Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Survey
2.2. Data Set Compilation
- (i)
- The boundaries of the Greek Natura 2000 sites (Natura v30.shp, Hellenic Ministry for the Environment),
- (ii)
- The habitat types in the Greek Natura 2000 sites (Identification and description of habitat types in areas of interest for the conservation of nature during 1999–2001, Hellenic Ministry for the Environment), as well as the “conservation status” and the “representativity” (Natura 2000 database and Standard Data Forms, 2017).
- (iii)
- The Corine Land Cover, 2012 (Copernicus Land Monitoring Services, Εuropean Εnvironment Agency). We preferred this older version of the CLC, as it is better linked to the years the survey took place (starting from 2000).
2.3. Data Analysis
- -
- Sites with no invasion (NO: 0% of area invaded);
- -
- Sites of low invasion where the invaded area corresponded to 0.1–5% of the total site area (LOW: 0.1–5% of area invaded);
- -
- Sites of moderate invasion where the invaded area corresponded to 5.1–10% of the total site area (MODERATE: 5.1–10% of area invaded);
- -
- Sites of high invasion where the invaded area corresponded to 10.1–20% of the total site area (HIGH: 10.1–20% of area invaded);
- -
- Sites of very high invasion where the invaded area corresponded to >20% of the total site area (VERY HIGH: >20% of area invaded).
3. Results
3.1. Greek Natura 2000 Sites Invaded and Degree of Invasion
3.2. Habitat Types Prone to Invasion
3.3. Human Threats/Activities and Degree of Invasion
3.4. Ecosystem Services
4. Discussion
4.1. Solanum elaeagnifolium as Successful Invader
4.2. Habitat Types of Annex I of the Directive 92/43/EEC
4.3. Invasion of Solanum elaeagnifolium and Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar Rai, P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Christopoulou, A.; Christopoulou, A.; Fyllas, N.M.; Dimitrakopoulos, P.G.; Arianoutsou, M.; Luis González Andújar, J. How effective are the protected areas of the Natura 2000 network in halting biological invasions? A case study in Greece. Plants 2021, 10, 2113. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinctions. Biol. Lett. 2016, 12, 20150623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, B.; Gallardo, B.; Gallardo, B.; Aldridge, D.C.; Aldridge, D.C.; Aldridge, D.C.; González-Moreno, P.; González-Moreno, P.; González-Moreno, P.; Pergl, J.; et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 2017, 23, 5331–5343. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E.; Pyšek, P.; Nentwig, W.; Vilà, M. Will threat of biological invasions unite the European Union? Science 2009, 324, 40–41. [Google Scholar] [CrossRef] [Green Version]
- Primack, R.B. A Primer of Conservation Biology, 5th ed.; Sinauer Series; Sinauer Associates; Incorporated Publishers: Sunderland, MA, USA, 2012; ISBN 9780878936236. [Google Scholar]
- Strayer, D.L. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 2012, 15, 1199–1210. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.-C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.-M.; Bradshaw, C.J.A.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Akçakaya, H.R.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.; Chanson, J.S.; Fishpool, L.D.C.; Da Fonseca, G.A.B.; Gaston, K.J.; et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 2004, 54, 1092–1100. [Google Scholar] [CrossRef]
- Tittensor, D.P.; Walpole, M.; Hill, S.L.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, S.H.M.; Leadley, P.W.; Regan, E.C.; Alkemade, R.; et al. A mid-term analysis of progress toward international biodiversity targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef]
- Gaüzère, P.; Jiguet, F.; Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Divers. Distrib. 2016, 22, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.; Ausden, M.; Dodd, A.M.; Bradbury, R.B.; Chamberlain, D.E.; Jiguet, F.; Thomas, C.D.; Cook, A.S.C.P.; Newson, S.E.; Ockendon, N.; et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 2013, 3, 1055–1061. [Google Scholar] [CrossRef]
- Thomas, C.D.; Gillingham, P.K.; Bradbury, R.B.; Roy, D.B.; Anderson, B.J.; Baxter, J.M.; Bourn, N.; Crick, H.Q.P.A.; Findon, R.A.; Fox, R.; et al. Protected areas facilitate species’ range expansions. Proc. Natl. Acad. Sci. USA 2012, 109, 14063–14068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyšek, P.; Genovesi, P.; Pergl, J.; Monaco, A.; Wild, J. Plant Invasions of Protected Areas in Europe: An Old Continent Facing New Problems. In Plant Invasions in Protected Areas: Patterns, Problems and Challenges; Springer: Berlin/Heidelberg, Germany, 2013; pp. 209–240. ISBN 978-94-007-7749-1. [Google Scholar] [CrossRef]
- Sundseth, K. Natura 2000: Protecting Europe’s Biodiversity; Office for Official Publications of the European Communities: Luxembourg, 2008; ISBN 9789279083082. [Google Scholar]
- Dimitrakopoulos, P.G.; Koukoulas, S.; Galanidis, A.; Delipetrou, P.; Gounaridis, D.; Touloumi, K.; Arianoutsou, M. Factors shaping alien plant species richness spatial patterns across Natura 2000 Special Areas of Conservation of Greece. Sci. Total. Environ. 2017, 601, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Schindler, S.; Essl, F. Distribution and management of invasive alien plant species in protected areas in Central Europe. J. Nat. Conserv. 2016, 33, 48–57. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.M.; Genovesi, P.; MacFadyen, S. Plant invasion science in protected areas: Progress and priorities. Biol. Invasions 2017, 19, 1353–1378. [Google Scholar] [CrossRef]
- Mekki, M. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bull. 2007, 37, 114–118. [Google Scholar] [CrossRef]
- Krigas, N.; Tsiafouli, M.A.; Katsoulis, G.; Votsi, N.-E.; van Kleunen, M. Investigating the invasion pattern of the alien plant Solanum elaeagnifolium Cav. (silverleaf nightshade): Environmental and human-induced drivers. Plants 2021, 10, 805. [Google Scholar] [CrossRef]
- Boyd, J.W.; Murray, D.S.; Tyrl, R.J. Silverleaf nightshade, Solarium elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 1984, 38, 210–217. [Google Scholar] [CrossRef]
- Brunel, S. Pest risk analysis for Solanum elaeagnifolium and international management measures proposed. EPPO Bull. 2011, 41, 232–242. [Google Scholar] [CrossRef]
- Uludag, A.; Gbehounou, G.; Kashefi, J.; Bouhache, M.; Bon, M.-C.; Bell, C.; Lagopodi, A.L. Review of the current situation for Solanum elaeagnifolium in the Mediterranean Basin. EPPO Bull. 2016, 46, 139–147. [Google Scholar] [CrossRef]
- Economidou, E.; Yannitsaros, A. Recherches sur la flore adventice de Grèce: V. Distribution et écologie de Solanum elaeagnifolium Cav. Rev. Biol. Ecol. Mediterr. 1975, 2, 29–44. [Google Scholar]
- Tataridas, A.; Oliveira, R.S.; Frazão, L.; Moreira, M.; Travlos, I.; Freitas, H. Solanum elaeagnifolium Cav. (Solanales: Solanaceae) presence confirmed in Portugal. EPPO Bull. 2022, 52, 499–504. [Google Scholar] [CrossRef]
- Formozis, G.; Tsakaldimi, M.; Ganatsas, P. Are Mediterranean forest ecosystems under the threat of invasive species Solanum elaeagnifolium? iFor. Biogeosci. For. 2021, 14, 236–241. [Google Scholar] [CrossRef]
- Sayari, N.; Brundu, G.; Mekki, M. Mapping and monitoring an invasive alien plant in Tunisia: Silverleaf nightshade (Solanum elaeagnifolium) a noxious weed of agricultural areas. Tunis. J. Plant Prot. 2016, 11, 219–227. [Google Scholar]
- Milton, S.J.; Dean, W.R.J. Alien plant assemblages near roads in arid and semi-arid South Africa. Divers. Distrib. 1998, 4, 175–187. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Krigas, N. GIS and ex situ Plant Conservation. In Application of Geographic Information Systems; Alam, B.M., Ed.; Intech Open: Rijeka, Croatia, 2012; pp. 153–174. [Google Scholar]
- Krigas, N.; Mouflis, G.; Grigoriadou, K.; Maloupa, E. Conservation of important plants from the Ionian Islands at the Balkan Botanic Garden of Kroussia, N Greece: Using GIS to link the in situ collection data with plant propagation and ex situ cultivation. Biodivers. Conserv. 2010, 19, 3583–3603. [Google Scholar] [CrossRef]
- Nikolaidou, C.; Votsi, N.-E.P.; Sgardelis, S.P.; Halley, J.M.; Pantis, J.; Tsiafouli, M.A. Ecosystem service capacity is higher in areas of multiple designation types. One Ecosyst. 2017, 2, e13718. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef]
- Williamson, M.H.; Fitter, A. The characters of successful invaders. Biol. Conserv. 1996, 78, 163–170. [Google Scholar] [CrossRef]
- Moghadam, S.E.; Ebrahimi, S.N.; Gafner, F.; Ochola, J.B.; Marubu, R.M.; Lwande, W.; Haller, B.F.; Salehi, P.; Hamburger, M. Metabolite profiling for caffeic acid oligomers in Satureja biflora. Ind. Crops Prod. 2015, 76, 892–899. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2004, 93, 5–15. [Google Scholar] [CrossRef]
- Eleftherohorinos, I.G.; Bell, C.E.; Kotoula-Syka, E. Silverleaf nightshade (Solanum elaeagnifolium) control with foliar herbicides. Weed Technol. 1993, 7, 808–811. [Google Scholar] [CrossRef]
- Balah, M.A.; Hassany, W.M.; Kobici, A.A. Allelopathy of invasive weed Solanum elaeagnifolium Cav.: An investigation in germination, growth and soil properties. J. Plant Prot. Res. 2022, 62, 58–70. [Google Scholar] [CrossRef]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 2016, 46, 301–347. [Google Scholar] [CrossRef] [Green Version]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Kallimanis, A.; Strid, A.; Dimopoulos, P. Plant endemism centres and biodiversity hotspots in Greece. Biology 2021, 10, 72. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Bergmeier, E.; Fischer, P. Natura 2000 habitat types of Greece evaluated in the light of distribution, threat and responsibility. Boil. Environ. Proc. R. Ir. Acad. 2006, 106, 175–187. [Google Scholar] [CrossRef]
- Ruwanza, S. The edge effect on plant diversity and soil properties in abandoned fields targeted for ecological restoration. Sustainability 2018, 11, 140. [Google Scholar] [CrossRef]
- Kati, V.; Kassara, C.; Psaralexi, M.; Tzortzakaki, O.; Petridou, M.; Galani, A.; Hoffmann, M.T. Conservation policy under a roadless perspective: Minimizing fragmentation in Greece. Biol. Conserv. 2020, 252, 108828. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.; Verburg, P. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Schirpke, U.; Marino, D.; Marucci, A.; Palmieri, M.; Scolozzi, R. Operationalising ecosystem services for effective management of protected areas: Experiences and challenges. Ecosyst. Serv. 2017, 28, 105–114. [Google Scholar] [CrossRef]
- Kallimanis, A.; Tsiafouli, M.; Pantis, J.; Mazaris, A.; Matsinos, Y.; Sgardelis, S. Arable land and habitat diversity in Natura 2000 sites in Greece. J. Biol. Res. 2008, 9, 55–66. [Google Scholar]
- Tsiafouli, M.A.; Apostolopoulou, E.; Mazaris, A.D.; Kallimanis, A.S.; Drakou, E.G.; Pantis, J.D. Human activities in Natura 2000 sites: A highly diversified conservation network. Environ. Manag. 2013, 51, 1025–1033. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Drakou, E.G.; Orgiazzi, A.; Hedlund, K.; Ritz, K. Editorial: Optimizing the delivery of multiple ecosystem goods and services in agricultural systems. Front. Ecol. Evol. 2017, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Cheminal, A.; Kokkoris, I.P.; Zotos, A.; Strid, A.; Dimopoulos, P. Assessing the ecosystem services potential of endemic floras: A systematic review on the Greek endemics of Peloponnese. Sustainability 2022, 14, 5926. [Google Scholar] [CrossRef]
- Roberts, J.; Florentine, S. Biology, distribution and management of the globally invasive weed Solanum elaeagnifolium Cav. (silverleaf nightshade): A global review of current and future management challenges. Weed Res. 2022, 62, 393–403. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Travlos, I. Streamlining agroecological management of invasive plant species: The case of Solanum elaeagnifolium Cav. Diversity 2022, 14, 1101. [Google Scholar] [CrossRef]
Natura 2000 Site Code | Site Area (km2) | Percentage (%) of Site Area Invaded | Number of Invaded Cells (Cell Area = 1 km2) | Number of Cells with One Population | Number of Cells with ≥2 Populations |
---|---|---|---|---|---|
GR1110004 | 164.38 | 0.61 | 1 | 1 | 0 |
GR1130009 | 294.56 | 2.38 | 7 | 7 | 0 |
GR1150010 | 224.85 | 2.22 | 5 | 2 | 3 |
GR1220001 | 269.48 | 20.41 | 55 | 53 | 2 |
GR1220002 | 336.76 | 11.88 | 40 | 34 | 6 |
GR1250001 | 191.40 | 1.57 | 3 | 3 | 0 |
GR1260001 | 783.04 | 0.64 | 5 | 5 | 0 |
GR1260002 | 12.97 | 38.55 | 5 | 5 | 0 |
GR1260003 | 3.27 | 91.66 | 3 | 3 | 0 |
GR1270002 | 180.32 | 3.88 | 7 | 7 | 0 |
GR1270003 | 334.26 | 1.55 | 5 | 5 | 0 |
GR1270004 | 6.33 | 78.97 | 5 | 3 | 2 |
GR1270013 | 4.40 | 45.50 | 2 | 2 | 0 |
GR1420001 | 124.38 | 1.61 | 2 | 2 | 0 |
GR1420004 | 434.36 | 1.61 | 7 | 7 | 0 |
GR1420005 | 13.36 | 14.97 | 2 | 2 | 0 |
GR1420008 | 245.72 | 0.81 | 2 | 2 | 0 |
GR1420009 | 41.69 | 16.79 | 7 | 4 | 3 |
GR1430001 | 311.12 | 0.64 | 2 | 1 | 1 |
GR1440003 | 606.25 | 2.80 | 17 | 17 | 0 |
GR2110001 | 287.88 | 3.13 | 9 | 9 | 0 |
GR2310001 | 355.10 | 0.56 | 2 | 2 | 0 |
GR2310006 | 31.23 | 3.20 | 1 | 1 | 0 |
GR2310007 | 22.05 | 54.43 | 12 | 12 | 0 |
GR2410001 | 116.07 | 9.48 | 11 | 10 | 1 |
GR2440002 | 475.47 | 7.57 | 36 | 25 | 12 |
GR2440006 | 66.85 | 5.98 | 4 | 4 | 0 |
GR2510003 | 3.66 | 54.62 | 2 | 2 | 0 |
GR2520005 | 69.85 | 1.43 | 1 | 1 | 0 |
GR2550006 | 533.67 | 0.19 | 1 | 1 | 0 |
GR3000006 | 88.19 | 2.27 | 2 | 2 | 0 |
GR3000013 | 53.92 | 1.85 | 1 | 1 | 0 |
GR4220011 | 71.55 | 1.40 | 1 | 1 | 0 |
Code | Habitat Name | Number of Sites with Habitats Invaded |
---|---|---|
1210 | Annual vegetation of drift lines | 2 |
1240 | Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp. | 1 |
1310 | Salicornia and other annuals colonizing mud and sand | 3 |
1410 | Mediterranean salt meadows (Juncetalia maritimi) | 4 |
2110 | Embryonic shifting dunes | 3 |
3150 | Natural eutrophic lakes with Magnopotamion or Hydrocharition—type vegetation | 5 |
3280 | Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba | 7 |
5420 | Sarcopoterium spinosum phrygana | 8 |
6110* | Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi | 1 |
6210 | *Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) | 1 |
6420 | Mediterranean tall humid grasslands of the Molinio-Holoschoenion | 2 |
8210 | Calcareous rocky slopes with chasmophytic vegetation | 3 |
8220 | Siliceous rocky slopes with chasmophytic vegetation | 1 |
9150 | Medio-European limestone beech forests of the Cephalanthero-Fagion | 1 |
9260 | Castanea sativa woods | 1 |
9320 | Olea and Ceratonia forests | 3 |
9340 | Quercus ilex and Quercus rotundifolia forests | 5 |
9350 | Quercus macrolepis forests | 1 |
9540 | Mediterranean pine forests with endemic Mesogean pines | 4 |
92A0 | Salix alba and Populus alba galleries | 9 |
92C0 | Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis) | 5 |
92D0 | Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae) | 6 |
32B0 | Annual communities at alluvial banks of Euro-Siberian rivers | 2 |
1420 | Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) | 6 |
5340 | East Mediterranean gariques | 2 |
5350 | Pseudomaquis | 10 |
72A0 | Reedbeds | 8 |
924A | Thermophilic oak forests of the East Mediterranean and Balkans | 2 |
934A | Greek holm oaks | 2 |
A (Excellent) | B (Good) | C (Average or Reduced) | Not Evaluated | |
Conservation status | 12.90% | 48.39% | 30.65% | 8.06% |
A (Excellent) | B (Good) | C (Significant) | D (Not evaluated) | |
Representativity | 22.58% | 51.61% | 17.74% | 8.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krigas, N.; Votsi, N.-E.; Samartza, I.; Katsoulis, G.; Tsiafouli, M.A. Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next? Diversity 2023, 15, 143. https://doi.org/10.3390/d15020143
Krigas N, Votsi N-E, Samartza I, Katsoulis G, Tsiafouli MA. Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next? Diversity. 2023; 15(2):143. https://doi.org/10.3390/d15020143
Chicago/Turabian StyleKrigas, Nikos, Nefta-Eleftheria Votsi, Ioulietta Samartza, Georgios Katsoulis, and Maria A. Tsiafouli. 2023. "Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next?" Diversity 15, no. 2: 143. https://doi.org/10.3390/d15020143
APA StyleKrigas, N., Votsi, N. -E., Samartza, I., Katsoulis, G., & Tsiafouli, M. A. (2023). Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next? Diversity, 15(2), 143. https://doi.org/10.3390/d15020143