Next Article in Journal
Day-Time Roost Patterns of New and Previously Translocated North Island Brown Kiwi (Apteryx mantelli)
Previous Article in Journal
Morphological Correlates of Locomotion in the Aquatic and the Terrestrial Phases of Pleurodeles waltl Newts from Southwestern Iberia
Previous Article in Special Issue
A New Locality for the Blind Loach, Eidinemacheilus smithi (Teleostei: Nemacheilidae) in Iranian Zagros: A Morpho-Molecular Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Interesting Images

Cave-Dwelling Populations of the Monstrous Rainfrog (Craugastor pelorus) from Mexico

by
Henrique Couto
1,2,
Madalena Macara Madeira
3,
Omar Hernández Ordóñez
4,
Víctor Hugo Reynoso
4 and
Gonçalo M. Rosa
1,5,*
1
Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
2
Museu do Mar—Rei D. Carlos, 2750-407 Cascais, Portugal
3
Independent Researcher, London SW9 8AA, UK
4
Colección Nacional de Anfibios y Reptiles, Departamento de Zoología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
5
Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(2), 189; https://doi.org/10.3390/d15020189
Submission received: 20 December 2022 / Revised: 17 January 2023 / Accepted: 21 January 2023 / Published: 30 January 2023
(This article belongs to the Special Issue Cave Biodiversity and Conservation)

Abstract

:
Amphibians are known cave dwellers, and a few anurans have shown to make exploratory or opportunistic use of subterranean environments. We report on the use of karst ecosystems and cavernicolous environments by the monstrous rainfrog Craugastor pelorus in Chiapas and Tabasco (Mexico). Individuals were found in crevices and wall depressions within the twilight zone of the cave, both during the day and at night. Although threatened by human activities and often severely understudied, caves are the last refugia for some endangered species. This report allows us to extend the known distribution of the species, increase our knowledge on a threatened species, and better understand the biodiversity and ecology of cave environments.

Amphibians are known to make use of caves and subterranean environments; however, most cases involve salamanders [1,2], with the presence of anurans in those environments often considered accidental [1]. More recently, reports on anurans with cavernicolous habits have been increasing, with studies suggesting that the species might benefit and/or have environmental preferences that allow them to occupy these habitats [3,4,5].
Caves are differentiated from surface habitats, not only by their limited light availability, but also by microclimatic features, such as higher relative humidity and a stable air temperature [6,7,8]. This allows for species that are sensitive to temperature changes to have a stable niche [1].
Complex cave systems are well known in the Sierra Norte de Chiapas (Chiapas and Tabasco states), particularly at Selva El Ocote Biosphere Reserve (REBISCO; Tuxtla Gutiérrez) [9,10]. “El Encanto” is a karstic calcium carbonate cave, located in the protected area, characterized by having a thick but irregularly bedded and porous limestone [11]. The climate at REBISCO is warm (with a mean annual temperature over 22 °C) and humid, and the rainfall is abundant throughout the year (with mean annual precipitation between 1500 and 2500 mm) [12,13,14]. The vertebrate diversity in REBISCO is extremely high (>600 species), including over 20 amphibian species [15,16]. El Encanto is no exception, holding a high diversity of species that are susceptible to environmental changes, such as bats [17].
With a similar climate, the Agua Blanca State Park (PEAB; Macucspana, southern Tabasco) is a 2025 ha tropical rainforest fragment with an important system of underground rivers and caves measuring 5200 m in length [18]. Despite a rich bat community [19], its amphibiofauna has been largely understudied [20]. Here, we report on two populations of the Monstrous rainfrog Craugastor pelorus (Campbell and Savage, 2000), a species with little awareness of its distribution and natural history, making use of karst ecosystems and cavernicolous environments.
Craugastor pelorus is a direct-developing stream-dwelling anuran with a patchy distribution limited to the Chiapas and Tabasco states of Mexico [21,22,23,24,25,26]. The species is strongly associated with streams from the upper tributaries that flow into the Grijalva and Usumacinta rivers [10,16], and are often limited to premontane and lower montane wet forests [23,24,25].
In December 2006, an opportunistic survey resulted in the observation of an individual dwelling next to the underground river born out of the Iztac-Ha cave at PEAB (Figure 1; 17.62055° N, −92.47027° W; 300 m a.s.l.). The close proximity to the karst cavernicolous habitat raised the possibility of the species occasionally using, and even sometimes preferring, this kind of ecosystem. Four additional individuals (CNAR-IBH 24471, 24477, 24482, and 24998) were collected by Ernesto Zavala in October 2006 within PEAB, extending the species’ known distribution 41.8 km northwest from the Tumbalá municipality in Chiapas [21].
On 1 February 2018 at about 20:30, we found individuals of Craugastor pelorus inside the El Encanto cave (REBISCO; 16.75724° N, −93.52513° W, 634 m a.s.l.). This karstic cave has an opening with a width of approximately 5 m, a height of 4 m, and a total area of about 100 m2. An underground river flows through the cave and it was possible to see that bats also inhabit the cave. GMR and MMM surveyed the whole entrance of the cave for ca. 45 min using headlamps. The temperature (ca. 25 °C) and humidity recorded (ca. 98%) were much higher relative to those above ground at that time of the year.
During this visit, we were able to record five adult C. pelorus in the twilight zone (Figure 2), found approximately 15 m deep inside the cave, resting on depressions and cavities on the rock walls, ranging from 1 to 2.5 m above the ground level. When disturbed, a frog hopped away but then later returned to its original location, suggesting some level of site fidelity in the species. When visiting the cave the following morning, the individuals were hiding in areas of the cave entrance not illuminated by daylight.
This population from El Encanto extends the range 75.7 km west from the Tapilula municipality at “Cascada El Salvador” in Chiapas [21]. Both observations add to an old record from Huimanguillo (Tabasco; 17.396783° N, −93.661617° W; 136 m a.s.l.): the single individual (CNAR-IBH 31683) was collected by Víctor H. Reynoso and Carlos A. Madrazo on 25 March 1998,, 65.4 Km west from the type locality in the Tenejapa municipality in Chiapas [21], becoming the northernmost record for this species. All collected vouchers were deposited at Colección Nacional de Anfibios y Reptiles (CNAR), Universidad Nacional Autónoma de México.
Little is known about the biology and ecology of C. pelorus, and our observations are the first records of cavernicolous habits for this species. Nevertheless, this may also represent the opportunistic use of subterranean environments, as other frog species were found to inhabit caves for their microclimate conditions and abundance of prey [4]. Therefore, this population needs to be monitored to understand its relation to any variation outside climatic conditions, shedding light on the critical importance of the cave habitat. The use of cave habitats is not novel among the large Craugastor Cope 1862 genus [27,28,29]. Craugastor psephosypharus, which belongs to the same taxonomic group (C. rugulosus group), unlike most species in that group, inhabits karstic zones with old-growth tropical rain forests inside cavities but far from streams [30,31]. Thus, in conjunction with this observation, the behaviour might be more widespread than previously thought.
Lastly, Craugastor pelorus is a vulnerable species mostly threatened by habitat fragmentation and destruction [22]. Caves can act as the last refugia for some threatened species, yet decline in amphibian cave-dwelling populations, have also been reported in Mexico, and have been linked to threats such as the amphibian chytrid fungus (Batrachochytrium dendrobatidis) [32]. Moreover, these habitats are also threatened by human activities, including deforestation, mining, or even tourism and climate change [6,33,34,35,36,37,38,39]. An increase in the knowledge of subterranean biodiversity, as well as their ecology and use of the case environment, is a fundamental asset to support the conservation of these fragile and unique habitats [6].

Author Contributions

Field observation and manuscript conceptualization: G.M.R. and M.M.M.; investigation: G.M.R., O.H.O. and V.H.R.; writing—original draft preparation: H.C. and G.M.R.; writing—review and editing: G.M.R., M.M.M. and O.H.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

All field collection and protocols were performed in accordance with the relevant local guidelines, regulations and licensing issued by the Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT): Collection permits SGPA/DGVS/02132. The study was conducted under the approval of the Instituto de Biología, Universidad Nacional Autónoma de México. Observations required no ethical review.

Data Availability Statement

All available data is shared in the main text of this article.

Acknowledgments

We gratefully acknowledge Chris Sergeant for his comments and suggestions that highly improved the manuscript. All specimens were verified by Adriana González Hernández from Colección Nacional de Anfibios y Reptiles (CNAR), Instituo de Biología, UNAM, Mexico.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Romero, A. Cave biodiversity. In Cave Biology: Life in Darkness; Cambridge University Press: Cambridge, UK, 2009; pp. 62–129. [Google Scholar] [CrossRef]
  2. Lunghi, E.; Manenti, R.; Ficetola, G. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecologica 2014, 55, 29–35. [Google Scholar] [CrossRef]
  3. Rosa, G.; Penado, A. Rana iberica (Boulenger, 1879) goes underground: Subterranean habitat usage and new insights on natural history. Subterr. Biol. 2013, 11, 15–29. [Google Scholar] [CrossRef]
  4. Lunghi, E.; Bruni, G.; Ficetola, G.F.; Manenti, R. Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Subterr. Biol. 2018, 25, 49–60. [Google Scholar] [CrossRef] [Green Version]
  5. Suwannapoom, C.; Sumontha, M.; Tunprasert, J.; Ruangsuwan, T.; Pawangkhanant, P.; Korost, D.V.; Poyarkov, N.A. A striking new genus and species of cave-dwelling frog (Amphibia: Anura: Microhylidae: Asterophryinae) from Thailand. PeerJ 2018, 6, e4422. [Google Scholar] [CrossRef] [Green Version]
  6. Mammola, S.; Cardoso, P.; Culver, D.C.; Deharveng, L.; Ferreira, R.L.; Fišer, C.; Galassi, D.M.P.; Griebler, C.; Halse, S.; Humphreys, W.F.; et al. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 2019, 69, 641–650. [Google Scholar] [CrossRef] [Green Version]
  7. Mejía-Ortíız, L.; Christman, M.C.; Pipan, T.; Culver, D.C. What’s the temperature in tropical caves? PLoS ONE 2020, 15, e0237051. [Google Scholar] [CrossRef]
  8. Mejía-Ortíız, L.; Christman, M.C.; Pipan, T.; Culver, D.C. What’s the relative humidity in tropical caves? PLoS ONE 2021, 16, e0250396. [Google Scholar] [CrossRef]
  9. Whitacre, D.F. Conditional use of nest structures by White-naped and White-collared swifts. Condor 1989, 91, 813–825. [Google Scholar] [CrossRef]
  10. Kovarik, J.L.; van Beynen, P.E. Application of the Karst Disturbance Index as a raster-based model in a developing country. Appl. Geogr. 2015, 63, 396–407. [Google Scholar] [CrossRef]
  11. Whitaker, T.M. The caves of Chiapas, Southern Mexico. Cave Sci. 1988, 15, 51–81. [Google Scholar]
  12. Orantes-García, C.; Pérez-Farrera, M.Á.; del Carpio-Penagos, C.U.; Tejeda-Cruz, C. Aprovechamiento del recurso maderable tropical nativo en la comunidad de Emilio Rabasa, Reserva de la Biósfera Selva El Ocote, Chiapas, México. Madera Bosques 2013, 19, 7–21. [Google Scholar] [CrossRef] [Green Version]
  13. Manzanilla-Quiñones, U.; Aguirre-Calderón, Ó.A. Zonificación climática actual y escenarios de cambio climático para la Reserva de la Biosfera Selva El Ocote en Chiapas, México. In Vulnerabilidad Social y Biológica Ante el Cambio Climático en la Reserva de la Biosfera Selva El Ocote; Ruiz-Montoya, L., Álvarez-Gordillo, G., Ramírez-Marcial, N., Cruz-Salazar, B., Eds.; El Colegio de la Frontera Sur: San Cristóbal de Las Casas, Mexico, 2017; pp. 25–66. [Google Scholar]
  14. Cruz-Salazar, B.; Ruiz-Montoya, L.; Ramírez-Marcial, N.; García-Bautista, M. Relationship between genetic variation and diversity of tree species in tropical forests in the El Ocote Biosphere Reserve, Chiapas, Mexico. Trop. Conserv. Sci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
  15. Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). Aviso por el que se informa al público en general, que la Secretaría de Medio Ambiente y Recursos Naturales ha concluido la elaboración del Programa de Manejo del Área Natural Protegida Reserva de la Biosfera Selva El Ocote, ubicada en los municipios Ocozocoautla de Espinosa, Cintalapa de Figueroa, Tecpatán de Mezcalapa y Jiquipilas, en el Estado de Chiapas, y se da a conocer um resumen del mismo. In Diario Oficial de la Federación; SEMARNAT: Mexico City, Mexico, 2001; pp. 1–17. [Google Scholar]
