 852–873. [Google Scholar] [CrossRef]
  15. Marshall, A.G. The Ecology of Ectoparasitic Insects; Academic Press: London, UK, 1981. [Google Scholar]
  16. Rothschild, M. Recent advances in our knowledge of the order Siphonaptera. Annu. Rev. Entomol. 1975, 20, 241–259. [Google Scholar] [CrossRef] [PubMed]
  17. Rothschild, M.; Schlein, Y.; Ito, S. A Colour Atlas of Insect Tissues via the Flea; Wolfe Pub.: Weert, The Netherlands, 1986. [Google Scholar]
  18. Elbel, R.E. Siphonaptera. In Immature Insects; Stehr, F.W., Ed.; Kendall/Hunt Publishing: Dubuque, IA, USA, 1991; Volume 2, pp. 674–689. [Google Scholar]
  19. Linley, J.R.; Benton, A.H.; Day, J.F. Ultrastructure of the eggs of seven flea species (Siphonaptera). J. Med. Entomol. 1994, 31, 813–827. [Google Scholar] [CrossRef] [PubMed]
  20. Pilgrim, R.L.C. External morphology of flea larvae (Siphonaptera) and its significance. Fla. Entomol. 1991, 74, 386–395. [Google Scholar] [CrossRef]
  21. Krasnov, B.R. Functional and Evolutionary Ecology of Fleas; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
  22. Heeb, P.; Kolliker, M.; Richner, H. Bird-ectoparasite interactions, nest humidity, and ectoparasite community structure. Ecology 2000, 81, 958–968. [Google Scholar]
  23. Eads, D.A.; Biggins, D.E. Plague bacterium as a transformer species in prairie dogs and the grasslands of North America. Conserv. Biol. 2015, 29, 1086–1093. [Google Scholar] [CrossRef]
  24. Zwolak, R.; Meagher, S.; Vaughn, J.W.; Dziemian, S.; Crone, E.E. Reduced ectoparasite loads of deer mice in burned forest: From fleas to trees? Ecosphere 2013, 4, 1–10. [Google Scholar] [CrossRef]
  25. Rousseau, J.; Castro, A.; Novo, T.; Maia, C. Dipylidium caninum in the twenty-first century: Epidemiological studies and reported cases in companion animals and humans. Parasites Vectors 2022, 15, 131. [Google Scholar] [CrossRef]
  26. Cooke, B.D. Fifty-year review: European rabbit fleas, Spilopsyllus cuniculi (Dale, 1878) (Siphonaptera: Pulicidae), enhanced the efficacy of myxomatosis for controlling Australian rabbits. Wildl. Res. 2022, 50, 4–15. [Google Scholar] [CrossRef]
  27. Durden, L.A.; Hinkle, N.C. Fleas (Siphonaptera). In Medical and Veterinary Entomology, 3rd ed.; Academic Press: London, UK, 2019; pp. 145–169. [Google Scholar]
  28. Medvedev, S.G. Specific features of the distribution and host associations of fleas (Siphonaptera). Entomol. Rev. 2002, 82, 1165–1177. [Google Scholar]
  29. Linardi, P.M.; Santos, J.L.C. Ctenocephalides felis felis vs. Ctenocephalides canis (Siphonaptera: Pulicidae): Some issues in correctly identifying these species. Rev. Bras. Parasitol. Vet. 2012, 21, 345–354. [Google Scholar] [CrossRef] [PubMed]
  30. Diamond, J.M. Colonization of exploded volcanic islands by birds: The supertramp strategy. Science 1974, 184, 803–806. [Google Scholar] [CrossRef]
  31. Wilson, E.O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 1961, 95, 169–193. [Google Scholar] [CrossRef]
  32. Ricklefs, R.E.; Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 2002, 11, 353–361. [Google Scholar] [CrossRef]
  33. Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History): Volume V: Leptopsyllidae and Ancistropsyllidae; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
  34. Mennecart, B.; Wazir, W.A.; Sehgal, R.K.; Patnaik, R.; Singh, N.P.; Kumar, N.; Nanda, A.C. New remains of Nalamaeryx (Tragulidae, Mammalia) from the Ladakh Himalaya and their phylogenetical and palaeoenvironmental implications. Hist. Biol. 2022, 34, 2295–2303. [Google Scholar] [CrossRef]
  35. Nguyen, A.; Tran, V.B.; Hoang, D.M.; Nguyen, T.A.M.; Nguyen, D.T.; Tran, V.T.; Long, B.; Meijaard, E.; Holland, J.; Wilting, A.; et al. Camera-trap evidence that the silver-backed chevrotain Tragulus versicolor remains in the wild in Vietnam. Nat. Ecol. Evol. 2019, 3, 1650–1654. [Google Scholar] [CrossRef]
  36. Traub, R.; Rothschild, M.; Haddow, J.F. The Rothschild Collection of Fleas. The Ceratophyllidae: Key to the Genera and Host Relationships; Academic Press: New York, NY, USA, 1983. [Google Scholar]
  37. Whitehead, M.D.; Burton, H.R.; Bell, P.J.; Arnould, J.p.Y.; Rounsevell, D.E. A further contribution on the biology of the Antarctic flea, Glaciopsyllus antarcticus (Siphonaptera: Ceratophyllidae). Polar Biol. 1991, 11, 379–383. [Google Scholar] [CrossRef]
  38. Uhart, M.M.; Gallo, L.; Quintana, F. Review of diseases (pathogen isolation, direct recovery and antibodies) in albatrosses and large petrels worldwide. Bird Conserv. Int. 2018, 28, 169–196. [Google Scholar] [CrossRef]
  39. Vanstreels, R.E.T.; Palma, R.L.; Mironov, S.V. Arthropod parasites of Antarctic and Subantarctic birds and pinnipeds: A review of host-parasite associations. Int. J. Parasitol. Parasites Wildl. 2020, 12, 275–290. [Google Scholar] [CrossRef]
  40. Krasnov, B.R.; Shenbrot, G.I.; Khokhlova, I.S. Historical biogeography of fleas: The former Bering Land Bridge and phylogenetic dissimilarity between the Nearctic and Palearctic assemblages. Parasitol. Res. 2015, 114, 1677–1686. [Google Scholar] [CrossRef]
  41. Schelhaas, D.P.; Larson, O.R. Cold hardiness and winter survival in the bird flea, Ceratophyllus idius. J. Insect Physiol. 1989, 35, 149–153. [Google Scholar] [CrossRef]
  42. Bossard, R.L. Thermal niche partitioning and phenology of Nearctic and Palearctic flea (Siphonaptera) communities on rodents (Mammalia: Rodentia) from five ecoregions. J. Vector Ecol. 2022, 47, 217–226. [Google Scholar] [CrossRef] [PubMed]
  43. Medvedev, S.G. Geographical distribution of families of fleas (Siphonaptera). Entomol. Rev. 1996, 76, 978–992. [Google Scholar]
  44. Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus (Jordan & Rothschild 1912) as a junior synonym of Nosopsyllus fasciatus (Bosc, d’Antic 1800). Insect Syst. Evol. 2018, 49, 81–101. [Google Scholar]
  45. Appelgren, A.S.C.; Saladin, V.; Richner, H.; Doligez, B.; McCoy, K.D. Gene flow and adaptive potential in a generalist ectoparasite. BMC Evol. Biol. 2018, 18, 99. [Google Scholar] [CrossRef] [PubMed]
  46. Gaponov, S.P.; Tehuelde, R.T. Fleas Siphonaptera in bird nests in Voronezh urban systems. Russian J. Ornithol. 2022, 31, 3196–3199. [Google Scholar]
  47. Pawełczyk, O.; Postawa, T.; Blaski, M.; Solarz, K. Morphology reveals the unexpected cryptic diversity in Ceratophyllus gallinae (Schrank, 1803) infested Cyanistes caeruleus Linnaeus, 1758 nest boxes. Acta Parasitol. 2020, 65, 874–881. [Google Scholar] [CrossRef]
  48. Marshall, A.G.; Nelson, B.G. Bird ectoparasites from South Farallon Island, California. J. Med. Entomol. 1967, 4, 335–338. [Google Scholar] [CrossRef]
  49. Kwak, M.L.; Heath, A.C.G.; Palma, R.L. Saving the Manx shearwater flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The road to developing a recovery plan for a threatened ectoparasite. Acta Parasitol. 2019, 64, 903–910. [Google Scholar] [CrossRef] [PubMed]
  50. Kwak, M.L.; Heath, A.C.G.; Palma, R.L. Correction to: Saving the Manx shearwater flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The road to developing a recovery plan for a threatened ectoparasite. Acta Parasitol. 2019, 64, 957–958. [Google Scholar] [CrossRef]
  51. Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History). Volume II: Coptopsyllidae, Vermipsyllidae, Stephanocircidae, Ischnopsyllidae, Hypsophthalmidae and Xiphiopsyllidae; Cambridge University Press: Cambridge, UK, 1956. [Google Scholar]
  52. Harmsen, R.; Jabbal, I. Distribution and host-specificity of a number of fleas collected in south and central Kenya. J. East Afr. Nat. Hist. 1968, 117, 157–167. [Google Scholar]
  53. Beaucournu, J.C.; Horak, I.G.; Fourie, L.J. Fleas of elephant shrews (Mammalia, Macroscelididae), and a new host and locality record for Macroscelidopsylla albertyni De Meillon & Marcus, 1958 (Siphonaptera, Chimaeropsyllidae). Onderstepoort J. Vet. Res. 2003, 70, 251–253. [Google Scholar] [PubMed]
  54. Heritage, S.; Rayaleh, H.; Awaleh, D.G.; Rathbun, G.B. New records of a lost species and a geographic range expansion for sengis in the Horn of Africa. PeerJ 2020, 8, e9652. [Google Scholar] [CrossRef] [PubMed]
  55. Launay, H.; Beaucournu, J. Coptopsyllidae (Siphonaptera) Africaines: Reparition, morphologie, statut taxonomique et relations phyletiques avec les autres representants de la famille. Parasite 1987, 62, 159–173. [Google Scholar] [CrossRef]
  56. Maleki-Ravasan, N.; Solhjouy-Fard, S.; Beaucournu, J.C.; Laudisoit, A.; Mostafavi, E. The fleas (Siphonaptera) in Iran: Diversity, host range, and medical importance. PLoS Negl. Trop. Dis. 2017, 11, e0005260. [Google Scholar] [CrossRef] [PubMed]
  57. Koshel, E.I.; Aleshin, V.V.; Eroshenko, G.A.; Kutyrev, V.V. Phylogenetic analysis of entomoparasitic nematodes, potential control agents of flea populations in natural foci of plague. BioMed Res. Int. 2014, 2014, 135218. [Google Scholar] [CrossRef]
  58. Beaucournu, J.C.; Launay, H.; Sklair, A. Les anomalies des spermathèques et des conduits génitaux chez les Siphonaptères (Insecta): Revue bibliographique et cas personnels. Ann. Parasitol. Hum. Comp. 1988, 63, 64–75. [Google Scholar] [CrossRef]
  59. Barnes, A.M.; Tipton, V.J.; Wildie, J.A. The subfamily Anomiopsyllinae (Hystrichopsyllidae: Siphonaptera). I. A revision of the genus Anomiopsyllus Baker. Great Basin Nat. 1977, 37, 138–206. [Google Scholar] [CrossRef]
  60. Medvedev, S.G. Adaptations of fleas (Siphonaptera) to parasitism. Entomol. Rev. 2017, 97, 1023–1030. [Google Scholar] [CrossRef]
  61. Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History). Volume III: Hystrichopsyllidae; Cambridge University Press: Cambridge, UK, 1962. [Google Scholar]
  62. Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History). Volume IV: Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and Listroopsyllinae); Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
  63. Tulis, F.; Ševčík, M.; Jánošíková, R.; Baláž, I.; Ambros, M.; Zvaríková, L.; Horváth, G. The impact of the striped field mouse’s range expansion on communities of native small mammals. Sci. Rep. 2023, 13, 753. [Google Scholar] [CrossRef] [PubMed]
  64. Elbel, R.E.; Bossard, R.L. Observations and larval descriptions of fleas (Siphonaptera: Ceratophyllidae, Ctenophthalmidae, Ishnopsyllidae) of the southern flying squirrel, little brown bat, and Brazilian free-tailed bat (Mammalia: Rodentia, Chiroptera). J. Med. Entomol. 2007, 44, 915–922. [Google Scholar] [CrossRef] [PubMed]
  65. Bossard, R.L. Mammal and flea relationships in the Great Basin Desert: From H.J. Egoscue’s collections. J. Parasitol. 2006, 92, 260–266. [Google Scholar] [CrossRef]
  66. Hastriter, M.W.; Miller, K.B.; Svenson, G.J.; Martin, G.J.; Whiting, M.F. New record of a phonetic flea associated with earwigs (Dermaptera, Arixeniidae) and a redescription of the bat flea Lagaropsylla signata (Siphonaptera, Ischnopsyllidae). ZooKeys 2017, 657, 67–79. [Google Scholar] [CrossRef] [PubMed]
  67. Szentiványi, T.; Markotter, W.; Dietrich, M.; Clément, L.; Ançay, L.; Brun, L.; Genzoni, E.; Kearney, T.; Seamark, E.; Estók, P.; et al. Host conservation through their parasites: Molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. Parasite 2020, 27, 72. [Google Scholar] [CrossRef]
  68. Lewis, R.E. Résumé of the Siphonaptera (Insecta) of the world. J. Med. Entomol. 1998, 35, 377–389. [Google Scholar] [CrossRef] [PubMed]
  69. Zurita, A.; Rivero, J.; García-Sánchez, Á.M.; Callejón, R.; Cutillas, C. Morphological, molecular and phylogenetic characterization of Leptopsylla segnis and Leptopsylla taschenbergi (Siphonaptera). Zool. Scr. 2022, 51, 741–754. [Google Scholar] [CrossRef]
  70. Guernier, V.; Lagadec, E.; LeMinter, G.; Licciardi, S.; Balleydier, E.; Pagès, F.; Laudisoit, A.; Dellagi, K.; Tortosa, P. Fleas of small mammals on Reunion Island: Diversity, distribution and epidemiological consequences. PLoS Negl. Trop. Dis. 2014, 4, e3129. [Google Scholar] [CrossRef]
  71. Williams, B. Mandibular glands in the endoparasitic larva of Uropsylla tasmanica Rothschild (Siphonaptera: Pygiopsyllidae). Int. J. Insect Morphol. Embryol. 1986, 15, 263–268. [Google Scholar] [CrossRef]
  72. Williams, B. Adaptations to endoparasitism in the larval integument and respiratory system of the flea Uropsylla tasmanica Rothschild (Siphonaptera: Pygiopsyllidae). Aust. J. Zool. 1991, 39, 77–90. [Google Scholar] [CrossRef]
  73. Medvedev, S.G. Morphological diversity of the skeletal structures of fleas (Siphonaptera). Part 2: The general characteristic and features of the thorax. Entomol. Rev. 2016, 96, 28–50. [Google Scholar] [CrossRef]
  74. Hastriter, M.W. Description of Wilsonipsylla spinicoxa, new genus and species of flea from Papua New Guinea and review of the suborder Pygiopsyllomorpha (Insecta: Siphonaptera). Ann. Carnegie Mus. 2012, 81, 19–32. [Google Scholar] [CrossRef]
  75. Steventon, C.; Harley, D.; Wicker, L.; Legione, A.R.; Devlin, J.M.; Hufschmid, J. An assessment of ectoparasites across highland and lowland populations of Leadbeater’s possum (Gymnobelideus leadbeateri): Implications for genetic rescue translocations. Int. J. Parasitol. Parasites Wildl. 2022, 18, 152–156. [Google Scholar] [CrossRef] [PubMed]
  76. Wait, L.F.; Peck, S.; Fox, S.; Power, M.L. A review of parasites in the Tasmanian devil (Sarcophilus harrisii). Biodivers. Conserv. 2017, 26, 509–526. [Google Scholar] [CrossRef]
  77. Kwak, M.L.; Hastriter, M.W. The Australian giant fleas Macropsylla Rothschild, 1905 (Siphonaptera: Macropsyllidae: Macropsyllinae), their identification, evolution, ecology, and conservation biology. Syst. Parasitol. 2020, 97, 107–118. [Google Scholar] [CrossRef] [PubMed]
  78. Kwak, M.L. Australia’s vanishing fleas (Insecta: Siphonaptera): A case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 2018, 22, 545–550. [Google Scholar] [CrossRef]
  79. Lareschi, M.; Sanchez, J.P.; Autino, A. A review of the fleas (Insecta- Siphonaptera) from Argentina. Zootaxa 2016, 4103, 239–258. [Google Scholar] [CrossRef]
  80. Ezquiaga, M.C.; Lareschi, M. Surface ultrastructure of the eggs of Malacopsylla grossiventris and Phthiropsylla agenoris (Siphonaptera: Malacopsyllidae). J. Parasitol. 2012, 98, 1029–1031. [Google Scholar] [CrossRef]
  81. Linardi, P.M.; Beaucournu, J.C.; de Avelar, D.M.; Belaz, S. Notes on the genus Tunga (Siphonaptera: Tungidae) II—Neosomes, morphology, classification, and other taxonomic notes. Parasite 2014, 21, 68. [Google Scholar] [CrossRef]
  82. Smit, F.G.A.M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History): Volume VII: Malacopsylloidea; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
  83. Zurita, A.; Lareschi, M.; Cutillas, C. New insights into the taxonomy of Malacopsylloidea superfamily (Siphonaptera) based on morphological, molecular and phylogenetic characterization of Phthiropsylla agenoris (Malacopsyllidae) and Polygenis (Polygenis) rimatus (Rhopalopsyllidae). Diversity 2023, 15, 308. [Google Scholar] [CrossRef]
  84. Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological, biometrical and molecular characterization of Archaeopsylla erinacei (Bouché, 1835). Bull. Entomol. Res. 2018, 108, 726–738. [Google Scholar] [CrossRef]
  85. Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History). Volume I: Tungidae and Pulicidae; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
  86. Clark, N.J.; Seddon, J.M.; Šlapeta, J.; Wells, K. Parasite spread at the domestic animal-wildlife interface: Anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals. Parasites Vectors 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
  87. Crkvencic, N.; Šlapeta, J. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia. Parasites Vectors 2019, 12, 137. [Google Scholar] [CrossRef] [PubMed]
  88. Hornok, S.; Beck, R.; Farkas, R.; Grima, A.; Otranto, D.; Kontschán, J.; Takács, N.; Horváth, G.; Szőke, K.; Szekeres, S.; et al. High mitochondrial sequence divergence in synanthropic flea species (Insecta: Siphonaptera) from Europe and the Mediterranean. Parasites Vectors 2018, 11, 221. [Google Scholar] [CrossRef]
  89. Lawrence, A.L.; Brown, G.K.; Peters, B.; Spielman, D.S.; Morin-Adeline, M.; Slapeta, J. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Med. Vet. Entomol. 2014, 28, 330–336. [Google Scholar] [CrossRef]
  90. Lawrence, A.L.; Webb, C.E.; Clark, N.J.; Halajian, A.; Mihalca, A.D.; Miret, J.; D’Amico, G.; Brown, G.; Kumsa, B.; Modrý, D.; et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: The hitchhiker’s guide to world domination. Int. J. Parasites 2019, 49, 321–336. [Google Scholar] [CrossRef]
  91. Azrizal-Wahid, N.; Sofian-Azirun, M.; Low, V.L. New insights into the haplotype diversity of the cosmopolitan cat flea Ctenocephalides felis (Siphonaptera: Pulicidae). Vet. Parasitol. 2020, 281, 109102. [Google Scholar] [CrossRef] [PubMed]
  92. Driscoll, T.P.; Verhoeve, V.I.; Gillespie, J.J.; Johnston, J.S.; Guillotte, M.L.; Rennoll-Bankert, K.E.; Rahman, M.S.; Hagen, D.; Elsik, C.G.; Macaluso, K.R.; et al. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol. 2020, 18, 70. [Google Scholar] [CrossRef] [PubMed]
  93. van der Mescht, L.; Matthee, S.; Matthee, C.A. New taxonomic and evolutionary insights relevant to the cat flea, Ctenocephalides felis: A geographic perspective. Mol. Phylogenet. Evol. 2021, 155, 106990. [Google Scholar] [CrossRef]
  94. Zhang, Y.; Nie, Y.; Deng, Y.; Liu, G.; Fu, Y. The complete mitochondrial genome sequences of the cat flea Ctenocephalides felis felis (Siphonaptera: Pulicidae) support the hypothesis that C. felis isolates from China and USA were the same C. f. felis subspecies. Acta Trop. 2021, 217, 105880. [Google Scholar] [CrossRef] [PubMed]
  95. Feyereisen, R. The P450 genes of the cat flea, Ctenocephalides felis: A CYPome in flux. Curr. Res. Insect Sci. 2022, 2, 100032. [Google Scholar] [CrossRef]
  96. García-Sánchez, A.M.; Zurita, A.; Cutillas, C. Morphometrics as a complementary tool in the differentiation of two cosmopolitan flea species: Ctenocephalides felis and Ctenocephalides canis. Insects 2022, 13, 707. [Google Scholar] [CrossRef] [PubMed]
  97. Zhang, Y.; Nie, Y.; Li, L.Y.; Chen, S.Y.; Liu, G.H.; Liu, W. Population genetics and genetic variation of Ctenocephalides felis and Pulex irritans in China by analysis of nuclear and mitochondrial genes. Parasites Vectors 2022, 15, 266. [Google Scholar] [CrossRef]
  98. Lawrence, A.L.; Hii, S.F.; Jirsová, D.; Panáková, L.; Ionică, A.M.; Gilchrist, K.; Modrý, D.; Mihalca, A.D.; Webb, C.E.; Traub, R.J.; et al. Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe. Vet. Parasitol. 2015, 210, 215–223. [Google Scholar] [CrossRef] [PubMed]
  99. Boughton, R.K.; Atwell, J.W.; Schoech, S.J. An introduced generalist parasite, the sticktight flea (Echidnophaga gallinacea), and its pathology in the threatened Florida scrub-jay (Aphelocoma coerulescens). J. Parasitol. 2006, 92, 941–948. [Google Scholar] [CrossRef]
  100. Buckland, P.C.; Sadler, J.P. A biogeography of the human flea, Pulex irritans L. (Siphonaptera: Pulicidae). J. Biogeogr. 1989, 16, 115–120. [Google Scholar] [CrossRef]
  101. Lareschi, M.; Venzal, J.M.; Nava, S.; Mangold, A.J.; Portillo, A.; Palomar Urbina, A.M.; Oteo Revuelta, J.A. The human flea Pulex irritans Linnaeus, 1758 (Siphonaptera: Pulicidae) and an investigation of Bartonella and Rickettsia in northwestern Argentina. Rev. Mex. Biodivers. 2018, 89, 375–381. [Google Scholar]
  102. Zurita, A.; Callejón, R.; Urdapilleta, M.; Lareschi, M.; Cutillas, C. Origin, evolution, phylogeny and taxonomy of Pulex irritans (Siphonaptera: Pulicidae). Med. Vet. Entomol. 2019, 33, 296–311. [Google Scholar] [CrossRef]
  103. Wei, F.; Jia, X.; Wang, Y.; Yang, Y.; Wang, J.; Gao, C.; Wang, Y. The complete mitochondrial genome of Xenopsylla cheopis (Siphonaptera: Pulicidae). Mitochondrial DNA B Resour. 2022, 7, 170–171. [Google Scholar] [CrossRef]
  104. Boyer, S.; Gillespie, T.R.; Miarinjara, A. Xenopsylla cheopis (rat flea). Trends Parasitol. 2022, 38, 607–608. [Google Scholar] [CrossRef]
  105. Dean, K.R.; Krauer, F.; Walløe, L.; Lingjærde, O.C.; Bramanti, B.; Stenseth, N.C.; Schmid, B.V. Human ectoparasites and spread of plague in Europe. Proc. Natl. Acad. Sci. USA 2018, 115, 1304–1309. [Google Scholar] [CrossRef]
  106. Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef] [PubMed]
  107. Mardon, D.K. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Natural History). Volume VI: Pygiopsyllidae; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
  108. Baker, R.T.; Beveridge, I. Imidacloprid treatment of marsupials for fleas (Pygiopsylla hoplia). J. Zoo Wildl. Med. 2001, 32, 391–392. [Google Scholar] [PubMed]
  109. Durden, L.A.; Beaucournu, J.C. Gymnomeropsylla n. gen. (Siphonaptera: Pygiopsyllidae) from Sulawesi, Indonesia, with the description of two new species. Parasite 2002, 9, 225–232. [Google Scholar] [CrossRef]
  110. Durden, L.A.; Beaucournu, J.C. Three new fleas from Sulawesi, Indonesia (Siphonaptera: Pygiopsyllidae & Ceratophyllidae). Parasite 2006, 13, 215–226. [Google Scholar] [PubMed]
  111. Beaucournu, J.C.; Wells, K. Three new species of the genus Medwayella Traub, 1972 (Insecta: Siphonaptera: Pygiopsyllidae) from Sabah (eastern Malaysia, Borneo). Parasite 2004, 4, 373–377. [Google Scholar] [CrossRef]
  112. López-Berrizbeitia, M.F.; Hastriter, M.W.; Barquez, R.M.; Mónica Díaz, M. A new flea of the genus Ctenidiosomus (Siphonaptera, Pygiopsyllidae) from Salta Province, Argentina. ZooKeys 2015, 512, 109–120. [Google Scholar] [CrossRef]
  113. Hastriter, M.W. Fleas (Siphonaptera: Pygiopsyllomorpha) of Papua New Guinea and Papua province (Indonesia). Part VI. Bibikovana, Geohollandia, and Hoogstraalia (Pygiopsyllidae: Pygiopsyllinae), with descriptions of four new species. Ann. Carnegie Mus. 2021, 87, 37–77. [Google Scholar] [CrossRef]
  114. Hastriter, M.W. Records of fleas (Siphonaptera) from Australia, Malaysia, and Papua New Guinea with the description of a new species of Bibikovana Traub, 1980 (Pygiopsyllidae). Ann. Carnegie Mus. 2021, 87, 117–137. [Google Scholar] [CrossRef]
  115. Kwak, M.L.; Madden, C.; Wicker, L. The first record of the native flea Acanthopsylla Rainbow, 1905 (Siphonaptera: Pygiopsyllidae) from the endangered Tasmanian devil (Sarcophilus harrisii, 1841), with a review of the fleas associated with the Tasmanian devil. Aust. J. Entomol. 2017, 44, 293–296. [Google Scholar]
  116. Urdapilleta, M.; Lamattina, D.; Burgos, E.F.; Salomón, O.D.; Lareschi, M. Specificity of fleas associated with opposums in a landscape gradient in the Paranaense Rainforest Ecoregion. Zootaxa 2023, 5264, 579–586. [Google Scholar] [CrossRef]
  117. Mazzamuto, M.V.; Pisanu, B.; Romeo, C.; Ferrari, N.; Preatoni, D.; Wauters, L.A.; Chapuis, J.L.; Martinoli, A. Poor parasite community of an invasive alien species: Macroparasites of Pallas’s squirrel in Italy. Ann. Zool. Fenn. 2016, 53, 103–112. [Google Scholar] [CrossRef]
  118. Gozzi, A.C.; Lareschi, M.; Navone, G.; Guichon, M.L. The enemy release hypothesis and Callosciurus erythraeus in Argentina: Combining community and biogeographical parasitological studies. Biol. Invasions 2020, 22, 3519–3531. [Google Scholar] [CrossRef]
  119. Zurita, A.; Callejón, R.; de Rojas, M.; Gómez-López, M.S.; Cutillas, C. Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: Taxonomy and phylogeny. Bull. Entomol. Res. 2015, 104, 704–711. [Google Scholar] [CrossRef] [PubMed]
  120. Zurita, A.; García-Sánchez, Á.M.; Cutillas, C. Comparative molecular and morphological study of Stenoponia tripectinata tripectinata (Siphonaptera: Stenoponiidae) from the Canary Islands and Corsica. Bull. Entomol. Res. 2022, 112, 681–690. [Google Scholar] [CrossRef]
  121. Medvedev, S.G. The Palaearctic centers of taxonomic diversity of fleas (Siphonaptera). Entomol. Rev. 2014, 94, 345–358. [Google Scholar] [CrossRef]
  122. Krasnov, B.R.; Burdelova, N.V.; Shenbrot, G.I.; Khokhlova, I.S. Annual cycles of four flea species in the central Negev desert. Med. Vet. Entomol. 2002, 16, 266–276. [Google Scholar] [CrossRef]
  123. Smit, F.G.A.M. The male of Stephanopsylla thomasi (Siphonaptera: Macropsyllidae). Entomol. Ber. 1973, 33, 215–217. [Google Scholar]
  124. Traub, R. Smitella thambetosa, n. gen. and n. sp., a remarkable “helmeted flea” from New Guinea (Siphonaptera, Pygiopsyllidae) with notes on convergent evolution. J. Med. Entomol. 1968, 5, 375–404. [Google Scholar] [CrossRef] [PubMed]
  125. Traub, R. The zoogeography of fleas (Siphonaptera) as supporting the theory of continental drift. J. Med. Ent. 1972, 9, 584–589. [Google Scholar]
  126. Beaucournu, J.C.; Moreno, L.; González-Acuña, D. Fleas (Insecta-Siphonaptera) of Chile: A review. Zootaxa 2014, 3900, 151–203. [Google Scholar] [CrossRef] [PubMed]
  127. López-Berrizbeitia, M.F.; Acosta-Gutiérrez, R.; Díaz, M.M. Fleas of mammals and patterns of distributional congruence in northwestern Argentina: A preliminary biogeographic analysis. Heliyon 2020, 6, e04871. [Google Scholar] [CrossRef]
  128. Hastriter, M.W.; Bush, S.E. Description of Medwayella independencia (Siphonaptera, Stivaliidae), a new species of flea from Mindanao Island, the Philippines and their phoretic mites, and miscellaneous flea records from the Malay Archipelago. Zookeys 2014, 408, 107–123. [Google Scholar] [CrossRef]
  129. Mardon, D.K.; Durden, L.A. Musserellus gen. nov., and five new species of fleas (Siphonaptera: Stivaliidae) from murid rodents in Sulawesi and West Papua, Indonesia. J. Med. Entomol. 2016, 53, 541–552. [Google Scholar] [CrossRef] [PubMed]
  130. Holland, G.P. Contribution towards a monograph of the fleas of New Guinea. Memoirs Entomol. Soc. Can. 1969, 101, 5–148. [Google Scholar] [CrossRef]
  131. Beaucournu, J.C.; Degeilh, B.; Mergey, T.; Muñoz-Leal, S.; González-Acuña, D. Le genre Tunga Jarocki, 1838 (Siphonaptera: Tungidae). I—Taxonomie, phylogenie, ecologie, role pathogene. Parasite 2012, 19, 297–308. [Google Scholar] [CrossRef]
  132. Ezquiaga, M.C.; Linardi, P.M.; De Avelar, D.M.; Lareschi, M. A new species of Tunga perforating the osteoderms of its armadillo host in Argentina and redescription of the male of Tunga terasma. Med. Vet. Entomol. 2015, 29, 196–204. [Google Scholar] [CrossRef]
  133. De Lima, F.C.G.; De Oliveira Porpino, K. Ectoparasitism and infections in the exoskeletons of large fossil cingulates. PLoS ONE 2018, 13, e0205656. [Google Scholar] [CrossRef]
  134. Tomassini, R.L.; Montalvo, C.I.; Ezquiaga, M.C. The oldest record of flea/armadillos interaction as example of bioerosion on osteoderms from the late Miocene of the Argentine pampas. Int. J. Paleopathol. 2016, 15, 65–68. [Google Scholar] [CrossRef]
  135. Moura, J.F.; Nascimento, C.S.I.; de Barros, G.E.B.; Robbi, B.; Fernandes, M.A. Damaged armour: Ichnotaxonomy and paleoparasitology of bioerosion lesions in osteoderms of Quaternary extinct armadillos. J. South Am. Earth Sci. 2021, 109, 103255. [Google Scholar] [CrossRef]
  136. Nascimento, C.S.I.; Moura, J.F.; Robbi, B.; Fernandes, M.A. Lesions in osteoderms of pampatheres (Mammalia, Xenarthra, Cingulata) possibly caused by fleas. Acta Trop. 2020, 211, 105614. [Google Scholar] [CrossRef]
  137. Ramírez-Chaves, H.E.; Tamayo-Zuluaga, A.F.; Henao-Osorio, J.J.; Cardona-Giraldo, A.; Ossa-López, P.A.; Rivera-Páez, F.A. The chiggerflea Hectopsylla pulex (Siphonaptera: Tungidae): Infestation on Molossus molossus (Chiroptera: Molossidae) in the central Andes of Colombia. Zoologia 2020, 37, 1–5. [Google Scholar] [CrossRef]
  138. Feldmeier, H.; Heukelbach, J.; Ugbomoiko, U.S.; Sentongo, E.; Mbabazi, P.; von Samson-Himmelstjerna, G.; Krantz, I. Tungiasis —A neglected disease with many challenges for global public health. PLoS Negl. Trop. Dis. 2014, 8, e3133. [Google Scholar] [CrossRef] [PubMed]
  139. Linardi, P.M.; De Avelar, D.M.; Facury Filho, E.J. Establishment of Tunga trimamillata (Siphonaptera: Tungidae) in Brazil. Parasitol. Res. 2013, 112, 3239–3242. [Google Scholar] [CrossRef] [PubMed]
  140. Deka, M.A.; Heukelbach, J. Distribution of tungiasis in Latin America: Identification of areas for potential disease transmission using an ecological niche model. Lancet Reg. Health Am. 2022, 5, 100080. [Google Scholar] [CrossRef] [PubMed]
  141. Dos Santos, K.C.; Brandão Guedes, P.E.; Teixeira, J.B.d.C.; Harvey, T.V.; Carlos, R.S.A. Treatment of animal tungiasis: What’s new? Trop. Med. Infect. Dis. 2023, 8, 142. [Google Scholar] [CrossRef] [PubMed]
  142. Oliver, G.V.; Eckerlin, R.P. Fleas (Siphonaptera) from the puma, Puma concolor (Carnivora: Felidae), a rangewide review and new records from Utah and Texas, USA. J. Med. Entomol. 2022, 59, 2045–2052. [Google Scholar] [CrossRef]
  143. Milishnikov, A.N.; Lavrenchenko, L.A.; Aniskin, V.M.; Varshavskiĭ, A.A. Analysis of allozyme variability in populations of three species of brush-haired mice of species Lophuromys (Rodentia, Muridae) from the Bale Mountains National Park in Ethiopia. Genetika 2000, 36, 1697–1706. [Google Scholar]
  144. Verheyen, E.; Lavrenchenko, L.; Dando, T. Lophuromys brevicaudus. In IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2020; p. e.T45058A22407828. [Google Scholar]
  145. Stephens, P.R.; Altizer, S.; Smith, K.F.; Alonso Aguirre, A.; Brown, J.H.; Budischak, S.A.; Byers, J.E.; Dallas, T.A.; Davies, T.J.; Drake, J.M.; et al. The macroecology of infectious diseases: A new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 2016, 19, 1159–1171. [Google Scholar] [CrossRef]
  146. Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
  147. Durden, L.A.; Bermúdez, S.; Vargas, G.A.; Sanjur, B.E.; Gillen, L.; Brown, L.D.; Greiman, S.E.; Eremeeva, M.E. Fleas (Siphonaptera) parasitizing peridomestic and indigenous mammals in Panamá and screening of selected fleas for vector-borne bacterial pathogens. J. Med. Entomol. 2021, 58, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
  148. Lefèvre, T.; Sauvion, N.; Almeida, R.P.P.; Fournet, F.; Alout, H. The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends Parasitol. 2022, 38, 404–418. [Google Scholar] [CrossRef] [PubMed]
  149. Zurita, A.; Benkacimi, L.; El Karkouri, K.; Cutillas, C.; Parola, P.; Laroche, M. New records of bacteria in different species of fleas from France and Spain. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101648. [Google Scholar] [CrossRef]
  150. Graham, C.B.; Eisen, R.J.; Belthoff, J.R. Detecting burrowing owl bloodmeals in Pulex irritans (Siphonaptera: Pulicidae). J. Med. Entomol. 2016, 53, 446–450. [Google Scholar] [CrossRef] [PubMed]
  151. Goldberg, A.R.; Conway, C.J.; Biggins, D.E. Flea sharing among sympatric rodent hosts: Implications for potential plague effects on a threatened sciurid. Ecosphere 2020, 11, e03033. [Google Scholar] [CrossRef]
  152. Elzinga, D.C.; Stowe, S.R.; Leland Russell, F. Modeling control methods to manage the sylvatic plague in black-tailed prairie dog towns. Nat. Resour. Model. 2020, 33, e12255. [Google Scholar] [CrossRef]
  153. Espinaze, M.P.A.; Hui, C.; Waller, L.; Matthee, S. Nest-type associated microclimatic conditions as potential drivers of ectoparasite infestations in African penguin nests. Parasitol. Res. 2020, 119, 3603–3616. [Google Scholar] [CrossRef]
  154. Liccioli, S.; Stephens, T.; Wilson, S.C.; McPherson, J.M.; Keating, L.M.; Antonation, K.S.; Bollinger, T.K.; Corbett, C.R.; Gummer, D.L.; Lindsay, L.R.; et al. Enzootic maintenance of sylvatic plague in Canada’s threatened black-tailed prairie dog ecosystem. Ecosphere 2020, 11, e03138. [Google Scholar] [CrossRef]
  155. Portas, T.J.; Evans, M.J.; Spratt, D.; Vaz, P.K.; Devlin, J.M.; Barbosa, A.D.; Wilson, B.A.; Rypalski, A.; Wimpenny, C.; Fletcher, D.; et al. Baseline health and disease assessment of founder eastern quolls (Dasyurus viverrinus) during a conservation translocation to mainland Australia. J. Wildl. Dis. 2020, 56, 547–559. [Google Scholar] [CrossRef]
  156. Livieri, T.M.; Forrest, S.C.; Matchett, M.R.; Breck, S.W. Conserving endangered blackfooted ferrets: Biological threats, political challenges, and lessons learned. In Imperiled: The Encyclopedia of Conservation; U.S. Department of Agriculture: Washington, DC, USA, 2022; Volume 1–3, pp. 458–470. [Google Scholar]
  157. Dunlop, J.A.; Watson, M.J. The hitchhiker’s guide to Australian conservation: A parasitological perspective on fauna translocations. Austral. Ecol. 2022, 47, 748–764. [Google Scholar] [CrossRef]
  158. Fontaine, B.; van Achterberg, K.; Alonso-Zarazaga, M.A.; Araujo, R.; Asche, M.; Aspöck, H.; Aspöck, U.; Audisio, P.; Aukema, B.; Bailly, N.; et al. New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE 2012, 7, e36881. [Google Scholar] [CrossRef] [PubMed]
  159. Carlson, C.J.; Hopkins, S.; Bell, K.C.; Doña, J.; Godfrey, S.S.; Kwak, M.L.; Lafferty, K.D.; Moir, M.L.; Speer, K.A.; Strona, G.; et al. A global parasite conservation plan. Biol. Conserv. 2020, 250, 108596. [Google Scholar] [CrossRef]
  160. Galbreath, K.E.; Hoberg, E.P.; Cook, J.A.; Armién, B.; Bell, K.C.; Campbell, M.L.; Dunnum, J.L.; Dursahinhan, A.T.; Eckerlin, R.P.; Gardner, S.L.; et al. Building an integrated infrastructure for exploring biodiversity: Field collections and archives of mammals and parasites. J. Mammal. 2019, 100, 382–393. [Google Scholar] [CrossRef] [PubMed]
  161. Galloway, T.D. Biodiversity of ectoparasites: Lice (Phthiraptera) and fleas (Siphonaptera). J. Insect Biodivers. Syst. 2018, 2, 457–482. [Google Scholar]
  162. Kwak, M.L.; Heath, A.C.G.; Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 2020, 248, 108696. [Google Scholar] [CrossRef]
  163. López-Pérez, A.M.; Gage, K.; Rubio, A.V.; Montenieri, J.; Orozco, L.; Suzan, G. Drivers of flea (Siphonaptera) community structure in sympatric wild carnivores in northwestern Mexico. J. Vector Ecol. 2018, 43, 15–25. [Google Scholar] [CrossRef] [PubMed]
  164. Orlova, M.V.; Orlov, O.L. Conservation of parasitic animal species: Problems and perspectives. Nat. Conserv. Res. 2019, 4, 1–21. [Google Scholar] [CrossRef]
  165. Small, E. In defence of the world’s most reviled invertebrate ‘bugs’. Biodiversity 2019, 20, 168–221. [Google Scholar] [CrossRef]
  166. Urdapilleta, M.; Linardi, P.M.; Lareschi, M. Fleas associated with sigmodontine rodents and marsupials from the Paranaense Forest in Northeastern Argentina. Acta Trop. 2019, 193, 71–77. [Google Scholar] [CrossRef]
  167. Acosta, R.; Guzmán-Cornejo, C.; Quiñonez Cisneros, F.A.; Torres Quiñonez, A.A.; Fernández, J.A. New records of ectoparasites for Mexico and their prevalence in the montane shrew Sorex monticolus (Eulipotyphla: Soricidae) at Cerro del Mohinora, Sierra Madre Occidental of Chihuahua, Mexico. Zootaxa 2020, 4809, 393–396. [Google Scholar] [CrossRef] [PubMed]
  168. Duffus, N.E.; Morimoto, J. Current conservation policies in the UK and Ireland overlook endangered insects and are taxonomically biased towards Lepidoptera. Biol. Conserv. 2022, 266, 109464. [Google Scholar] [CrossRef]
  169. Hatcher, M.J.; Dick, J.T.; Dunn, A.M. Diverse effects of parasites on ecosystems: Linking interdependent processes. Front. Ecol. Environ. 2012, 10, 186–194. [Google Scholar] [CrossRef]
  170. Kluever, B.M.; Iles, D.T.; Gese, E.M. Ectoparasite burden influences the denning behavior of a small desert carnivore. Ecosphere 2019, 10, e02749. [Google Scholar] [CrossRef]
  171. Telfer, S.; Brown, E.M.; Sekules, R.; Begon, I.; Hayden, T.; Birtel, R. Disruption of a hostparasite system following the introduction of an exotic host species. Parasitol. 2005, 130, 661–665. [Google Scholar] [CrossRef]
  172. Watson, M.J. What drives population-level effects of parasites? Meta-analysis meets life history. IJP Parasites Wildl. 2013, 2, 190–196. [Google Scholar] [CrossRef]
  173. Fellin, E.; Schulte-Hostedde, A. Effects of ticks on community assemblages of ectoparasites in deer mice. Ticks Tick Borne Dis. 2022, 13, 101846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bossard, R.L.; Lareschi, M.; Urdapilleta, M.; Cutillas, C.; Zurita, A. Flea (Insecta: Siphonaptera) Family Diversity. Diversity 2023, 15, 1096. https://doi.org/10.3390/d15101096

AMA Style

Bossard RL, Lareschi M, Urdapilleta M, Cutillas C, Zurita A. Flea (Insecta: Siphonaptera) Family Diversity. Diversity. 2023; 15(10):1096. https://doi.org/10.3390/d15101096

Chicago/Turabian Style

Bossard, Robert L., Marcela Lareschi, Mara Urdapilleta, Cristina Cutillas, and Antonio Zurita. 2023. "Flea (Insecta: Siphonaptera) Family Diversity" Diversity 15, no. 10: 1096. https://doi.org/10.3390/d15101096

APA Style

Bossard, R. L., Lareschi, M., Urdapilleta, M., Cutillas, C., & Zurita, A. (2023). Flea (Insecta: Siphonaptera) Family Diversity. Diversity, 15(10), 1096. https://doi.org/10.3390/d15101096

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop