Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colonies Sampling
2.2. Colonies Characterization
2.3. Molecular Analyses
2.4. Haplotypes Network Analyses and Bayesian Trees
2.5. Database Sequences
2.6. Species Analyses
2.7. Population Analyses
3. Results
3.1. Morphological Records
3.2. Life History
3.3. Network Analysis Based on COI
3.4. Species Delimitation Analysis
3.5. Species Assignment by DNA Barcoding Analysis
3.6. Spatial Diversity Analysis Based on COI
3.7. Temporal Diversity Analysis Based on COI
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avise, J.C. Phylogeography: Retrospect and Prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Bowen, B.W.; Gaither, M.R.; DiBattista, J.D.; Iacchei, M.; Andrews, K.R.; Grant, W.S.; Toonen, R.J.; Briggs, J.C. Comparative Phylogeography of the Ocean Planet. Proc. Natl. Acad. Sci. USA 2016, 113, 7962–7969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seebens, H.; Schwartz, N.; Schupp, P.J.; Blasius, B. Predicting the Spread of Marine Species Introduced by Global Shipping. Proc. Natl. Acad. Sci. USA 2016, 113, 5646–5651. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Karsch-Mizrachi, I.; Clark, K.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2012, 40, D48–D53. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. Bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheets, E.A.; Cohen, C.S.; Ruiz, G.M.; da Rocha, R.M. Investigating the Widespread Introduction of a Tropical Marine Fouling Species. Ecol. Evol. 2016, 6, 2453–2471. [Google Scholar] [CrossRef]
- Villalobos, S.M.; Lambert, G.; Shenkar, N.; López-Legentil, S. Distribution and Population Dynamics of Key Ascidians in North Carolina Harbors and Marinas. Aquat. Invasions 2017, 12, 447–458. [Google Scholar] [CrossRef]
- Reem, E.; Douek, J.; Rinkevich, B. A Critical Deliberation of the ‘Species Complex’ Status of the Globally Spread Colonial Ascidian Botryllus schlosseri. J. Mar. Biol. Assoc. UK 2021, 101, 1047–1060. [Google Scholar] [CrossRef]
- Karahan, A.; Douek, J.; Paz, G.; Stern, N.; Kideys, A.E.; Shaish, L.; Goren, M.; Rinkevich, B. Employing DNA Barcoding as Taxonomy and Conservation Tools for Fish Species Censuses at the Southeastern Mediterranean, a Hot-Spot Area for Biological Invasion. J. Nat. Conserv. 2017, 36, 1–9. [Google Scholar] [CrossRef]
- Reem, E.; Douek, J.; Rinkevich, B. Ambiguities in the Taxonomic Assignment and Species Delineation of Botryllid Ascidians from the Israeli Mediterranean and Other Coastlines. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2018, 29, 1073–1080. [Google Scholar] [CrossRef]
- Eryilmaz, L.; Dalyan, C. First Record of Apogon queketti Gilchrist (Osteichthyes: Apogonidae) in the Mediterranean Sea. J. Fish Biol. 2006, 69, 1251–1254. [Google Scholar] [CrossRef]
- Smith, M.A.; Poyarkov, N.A.; Hebert, P.D.N. CO1 DNA Barcoding Amphibians: Take the Chance, Meet the Challenge. Mol. Ecol. Resour. 2008, 8, 235–246. [Google Scholar] [CrossRef]
- Keskin, E.; Atar, H.H. DNA Barcoding Commercially Important Fish Species of Turkey. Mol. Ecol. Resour. 2013, 13, 788–797. [Google Scholar] [CrossRef]
- Oter, K.; Gunay, F.; Tuzer, E.; Linton, Y.M.; Bellini, R.; Alten, B. First Record of Stegomyia albopicta in Turkey Determined By Active Ovitrap Surveillance and DNA Barcoding. Vector-Borne Zoonotic Dis. 2013, 13, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Azzurro, E.; Goren, M.; Diamant, A.; Galil, B.; Bernardi, G. Establishing the Identity and Assessing the Dynamics of Invasion in the Mediterranean Sea by the Dusky Sweeper, Pempheris rhomboidea Kossmann & Rauber, 1877 (Pempheridae, Perciformes). Biol. Invasions 2015, 17, 815–826. [Google Scholar] [CrossRef]
- Bariche, M.; Torres, M.; Smith, C.; Sayar, N.; Azzurro, E.; Baker, R.; Bernardi, G. Red Sea Fishes in the Mediterranean Sea: A Preliminary Investigation of a Biological Invasion Using DNA Barcoding. J. Biogeogr. 2015, 42, 2363–2373. [Google Scholar] [CrossRef]
- Seyhan, D.; Turan, C. DNA Barcoding of Scombrid Species in the Turkish Marine Waters. J. Black Sea-Mediterr. Environ. 2016, 22, 35–45. [Google Scholar]
- Tuney, I. Molecular Identification of Puffer Fish Lagocephalus sceleratus (Gmelin, 1789) and Lagocephalus spadiceus (Richardson, 1845) from Eastern Mediterranean, Turkey. Fresenius Environ. Bull. 2016, 25, 1429–1437. [Google Scholar]
- Ciftci, O.; Karahan, A.; Orek, Y.A.K.; Kideys, A.E. First Record of the Buccaneer Anchovy Encrasicholina punctifer (Fowler, 1938) (Clupeiformes; Engraulidae) in the Mediterranean Sea, Confirmed through DNA Barcoding. J. Appl. Ichthyol. 2017, 33, 520–523. [Google Scholar] [CrossRef]
- Ozbek, E.O.; Mavruk, S.; Saygu, I.; Ozturk, B. Lionfish Distribution in the Eastern Mediterranean Coast of Turkey. J. Black Sea-Mediterr. Environ. 2017, 23, 1–16. [Google Scholar]
- Golestani, H.; Crocetta, F.; Padula, V.; Camacho-Garcia, Y.; Langeneck, J.; Poursanidis, D.; Pola, M.; Yokes, M.B.; Cervera, J.L.; Jung, D.W.; et al. The Little Aplysia Coming of Age: From One Species to a Complex of Species Complexes in Aplysia parvula (Mollusca: Gastropoda: Heterobranchia). Zool. J. Linn. Soc. 2019, 187, 279–330. [Google Scholar] [CrossRef]
- Shenkar, N.; Swalla, B.J. Global Diversity of Ascidiacea. PLoS ONE 2011, 6, e20657. [Google Scholar] [CrossRef]
- Berrill, N.J. The Developmental Cycle of Botrylloides. Q. J. Microsc. Sci. 1947, 88, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, A. Experimental Analysis of the Development of Colonies of Botryllus schlosseri (Pallas) [Ascidiacea]. Arch. Ital. Anat. Embriol. 1958, 63, 178–221. [Google Scholar]
- Manni, L.; Anselmi, C.; Cima, F.; Gasparini, F.; Voskoboynik, A.; Martini, M.; Peronato, A.; Burighel, P.; Zaniolo, G.; Ballarin, L. Sixty Years of Experimental Studies on the Blastogenesis of the Colonial Tunicate Botryllus schlosseri. Dev. Biol. 2019, 448, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Paz, G.; Rinkevich, B. Morphological Consequences for Multi-Partner Chimerism in Botrylloides, a Colonial Urochordate. Dev. Comp. Immunol. 2002, 26, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, B. Natural Chimerism in Colonial Urochordates. J. Exp. Mar. Biol. Ecol. 2005, 322, 93–109. [Google Scholar] [CrossRef]
- Zondag, L.E.; Rutherford, K.; Gemmell, N.J.; Wilson, M.J. Uncovering the Pathways Underlying Whole Body Regeneration in a Chordate Model, Botrylloides leachi Using de Novo Transcriptome Analysis. BMC Genom. 2016, 17, 114. [Google Scholar] [CrossRef] [Green Version]
- Blanchoud, S.; Zondag, L.; Lamare, M.D.; Wilson, M.J. Hematological Analysis of the Ascidian Botrylloides leachii (Savigny, 1816) during Whole-Body Regeneration. Biol. Bull. 2017, 232, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Blanchoud, S.; Rinkevich, B.; Wilson, M.J. Whole-Body Regeneration in the Colonial Tunicate Botrylloides leachii. Results Probl. Cell Differ. 2018, 65, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Karahan, A.; Öztürk, E.; Temiz, B.; Blanchoud, S. Studying Tunicata WBR Using Botrylloides anceps. In Whole-Body Regeneration; Springer Humana: New York, NY, USA, 2022; pp. 311–332. [Google Scholar]
- Viard, F.; Roby, C.; Turon, X.; Bouchemousse, S.; Bishop, J. Cryptic Diversity and Database Errors Challenge Non-Indigenous Species Surveys: An Illustration With Botrylloides spp. in the English Channel and Mediterranean Sea. Front. Mar. Sci. 2019, 6, 615. [Google Scholar] [CrossRef] [Green Version]
- Spallanzani, L. Storia naturale del mare. 1784. Unpublished. Available online: https://sites.google.com/site/ascidianbiologylab/clients (accessed on 28 February 2023).
- Olivi, G. Zoologica Adriatica. Biodivers. Herit. Libr. 1792. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=542267 (accessed on 28 February 2023).
- Savigny, J.C. Memoires Sur Les Animaux sans Vertebres; Deterville: Paris, France, 1816. [Google Scholar] [CrossRef] [Green Version]
- Pinar, E. Fouling and Boring Organisms in Some Turkish Harbours and the Effectivity of Antifouling and Antiboring Paint against These Organisms. Sci. Rep. Fac. Sci. Ege Univ. 1974, 170, 1–67. (In Turkish) [Google Scholar]
- Rinkevich, B.; Shlemberg, Z.; Lilker-Levav, T.; Goren, M.; Fishelson, L. Life History Characteristics of Botrylloides (Tunicata) Populations in Akko Bay, Mediterranean Coast of Israel. Isr. J. Ecol. Evol. 1993, 39, 197–212. [Google Scholar] [CrossRef]
- Brunetti, R. Botryllid Species (Tunicata, Ascidiacea) from the Mediterranean Coast of Israel, with Some Considerations on the Systematics of Botryllinae. Zootaxa 2009, 2289, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, R.; Mastrototaro, F. Botrylloides Pizoni, a New Species of Botryllinae (Ascidiacea) from the Mediterranean Sea. Zootaxa 2012, 3258, 28–36. [Google Scholar] [CrossRef]
- Cinar, M.E. Checklist of the Phyla Platyhelminthes, Xenacoelomorpha, Nematoda, Acanthocephala, Myxozoa, Tardigrada, Cephalorhyncha, Nemertea, Echiura, Brachiopoda, Phoronida, Chaetognatha, and Chordata (Tunicata, Cephalochordata, and Hemichordata) from the Coasts of Turkey. Turk. J. Zool. 2014, 38, 698–722. [Google Scholar]
- Halim, Y.; Messeih, M.A. Aliens in Egyptian Waters. A Checklist of Ascidians of the Suez Canal and the Adjacent Mediterranean Waters. Egypt. J. Aquat. Res. 2016, 42, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Herdman, W.A. Report on the Tunicata Collected during the Years 1873-1876. Part 2, Ascidiae Compositae. Zool. Chall. Exp. 1886, 14, 1–425. [Google Scholar]
- Sluiter, C.P. Tuniciers Recueilli En 1896, Par La Chazalie, Dans La Mer Des Antilles. Mém. Société Zool. Fr. 1898, 11, 5–34. [Google Scholar]
- Pérès, J.M. Ascidies Recoltées Sur Les Cotes Mediterraneenaires d’Israel. Bull. Res. Counc. Isr. 1958, 7B, 143–150. [Google Scholar]
- Griggio, F.; Voskoboynik, A.; Iannelli, F.; Justy, F.; Tilak, M.-K.; Xavier, T.; Pesole, G.; Douzery, E.J.P.; Mastrototaro, F.; Gissi, C. Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events. Genome Biol. Evol. 2014, 6, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, N.D.; Feldstein, T.; Shenkar, N.; Botero-Castro, F.; Griggio, F.; Mastrototaro, F.; Delsuc, F.; Douzery, E.J.; Gissi, C.; Huchon, D. Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes. Genome Biol. Evol. 2013, 5, 1185–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salonna, M.; Gasparini, F.; Huchon, D.; Montesanto, F.; Haddas-Sasson, M.; Ekins, M.; McNamara, M.; Mastrototaro, F.; Gissi, C. An Elongated COI Fragment to Discriminate Botryllid Species and as an Improved Ascidian DNA Barcode. Sci. Rep. 2021, 11, 4078. [Google Scholar] [CrossRef] [PubMed]
- Virgili, R.; Tanduo, V.; Katsanevakis, S.; Terlizzi, F.; Villani, G.; Fontana, A.; Crocetta, F. The Miseno Lake (Central-Western Mediterranean Sea): An Overlooked Reservoir of Non-Indigenous and Cryptogenic Ascidians in a Marine Reserve. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Della Sala, G.; Coppola, D.; Virgili, R.; Vitale, G.A.; Tanduo, V.; Teta, R.; Crocetta, F.; de Pascale, D. Untargeted Metabolomics Yields Insights into the Lipidome of Botrylloides Niger Herdman, 1886, An Ascidian Invading the Mediterranean Sea. Front. Mar. Sci. 2022, 9, 866906. [Google Scholar] [CrossRef]
- Micaroni, V.; Strano, F.; Crocetta, F.; Di Franco, D.; Piraino, S.; Gravili, C.; Rindi, F.; Bertolino, M.; Costa, G.; Langeneck, J.; et al. Project “Biodiversity MARE Tricase”: A Species Inventory of the Coastal Area of Southeastern Salento (Ionian Sea, Italy). Diversity 2022, 14, 904. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L.; Caicci, F.; Franchi, N.; Gasparini, F.; Rigon, F.; Schiavon, F.; Manni, L. Life History and Ecological Genetics of the Colonial Ascidian Botryllus schlosseri. Zool. Anz. -J. Comp. Zool. 2015, 257, 54–70. [Google Scholar] [CrossRef] [Green Version]
- Faber, K.L.; Person, E.C.; Hudlow, W.R. PCR Inhibitor Removal Using the NucleoSpin (R) DNA Clean-Up XS Kit. Forensic Sci. Int.-Genet. 2013, 7, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: Version 7.0.0, A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999, 41, 95–98. [Google Scholar]
- Excoffier, L.; Lischer, H.E. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Teacher, A.G.F.; Griffiths, D.J. HapStar: Automated Haplotype Network Layout and Visualization. Mol. Ecol. Resour. 2011, 11, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A. FigTree v1.4.4. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 24 November 2022).
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble Species by Automatic Partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A General Species Delimitation Method with Applications to Phylogenetic Placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. Mamm. Protein Metab. 1969, 3, 21–132. [Google Scholar]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Li, W.-H. Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Fu, Y.-X.; Li, W.-H. Statistical Tests of Neutrality of Mutations. Genetics 1993, 133, 693–709. [Google Scholar] [CrossRef]
- Tajima, F. Evolutionary Relationship of DNA Sequences in Finite Populations. Genetics 1983, 105, 437–460. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.R.; Boos, D.D.; Kaplan, N.L. A Statistical Test for Detecting Geographic Subdivision. Mol. Biol. Evol. 1992, 9, 138–151. [Google Scholar]
- Watterson, G.A. On the Number of Segregating Sites in Genetical Models without Recombination. Theor. Popul. Biol. 1975, 7, 256–276. [Google Scholar] [CrossRef]
- Harpending, H.C. Signature of Ancient Population Growth in a Low-Resolution Mitochondrial DNA Mismatch Distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar]
- Bah, T. Inkscape: Guide to a Vector Drawing Program (Digital Short Cut); Pearson Education: London, UK, 2009; ISBN 0-13-705171-9. [Google Scholar]
- Watanabe, H. Studies on the Regulation in Fused Colonies in Botryllus primigenus (Ascidiae Compositae). Sci. Rep. Tokyo Bunrika Daigaku 1953, 7, 183–198. [Google Scholar]
- Nydam, M.L.; Lemmon, A.R.; Cherry, J.R.; Kortyna, M.L.; Clancy, D.L.; Hernandez, C.; Cohen, C.S. Phylogenomic and Morphological Relationships among the Botryllid Ascidians (Subphylum tunicata, Class ascidiacea, Family Styelidae). Sci. Rep. 2021, 11, 8351. [Google Scholar] [CrossRef]
- Van Name, W.G. The North and South American Ascidians. Bull. Am. Mus. Nat. Hist. 1945, 84, 1–462. [Google Scholar]
- Boyd, H.C.; Weissman, I.L.; Saito, Y. Morphologic and Genetic Verification That Monterey Botryllus and Woods Hole Botryllus Are the Same Species. Biol. Bull. 1990, 178, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Tarjuelo, I.; Posada, D.; Crandall, K.A.; Pascual, M.; Turon, X. Phylogeography and Speciation of Colour Morphs in the Colonial Ascidian Pseudodistoma crucigaster. Mol. Ecol. 2004, 13, 3125–3136. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, M.O.; Saito, Y. Studies on Japanese Botryllid Ascidians. V. A New Species of the Genus Botrylloides Very Similar to Botrylloides Simodensis in Morphology. Zool. Sci. 2011, 28, 532–542. [Google Scholar] [CrossRef]
- Nydam, M.L.; Giesbrecht, K.B.; Stephenson, E.E. Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex. PLoS ONE 2017, 12, e0169944. [Google Scholar] [CrossRef] [Green Version]
- Ulman, A.; Ferrario, J.; Occhpinti-Ambrogi, A.; Arvanitidis, C.; Bandi, A.; Bertolino, M.; Bogi, C.; Chatzigeorgiou, G.; Çiçek, B.A.; Deidun, A. A Massive Update of Non-Indigenous Species Records in Mediterranean Marinas. PeerJ 2017, 5, e3954. [Google Scholar] [CrossRef]
- Blanchoud, S.; Rutherford, K.; Zondag, L.; Gemmell, N.J.; Wilson, M.J. De Novo Draft Assembly of the Botrylloides leachii Genome Provides Further Insight into Tunicate Evolution. Sci. Rep. 2018, 8, 5518. [Google Scholar] [CrossRef]
- Hyams, Y.; Paz, G.; Rabinowitz, C.; Rinkevich, B. Insights into the Unique Torpor of Botrylloides leachi, a Colonial Urochordate. Dev. Biol. 2017, 428, 101–117. [Google Scholar] [CrossRef]
- Fu, Y.-X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a Marker of Molecular Diversity: A Reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef]
- Morin, P.A.; Foote, A.D.; Baker, C.S.; Hancock-Hanser, B.L.; Kaschner, K.; Mate, B.R.; Mesnick, S.L.; Pease, V.L.; Rosel, P.E.; Alexander, A. Demography or Selection on Linked Cultural Traits or Genes? Investigating the Driver of Low MtDNA Diversity in the Sperm Whale Using Complementary Mitochondrial and Nuclear Genome Analyses. Mol. Ecol. 2018, 27, 2604–2619. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Tuna, S.; Keogh, M.J.; Smith, K.R.; Aitman, T.J.; Beales, P.L.; Bennett, D.L.; Gale, D.P.; Bitner-Glindzicz, M.A.K.; Black, G.C.; et al. Germline Selection Shapes Human Mitochondrial DNA Diversity. Science 2019, 364, 6520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karahan, A.; Douek, J.; Paz, G.; Rinkevich, B. Population Genetics Features for Persistent, but Transient, Botryllus schlosseri (Urochordata) Congregations in a Central Californian Marina. Mol. Phylogenet. Evol. 2016, 101, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Lambert, W.J.; Dijkstra, J.A.; Clark, E.; Connolly, J. Larval Exposure to Low Salinity Compromises Metamorphosis and Growth in the Colonial Ascidian Botrylloides violaceus. Invertebr. Biol. 2018, 137, 281–288. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Kızkalesi | - | |||||||||||||||
2. Mezitli | 0.001 | - | ||||||||||||||
3. Tershane | 0.000 | 0.001 | - | |||||||||||||
4. Alanya | 0.000 | 0.001 | 0.000 | - | ||||||||||||
5. Side | 0.000 | 0.001 | 0.000 | 0.000 | - | |||||||||||
6. Kemer | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | - | ||||||||||
7. Tisan | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | - | |||||||||
8. Konacık | 0.003 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | - | ||||||||
9. BN-IL | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | - | |||||||
10. BL-IL | 0.004 | 0.005 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.007 | 0.004 | - | ||||||
11. BN-US | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.008 | - | |||||
12. BN-BR | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.005 | 0.008 | 0.011 | 0.005 | - | ||||
13. BL-IT | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.174 | 0.169 | 0.176 | 0.175 | 0.180 | - | |||
14. BD-FR | 0.196 | 0.195 | 0.196 | 0.196 | 0.196 | 0.196 | 0.196 | 0.201 | 0.196 | 0.192 | 0.202 | 0.209 | 0.008 | - | ||
15. BL-ES | 0.197 | 0.196 | 0.197 | 0.197 | 0.197 | 0.197 | 0.197 | 0.200 | 0.197 | 0.187 | 0.202 | 0.204 | 0.009 | 0.000 | - | |
16. BL-FR | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.230 | 0.232 | 0.230 | 0.234 | 0.232 | 0.234 | 0.196 | 0.203 | 0.199 | - |
17. Out-group | 0.227 | 0.226 | 0.227 | 0.227 | 0.227 | 0.227 | 0.227 | 0.230 | 0.227 | 0.218 | 0.233 | 0.235 | 0.216 | 0.236 | 0.215 | 0.268 |
Populations | n | Np | Nh | H | π | Hd | F and LD | F and LF | TajD |
---|---|---|---|---|---|---|---|---|---|
Kemer | 30 | 0 | 1 | H1 | 0 | 0 | 0 | 0 NS | 0 |
Side | 10 | 0 | 1 | H1 | 0 | 0 | 0 | 0 NS | 0 |
Alanya | 24 | 0 | 1 | H1 | 0 | 0 | 0 | 0 NS | 0 |
Tersane a | 3 | 0 | 1 | H1 | 0 | 0 | 0 a | 0 a | 0 a |
Tisan | 14 | 0 | 1 | H1 | 0 | 0 | 0 | 0 NS | 0 |
Kızkalesi | 38 | 1 | 2 | H1, H2 | 0.0001 | 0.053 | −1.758 | −1.823 | −1.129 |
Mezitli | 14 | 3 | 2 | H1, H3 | 0.0015 | 0.264 | 1.070 | 0.757 | −0.494 |
Konacık a | 5 | 4 | 2 | H1, H4 | 0.0046 | 0.600 | 1.641 a | 1.670 a | 1.641 a |
All | 138 | 7 | 4 | H1, H2, H3, H4 | 0.0004 | 0.071 | 0.257 | −0.557 | −1.857 * |
Fst | Kemer | Side | Alanya | Tersane a | Tisan | Kızkalesi | Mezitli | Konacık a |
---|---|---|---|---|---|---|---|---|
Kemer | - | n.c. | n.c. | n.c. | n.c. | 0 | 0.08 * | 0.25 a |
Side | - | - | n.c. | n.c. | n.c. | 0 | 0.08 | 0.25 a |
Alanya | - | - | - | n.c. | n.c. | 0 | 0.08 | 0.25 a |
Tersane a | - | - | - | - | n.c. | 0 a | 0.08 a | 0.25 a |
Tisan | - | - | - | - | - | 0 | 0.08 | 0.25 a |
Kızkalesi | - | - | - | - | - | - | 0.07 | 0.25 a |
Mezitli | - | - | - | - | - | - | - | 0.17 a |
Konacık a | - | - | - | - | - | - | - | - |
Populations | n | Np | Nh | π | Hd | F and LD | F and LF | TajD |
---|---|---|---|---|---|---|---|---|
November 2017 | 18 | 1 | 2 | 0.0002 | 0.111 | −1.450 | −1.612 | −1.165 |
July 2018 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
August 2018 | 17 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
September 2018 | 26 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
October 2018 | 38 | 1 | 2 | 0.0001 | 0.053 | −1.758 | −1.823 | −1.129 |
All | 103 | 1 | 2 | 0.0001 | 0.038 | 0.491 | 0.080 | −0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temiz, B.; Öztürk, E.; Blanchoud, S.; Karahan, A. Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea. Diversity 2023, 15, 367. https://doi.org/10.3390/d15030367
Temiz B, Öztürk E, Blanchoud S, Karahan A. Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea. Diversity. 2023; 15(3):367. https://doi.org/10.3390/d15030367
Chicago/Turabian StyleTemiz, Berivan, Esra Öztürk, Simon Blanchoud, and Arzu Karahan. 2023. "Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea" Diversity 15, no. 3: 367. https://doi.org/10.3390/d15030367
APA StyleTemiz, B., Öztürk, E., Blanchoud, S., & Karahan, A. (2023). Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea. Diversity, 15(3), 367. https://doi.org/10.3390/d15030367