  16. Luna-Reyes, R.; Cundapí-Pérez, C.; Pérez-López, P.E.; López-Villafuerte, A.; Rodríguez-Reyes, M.A.; Luna-Sánchez, J.A. Riqueza y diversidad de anfibios y reptiles en Nuevo San Juan Chamula y Veinte Casas, Reserva de la Biosfera Selva El Ocote. In Vulnerabilidad Social y Biológica Ante el Cambio Climático en la Reserva de la Biosfera Selva El Ocote; Ruiz-Montoya, L., Álvarez-Gordillo, G., Ramírez-Marcial, N., Cruz-Salazar, B., Eds.; El Colegio de la Frontera Sur: San Cristóbal de Las Casas, México, 2017; pp. 355–393. [Google Scholar]
  17. Pérez, E.; Velázquez, J.; Velázquez, E. Diversidad alfa y beta en murciélagos cavernícolas de la Depresión Central, Chiapas, México. Lacandonia 2010, 4, 47–54. [Google Scholar]
  18. Zarco-Espinosa, V.L.; Valdez-Hernández, J.I.; ángeles-Pérez, G.; Castillo-Acosta, O. Estructura y diversidad de la vegetación arbórea del Parque Estatal Agua Blanca, Macuspana, Tabasco. Univ. Cienc. 2010, 26, 1–17. [Google Scholar]
  19. Castro-Luna, A.A.; Sosa, V.J.; Castillo-Campos, G. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Anim. Conserv. 2007, 10, 219–228. [Google Scholar] [CrossRef]
  20. Barragán, R. Anfibios del Parque Estatal de Agua Blanca. Master’s Thesis, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico, 2005; 96p. [Google Scholar]
  21. Campbell, J.A.; Savage, J.M. Taxonomic reconsideration of Middle American frogs of the Eleutherodactylus rugulosus group (Anura: Leptodactylidae): A reconnaissance of subtle nuances among frogs. Herpetol. Monogr. 2000, 14, 186–292. [Google Scholar] [CrossRef]
  22. Hedges, S.B.; Duellman, W.E.; Heinicke, M.P. New world direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa 2008, 1737, 1–182. [Google Scholar] [CrossRef] [Green Version]
  23. Johnson, J.D.; Mata-Silva, V.; García-Padilla, E.; Wilson, L.D. The herpetofauna of Chiapas, Mexico: Composition, physiographic distribution, and conservation status. Mesoam. Herpetol. 2015, 2, 272–329. [Google Scholar]
  24. Johnson, J.D.; Wilson, L.D.; Mata-Silva, V.; García-Padilla, E.; de Santis, D.L. The endemic herpetofauna of Mexico: Organisms of global significance in severe peril. Mesoam. Herpetol. 2017, 4, 544–620. [Google Scholar]
  25. IUCN SSC Amphibian Specialist Group. Craugastor pelorus. The IUCN Red List of Threatened Species. Available online: https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T56840A53966327.en (accessed on 2 January 2023). [CrossRef]
  26. Zumbado-Ulate, H.; Neam, K.; García-Rodríguez, A.; Ochoa-Ochoa, L.; Chaves, G.; Kolby, J.E.; Granados-Martínez, S.; Hertz, A.; Bolaños, F.; Ariano-Sánchez, D.; et al. Ecological correlates of extinction risk and persistence of direct-developing stream-dwelling frogs in Mesoamerica. Glob. Ecol. Conserv. 2022, 38, e02197. [Google Scholar] [CrossRef]
  27. Luría-Manzano, R.; Ramírez-Bautista, A. Diet comparison between rainforest and cave populations of Craugastor alfredi (Anura: Craugastoridae): Does diet vary in contrasting habitats? J. Nat. Hist. 2017, 51, 2345. [Google Scholar] [CrossRef]
  28. Terry, W.G. Spatial and Temporal use of Caves by Eleutherodactylus marnockii and Craugastor augusti in the Western Edwards Plateau of Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2019. Available online: https://digital.library.txstate.edu/handle/10877/8379 (accessed on 2 January 2023).
  29. Del Gerónimo Torres, J.C.; del Barragán Vázquez, M.R.; Ríos-Rodas, L. Incorporando la distintividad taxonómica en estudios de diversidad: Anfibios del Parque Estatal de la Sierra de Tabasco, México. Ecosistemas 2022, 31, 2294. [Google Scholar] [CrossRef]
  30. Campbell, J.A.; Savage, J.M.; Meyer, J.R. A new species of Eleutherodactylus (Anura: Leptodactylidae) of the rugulosus group from Guatemala and Belize. Herpetologica 1994, 50, 412–419. [Google Scholar]
  31. Lee, J. A Field Guide to the Amphibians and Reptiles of the Maya World; Cornell University Press: Ithaca, NY, USA, 2000; 402p. [Google Scholar]
  32. Olivares-Miranda, M.; Vredenburg, V.T.; García-Sánchez, J.C.; Byrne, A.Q.; Rosenblum, E.B.; Rovito, S.M. Fungal infection, decline and persistence in the only obligate troglodytic Neotropical salamander. PeerJ 2020, 8, e9763. [Google Scholar] [CrossRef]
  33. Trajano, E. Cave faunas in the Atlantic tropical rain forest: Composition, ecology, and conservation. Biotropica 2000, 32, 882–893. [Google Scholar] [CrossRef]
  34. Romero, A. Cave conservation and management. In Cave Biology: Life in Darkness; Cambridge University Press: Cambridge, UK, 2009; pp. 182–208. [Google Scholar] [CrossRef]
  35. Souza-Silva, M.; Martins, R.P.; Ferreira, R.L. Cave conservation priority index to adopt a rapid protection strategy: A case study in Brazilian Atlantic rain forest. Environ. Manag. 2015, 55, 279–295. [Google Scholar] [CrossRef]
  36. Novas, N.; Gázquez, J.A.; MacLennan, J.; García, R.M.; Fernández-Ros, M.; Manzano-Agugliaro, F. A real-time underground environment monitoring system for sustainable tourism of caves. J. Clean. Prod. 2017, 142, 2707–2721. [Google Scholar] [CrossRef]
  37. Di Lorenzo, T.; Cifoni, M.; Fiasca, B.; di Cioccio, A.; Galassi, D.M.P. Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. Sci. Total Environ. 2018, 644, 161–172. [Google Scholar] [CrossRef]
  38. Mammola, S.; Piano, E.; Cardoso, P.; Vernon, P.; Domínguez-Villar, D.; Culver, D.C.; Pipan, T.; Isaia, M. Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthr. Rev. 2019, 6, 98–116. [Google Scholar] [CrossRef]
  39. Constantin, S.; Mirea, I.C.; Petculescu, A.; Arghir, R.A.; Măntoiu, D.S.; Kenesz, M.; Robu, M.; Moldovan, O.T. Monitoring human impact in show caves. A study of four Romanian caves. Sustainability 2021, 13, 1619. [Google Scholar] [CrossRef]
Figure 1. Adult individual of Craugastor pelorus (A) (CNAR-RF 763 a-b) found dwelling next to the underground river Iztac-Ha (B) (PEAB, Tabasco, Mexico). Photos by Omar Hernández Ordóñez.
Figure 1. Adult individual of Craugastor pelorus (A) (CNAR-RF 763 a-b) found dwelling next to the underground river Iztac-Ha (B) (PEAB, Tabasco, Mexico). Photos by Omar Hernández Ordóñez.
Diversity 15 00189 g001
Figure 2. Adult individuals of Craugastor pelorus found inhabiting El Encanto cave (REBISCO, Tuxtla Gutiérrez, Chiapas, Mexico). (A,B). Male hiding in a cavity on the rock wall at about 2 m above the ground (CNAR-RF 764a and 764e). (C). Individual resting on a pocket on the wall (CNAR-RF 766e). (D). Individual resting in a cavity on the rock wall (CNAR-RF 767d). Photos by Gonçalo M. Rosa.
Figure 2. Adult individuals of Craugastor pelorus found inhabiting El Encanto cave (REBISCO, Tuxtla Gutiérrez, Chiapas, Mexico). (A,B). Male hiding in a cavity on the rock wall at about 2 m above the ground (CNAR-RF 764a and 764e). (C). Individual resting on a pocket on the wall (CNAR-RF 766e). (D). Individual resting in a cavity on the rock wall (CNAR-RF 767d). Photos by Gonçalo M. Rosa.
Diversity 15 00189 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Couto, H.; Madeira, M.M.; Hernández Ordóñez, O.; Reynoso, V.H.; Rosa, G.M. Cave-Dwelling Populations of the Monstrous Rainfrog (Craugastor pelorus) from Mexico. Diversity 2023, 15, 189. https://doi.org/10.3390/d15020189

AMA Style

Couto H, Madeira MM, Hernández Ordóñez O, Reynoso VH, Rosa GM. Cave-Dwelling Populations of the Monstrous Rainfrog (Craugastor pelorus) from Mexico. Diversity. 2023; 15(2):189. https://doi.org/10.3390/d15020189

Chicago/Turabian Style

Couto, Henrique, Madalena Macara Madeira, Omar Hernández Ordóñez, Víctor Hugo Reynoso, and Gonçalo M. Rosa. 2023. "Cave-Dwelling Populations of the Monstrous Rainfrog (Craugastor pelorus) from Mexico" Diversity 15, no. 2: 189. https://doi.org/10.3390/d15020189

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop