Recovery of Neglected Species with Cloud Water Micro Condense Capacity as a Response to Climate Change: The Case of Sclerophyllous Boxwoods of Buxus balearica Lam. in the Southern Spanish Mediterranean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Species and Its Ex Situ Conservation Program
Source Data
2.2. Numerical Ecology Approach
2.2.1. Ecological Profiles
2.2.2. Multivariate Analysis
2.2.3. Suitability Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, A.; Islam, M.T.; Maitra, S.; Majumder, D.; Garai, S.; Mondal, M.; Ahmed, A.; Roy, A.; Skalicky, M.; Brestic, M. Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Changing Climate? In Neglected and Underutilized Crops-towards Nutritional Security and Sustainability; Springer: Singapore, 2021; pp. 1–50. [Google Scholar]
- Hunter, D.; Borelli, T.; Beltrame, D.M.O.; Oliveira, C.N.S.; Coradin, L.; Wasike, V.W.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.W.L.; et al. The Potential of Neglected and Underutilized Species for Improving Diets and Nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Guinea López, E. En El País de Los Bubis: Relato Ilustrado de Mi Primer Viaje a Fernando Póo; Instituto de Estudios Africanos, Consejo Superior de Investigaciones Científicas: Madrid, Spain, 1949. [Google Scholar]
- Ceballos-Fernández de Córdoba, L.; Ortuño-Medina, F. Estudio Sobre La Vegetación y La Flora Forestal de Las Canarias Occidentales; Ministerio de Agricultura. Dirección General de Montes, Caza y Pesca: Madrid, Spain, 1951. [Google Scholar]
- Cabrera, A.L. Regiones Fitogeográficas Argentinas; Editorial Acme: Buenos Aires, Argentina, 1976; Volume 2. [Google Scholar]
- Takhtadzhian, A.L.; Crovello, T.J. Floristic Regions of the World; University of California Press: Berkeley, CA, USA, 1986; ISBN 0520040279. [Google Scholar]
- Navarro-Cerrillo, R.M.; Clemente, M.; Padron, E.; Hernandez-Bermejo, E.; Garcia-Ferrer, A.; Kasimis, N. Forest Structure in Harvested Sites of Afromontane Forest of Prunus africana (Hook.f.) Kalkm., in Bioko (Equatorial Guinea). Afr. J. Ecol. 2008, 46, 620–630. [Google Scholar] [CrossRef]
- Nieto, J.M.; Cabezudo, B. Series de Vegetación Climatófilas de Las Sierras Tejeda y Almijara (Málaga-Granada; España). Acta Bot. Malacit. 1988, 13, 229–260. [Google Scholar] [CrossRef]
- Palamarev, E. Paleobotanical Evidences of the Tertiary History and Origin of the Mediterranean Sclerophyll Dendroflora BT—Woody Plants—Evolution and Distribution since the Tertiary; Ehrendorfer, F., Ed.; Springer: Vienna, Austria, 1989; pp. 93–107. [Google Scholar]
- Kovar-Eder, J.; Kvaček, Z.; Martinetto, E.; Roiron, P. Late Miocene to Early Pliocene Vegetation of Southern Europe (7–4Ma) as Reflected in the Megafossil Plant Record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 321–339. [Google Scholar] [CrossRef]
- Carrero-Rivera, G. Population Ecology and Reproductive Behavior of the Endangered Buxus vahlii Baillon (Buxaceae). Master’s Thesis, University of Puerto Rico, Mayagüez, Puerto Rico, 2001. [Google Scholar]
- Huang, Y.; Ji, K.; Jiang, Z.; Tang, G. Genetic Structure of Buxus sinica Var. Parvifolia, a Rare and Endangered Plant. Sci. Hortic. 2008, 116, 324–329. [Google Scholar] [CrossRef]
- Labarca-Rojas, Y.; Hernández-Bermejo, J.E.; Quero, J.L.; Herrera-Molina, F. Bioclimatic Habitat Limitations for Argan Trees (Argania spinosa (L.) Skeels) in Northern Africa and Spain. Reg. Environ. Chang. 2022, 22, 14. [Google Scholar] [CrossRef]
- Labarca-Rojas, Y.; Hernández-Bermejo, J.E.; Herrera-Molina, F.; Hernandez-Clemente, M.; Quero, J.L. Assessing Argan Tree (Argania spinosa (L.) Skeels) Ex-Situ Collections as a Complementary Tool to in-Situ Conservation and Crop Introduction in the Mediterranean Basin. Trees 2023, 37, 567–581. [Google Scholar] [CrossRef]
- Hernández-Bermejo, J.E.; Herrera-Molina, F. Estudio de La Distribución Actual y Modelos de Potencialidad de Buxus balearica Lam. en Andalucía. Cordoba. 2010. Available online: https://portalrediam.cica.es/geonetwork/srv/api/records/e4536e97-4038-4bab-9a06-7c61bc40e2f9 (accessed on 11 September 2021).
- Martín-Consuegra, E.; De la Fuente Cantó, C.; Díaz-López, A.; Hernández-Bermejo, J.E. Diferenciación Genética de Las Poblaciones Ibéricas (Andalucía) de Buxus balearica Lam. (Buxaceae) Mediante RAPDs. In Proceedings of the V Congreso Biología de la Conservación de Plantas, Menorca, Spain, 28 September–1 October 2011. [Google Scholar]
- Navarro-Cerrillo, R.M.; Hernández-Bermejo, J.E.; Hernández-Clemente, R. Evaluating Models to Assess the Distribution of Buxus balearica in Southern Spain. Appl. Veg. Sci. 2011, 14, 256–267. [Google Scholar] [CrossRef]
- Cabezudo, B.; Latorre, A.V.P.; Fernández, D.N.; Gavira, Ó.; Caballero, G. Contribución Al Conocimiento de La Flora Del Parque Natural de Las Sierras Tejeda, Almijara y Alhama (Málaga-Granada, España). Acta Botánica Malacit. 2005, 30, 55–109. [Google Scholar] [CrossRef]
- Díez-Garretas, B.; Asensi, A.; Rivas-Martínez, S. Las Comunidades de Maytenus senegalensis Subsp. Europaeus (Celastraceae) En La Península Ibérica. Mediterr. Bot. 2005, 26, 83. [Google Scholar]
- De la Fuente Cantó, C. Genetic Diversity of the Spanish Populations of Buxus balearica, an Endangered Species in Andalucía. Master’s Thesis, Cordoba University, Cordoba, Spain, 2011. [Google Scholar]
- Lázaro, A.; Traveset, A. Reproductive Success of the Endangered Shrub Buxus balearica Lam. (Buxaceae): Pollen Limitation, and Inbreeding and Outbreeding Depression. Plant Syst. Evol. 2006, 261, 117–128. [Google Scholar] [CrossRef]
- Lázaro, A.; Traveset, A.; Castillo, A. Spatial Concordance at a Regional Scale in the Regeneration Process of a Circum-Mediterranean Relict (Buxus balearica): Connecting Seed Dispersal to Seedling Establishment. Ecography 2006, 29, 683–696. [Google Scholar] [CrossRef]
- Lázaro, A.; Traveset, A.; Méndez, M. Masting in Buxus balearica: Assessing Fruiting Patterns and Processes at a Large Spatial Scale. Oikos 2006, 115, 229–240. [Google Scholar] [CrossRef]
- Lázaro, A.; Traveset, A. Does the Spatial Variation in Selective Pressures Explain Among-Site Differences in Seed Mass? A Test with Buxus Balearica. Evol. Ecol. 2009, 23, 847. [Google Scholar] [CrossRef]
- Polvorinos Pascual, F. Nieblas de Irradiación En El Mar de Alborán. Colapso Del Regimen de Levante y Cambio a Poniente. Transición de Estratos a Nieblas. In Proceedings of the Acta de las Jornadas Científicas de la Asociación Meteorológica Española, Seville, Spain, 1–3 March 2010. [Google Scholar]
- Polvorinos Pascual, F. Nieblas de Irradiación En El Litoral Nordeste Del Mar de Alborán. In Proceedings of the Acta Las Jornadas Científicas Asociación Meteorológica Española, Oviedo, Spain, 7–9 April 2014. [Google Scholar]
- Hernández Bermejo, J.E.; Clemente Muñoz, M. Protección de La Flora de Andalucía. In Anales del Jardín Botánico de Madrid; Real Jardín Botánico: Madrid, Spain, 1994; Volume 52, p. 258. [Google Scholar]
- Hernández Bermejo, E.; Herranz-Sanz, J.M. Protección de La Diversidad Vegetal y de Los Recursos Fitogenéticos En Castilla-La Mancha: La Perspectiva Existente y El Compromiso Del Jardín Botánico; Instituto de Estudios Albacetenses Don Juan Manuel: Albacete, Spain, 2011; p. 478. [Google Scholar]
- Gounot, M. Méthodes d’étude Quantitative de La Végétation. In Annales de Géographie; Bertrand, M.J., Ed.; Armand Colin: Paris, France, 1971; pp. 591–592. Available online: https://www.persee.fr/doc/geo_0003-4010_1971_num_80_441_15388_t1_0591_0000_3 (accessed on 28 December 2021).
- Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible. Portal Ambiental de Andalucía. Distribución de Especies Forestales En Andalucía. Escenarios de Cambio Climático 4o Informe Del IPCC. Available online: https://portalrediam.cica.es/descargas (accessed on 28 December 2021).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM Eval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Margalef, R. Perspectives in Ecological Theory. 1968. Available online: https://philpapers.org/rec/MARPIE-3 (accessed on 5 July 2022).
- Margalef, R. Ecología, 2nd ed.; Ediciones Omega, SA: Barcelona, Spain, 1974; p. 952. [Google Scholar]
- Pérez Latorre, A.V.; Navas Fernández, D.; Gavira, Ó.; Caballero, G.; Cabezudo, B. Vegetación Del Parque Natural de Las Sierras Tejeda, Almijara y Alhama (Málaga-Granada, Andalucía, España). Acta Bot. Malacit. 2004, 29, 117–190. [Google Scholar] [CrossRef]
- Rossello, J.A.; Lazaro, A.; Cosín, R.; Molins, A. A Phylogeographic Split in Buxus balearica (Buxaceae) as Evidenced by Nuclear Ribosomal Markers: When ITS Paralogues Are Welcome. J. Mol. Evol. 2007, 64, 143–157. [Google Scholar] [CrossRef]
- IPCC. 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Schultes, R.E. La Urgencia de La Conservación Etnobotánica. In Proceedings of the Memorias del Simposio Internacional Ecobios Colombia 88: El Desarrollo Sostenible: Estrategias, Políticas y Acciones, Inderena, Bogotá, Colombia, 20–23 September 1989; Rodríguez Mahecha, J.V., Sánchez Páez, H., Eds.; pp. 217–222. [Google Scholar]
- Wagensommer, R.P.; Venanzoni, R. Geranium lucarinii Sp. Nov. and Re-Evaluation of G. Kikianum (Geraniaceae). Phytotaxa 2021, 489, 252–262. [Google Scholar] [CrossRef]
- Perrino, E.V.; Tomaselli, V.; Wagensommer, R.P.; Silletti, G.N.; Esposito, A.; Stinca, A. Ophioglossum lusitanicum L.: New Records of Plant Community and 92/43/EEC Habitat in Italy. Agronomy 2022, 12, 3188. [Google Scholar] [CrossRef]
Code | Variable | Description |
---|---|---|
TMC | Mean temperature of the warmest month (°C) | Mean value in August * Maximum value in August * |
TMMC | Maximum temperature of the warmest month (°C) | |
TMF | Mean temperature of the coldest month (°C) | Mean value in January * Minimum value in January * |
TMMF | Minimum temperature of the coldest month (°C) | |
PT01 | Mean precipitation of the first quarter (mm) | January–February–March * |
PT02 | Mean precipitation of the second quarter (mm) | April–May–June * |
PT03 | Mean precipitation of the third quarter (mm) | July–August–September * |
PT04 | Mean precipitation of the fourth quarter (mm) | October–November–December * |
MDT | Elevation from the Digital Elevation Model (m) | DEM of Andalusia |
ORI | Aspect (degree) | Calculated from DEM |
SLP | Slope (%) | |
DIST | Euclidean distance to the drainage network (m) | Calculated from water bodies |
MDI1 | Intermediate insolation model | Between December–March |
MDI2 | Insolation model during spring equinox | On 21 March |
MDI3 | Intermediate insolation model | Between March–June |
MDI4 | Insolation model during summer solstice | On 21 June |
MDI5 | Intermediate insolation model | Between June–September |
MDI6 | Insolation model during autumn equinox | On 21 September |
MDI7 | Intermediate insolation model | Between September–December |
MDI8 | Insolation model during winter solstice | On 21 December |
BG Accession Number | Collection Locality | Province | Type of Collection |
---|---|---|---|
14779 | Nerja | Málaga | Base |
15596 | Frigiliana | Málaga | Base |
15636 * | Nerja | Málaga | Base |
16208 | Nerja | Málaga | Base |
16662 | Vélez de Benaudalla | Granada | Base |
17667 | Vélez de Benaudalla | Granada | Base |
17779 | Almijara | Málaga | Base |
18579 | Almuñécar | Granada | Base |
19213 | Motril | Granada | Base |
19214 | Lobres | Granada | Base |
19215 | Cómpeta | Málaga | Base |
19216 | Almijara | Málaga | Base |
19217 | Cómpeta | Málaga | Base |
19218 | Cómpeta | Málaga | Base |
19219 | Nerja | Málaga | Base |
19220 | Cómpeta | Málaga | Base |
19221 | Cómpeta | Málaga | Base |
19222 | Cómpeta | Málaga | Base |
19223 | Cómpeta | Málaga | Base |
19224 | Nerja | Málaga | Base |
19225 | Ragor | Almería | Base |
19226 | Cázulas | Granada | Base |
19227 | Otívar | Granada | Base |
19238 | Arroyo de la Miel | Málaga | Base |
19520 | Güájares (Los) | Granada | Base |
20593 | Vélez de Benaudalla | Granada | Base |
22061 | Vélez de Benaudalla | Granada | Base |
50949 | Guadalfeo (ex situ) | Granada | Active |
51043 | Guadalfeo (ex situ) | Granada | Active |
51439 | Guadalfeo (ex situ) | Granada | Active |
RelH > 70% | RelH > 90% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Records | June | July | August | Total Hours | % | Records | June | July | August | Total Hours | % |
2004 | 1586 | 434 | 676 | 476 | 793.0 | 37 | 65 | 14 | 9 | 42 | 32.5 | 2 |
2005 | 1025 | 279 | 285 | 461 | 512.5 | 24 | 4 | 3 | 0 | 1 | 2.0 | 0 |
2006 | 1175 | 350 | 317 | 508 | 587.5 | 27 | 3 | 0 | 0 | 3 | 1.5 | 0 |
2007 | 1164 | 276 | 420 | 468 | 582.0 | 27 | 14 | 1 | 4 | 9 | 7.0 | 0 |
2008 | 1316 | 361 | 430 | 525 | 658.0 | 30 | 31 | 1 | 24 | 6 | 15.5 | 1 |
2009 | 1141 | 352 | 421 | 368 | 570.5 | 26 | 21 | 19 | 0 | 2 | 10.5 | 0 |
2010 | 1615 | 369 | 545 | 701 | 807.5 | 37 | 62 | 38 | 18 | 6 | 31.0 | 1 |
2011 | 1786 | 656 | 480 | 650 | 893.0 | 41 | 70 | 30 | 5 | 35 | 35.0 | 2 |
2012 | 1561 | 433 | 489 | 639 | 780.5 | 36 | 233 | 91 | 38 | 104 | 116.5 | 5 |
2013 | 1481 | 372 | 431 | 678 | 740.5 | 34 | 40 | 17 | 14 | 9 | 20.0 | 1 |
2014 | 1838 | 460 | 620 | 758 | 919.0 | 43 | 443 | 74 | 177 | 192 | 221.5 | 10 |
2015 | 1173 | 215 | 580 | 378 | 586.5 | 27 | 56 | 16 | 40 | 0 | 28.0 | 1 |
2016 | 1763 | 506 | 521 | 736 | 881.5 | 41 | 37 | 14 | 16 | 7 | 18.5 | 1 |
2017 | 1779 | 471 | 574 | 734 | 889.5 | 41 | 58 | 9 | 32 | 17 | 29.0 | 1 |
2018 | 1096 | 271 | 312 | 513 | 548.0 | 25 | 59 | 39 | 8 | 12 | 29.5 | 1 |
2019 | 1449 | 404 | 426 | 619 | 724.5 | 34 | 69 | 37 | 3 | 29 | 34.5 | 2 |
2020 | 1583 | 305 | 744 | 534 | 791.5 | 37 | 89 | 19 | 29 | 41 | 44.5 | 2 |
2021 | 1824 | 483 | 581 | 760 | 912.0 | 42 | 126 | 36 | 18 | 72 | 63.0 | 3 |
Total | 26,355 | 6997 | 8852 | 10,506 | 13,177.5 | 1480 | 458 | 435 | 587 | 740.0 |
Code | Variable | Principal Component (PC) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
TMC | Mean temperature of the warmest month (°C) | 0.12 | −0.34 | 0.07 |
TMMC | Maximum temperature of the warmest month (°C) | 0.05 | −0.22 | 0.40 |
TMF | Mean temperature of the coldest month (°C) | 0.13 | −0.29 | 0.35 |
TMMF | Minimum temperature of the coldest month (°C) | 0.13 | −0.33 | 0.05 |
PT01 | Mean precipitation of the first quarter (mm) | −0.09 | 0.34 | 0.26 |
PT02 | Mean precipitation of the second quarter (mm) | −0.09 | 0.34 | 0.20 |
PT03 | Mean precipitation of the third quarter (mm) | −0.12 | 0.28 | 0.36 |
PT04 | Mean precipitation of the fourth quarter (mm) | −0.09 | 0.32 | 0.37 |
MDT | Elevation from the Digital Elevation Model (m) | −0.12 | 0.31 | −0.37 |
ORI | Aspect (degree) | 0.24 | 0.01 | −0.04 |
SLP | Slope (%) | −0.18 | −0.10 | −0.21 |
DIST | Euclidean distance to the drainage network (m) | −0.01 | 0.16 | −0.33 |
MDI1 | Intermediate insolation model | 0.32 | 0.08 | −0.09 |
MDI2 | Insolation model during spring equinox | 0.34 | 0.11 | −0.04 |
MDI3 | Intermediate insolation model | 0.32 | 0.14 | 0.06 |
MDI4 | Insolation model during summer solstice | 0.26 | 0.15 | 0.12 |
MDI5 | Intermediate insolation model | 0.32 | 0.14 | 0.06 |
MDI6 | Insolation model during autumn equinox | 0.34 | 0.11 | −0.04 |
MDI7 | Intermediate insolation model | 0.32 | 0.08 | −0.09 |
MDI8 | Insolation model during winter solstice | 0.30 | 0.05 | −0.10 |
Standard deviation | 2.76 | 2.32 | 1.57 | |
Proportion of Variance | 0.38 | 0.27 | 0.12 | |
Cumulative Proportion | 0.38 | 0.65 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Bermejo, J.E.; Labarca-Rojas, Y.; Herrera-Molina, F.; Quero, J.L.; Hernández-Clemente, R. Recovery of Neglected Species with Cloud Water Micro Condense Capacity as a Response to Climate Change: The Case of Sclerophyllous Boxwoods of Buxus balearica Lam. in the Southern Spanish Mediterranean. Diversity 2023, 15, 1184. https://doi.org/10.3390/d15121184
Hernández-Bermejo JE, Labarca-Rojas Y, Herrera-Molina F, Quero JL, Hernández-Clemente R. Recovery of Neglected Species with Cloud Water Micro Condense Capacity as a Response to Climate Change: The Case of Sclerophyllous Boxwoods of Buxus balearica Lam. in the Southern Spanish Mediterranean. Diversity. 2023; 15(12):1184. https://doi.org/10.3390/d15121184
Chicago/Turabian StyleHernández-Bermejo, J. Esteban, Yalbeiry Labarca-Rojas, Francisca Herrera-Molina, José L. Quero, and Rocío Hernández-Clemente. 2023. "Recovery of Neglected Species with Cloud Water Micro Condense Capacity as a Response to Climate Change: The Case of Sclerophyllous Boxwoods of Buxus balearica Lam. in the Southern Spanish Mediterranean" Diversity 15, no. 12: 1184. https://doi.org/10.3390/d15121184
APA StyleHernández-Bermejo, J. E., Labarca-Rojas, Y., Herrera-Molina, F., Quero, J. L., & Hernández-Clemente, R. (2023). Recovery of Neglected Species with Cloud Water Micro Condense Capacity as a Response to Climate Change: The Case of Sclerophyllous Boxwoods of Buxus balearica Lam. in the Southern Spanish Mediterranean. Diversity, 15(12), 1184. https://doi.org/10.3390/d15121184