Diversity Analysis for Grain Nutrient Content and Agronomic Traits among Newly Bred Striga-Resistant and Fusarium oxysporum f.sp. strigae (FOS)-Compatible Sorghum Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Evaluation of Agronomic Performance
2.3. Nutritional Analysis
2.3.1. Determination of Protein Content
2.3.2. Amino Acid Analysis
2.3.3. Iron and Zinc Content Analyses
2.4. Data Analysis
3. Results
3.1. Agronomic Performance
3.2. Nutritional Profiles
3.3. Cluster Analysis
3.4. Principal Component Analysis
3.5. Principal Component Biplot
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lea, P.J.; Azevedo, R.A. Nitrogen use efficiency. Uptake of nitrogen from the soil. Ann. Appl. Biol. 2006, 149, 243–247. [Google Scholar] [CrossRef]
- Goudia, B.D.; Hash, C.T. Breeding for high grain Fe and Zn levels in cereals. Int. J. Innov. Appl. Stud. 2015, 12, 342–354. [Google Scholar]
- Badu-Apraku, B.; Akinwale, R.O.; Oyekunle, M. Efficiency of secondary traits in selecting for improved grain yield in extra-early maize under Striga-infested and Striga-free environments. Plant Breed. 2014, 133, 373–380. [Google Scholar] [CrossRef]
- Bozkurt, M.; Muth, P.; Parzies, H.; Haussmann, B. Genetic diversity of East and West African Striga hermonthica populations and virulence effects on a contrasting set of sorghum cultivars. Weed Res. 2015, 55, 71–81. [Google Scholar] [CrossRef]
- Mrema, E.; Shimelis, H.; Laing, M.; Bucheyeki, T. Screening of sorghum genotypes for resistance to Striga her-monthica and S. asiatica and compatibility with Fusarium oxysporum f.sp. strigae. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 395–404. [Google Scholar] [CrossRef]
- Rebeka, G.; Shimelis, H.; Laing, M.D.; Tongoona, P.; Mandefro, N. Evaluation of sorghum genotypes compatibility with Fusarium oxysporum under Striga infestation. Crop Sci. 2013, 53, 385–393. [Google Scholar] [CrossRef]
- UNEP. Food Systems Hold Key to Ending World Hunger. 2021. Available online: https://www.unep.org/news-and-stories/story/food-systems-hold-key-ending-world-hunger (accessed on 29 September 2021).
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Kumar, A.A.; Reddy, B.V.; Sahrawat, K.; Ramaiah, B. Combating micronutrient malnutrition: Identification of commercial sorghum cultivars with high grain iron and zinc. J. SAT Agric. Res 2010, 8, 1–5. [Google Scholar]
- Kumar, A.; Mehtre, S.P.; Anil, G.; Gorthy, S.; Anuradha, K.; Phuke, R.M.; Jaganathan, J.; Prasanna, H.; Gadakh, S.R.; Chavan, U.; et al. Biofortifying Sorghum for Delivering Grain Micronu-trients in High Yielding Cultivars with Market-Preferred Traits. In Biofortification of Staple Crops; Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A., Eds.; Springer: Singapore, Singapore, 2022. [Google Scholar]
- Reddy, B.V.; Ramesh, S.; Longvah, T. Prospects of breeding for micronutrients and b-carotene-dense sorghums. Int. Sorghum Millets Newsl. 2005, 46, 10–14. [Google Scholar]
- Mrema, E.; Shimelis, H.; Laing, M. Combining ability of yield and yield components among Fusarium oxysporum f. sp. strigae-compatible and Striga-resistant sorghum genotypes. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 95–108. [Google Scholar]
- Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins; US Department of Agriculture: Washington, DC, USA, 1931; Volume 183, p. 21.
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Barnes, K.W.; Debrah, E. Determination of nutrition labelling education act minerals in foods by inductively coupled plasma-optical emission spectroscopy. At. Spectrosc. 1997, 18, 41–54. [Google Scholar]
- Payne, R.; Murray, D.; Baird, D. The Guide to the Genstat Command Language (Release 19); VSN International: Hemel Hempsted, UK, 2017. [Google Scholar]
- Watkins, M.W. A Step-by-Step Guide to Exploratory Factor Analysis with SPSS, 1st ed.; Routledge: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ng’uni, D.; Shargie, N.; Andersson, A.; van Biljon, A.; Labuschagne, M. Genetic variation and trait associations of yield, protein and grain micronutrients for identification of promising sorghum varieties. Cereal Res. Commun. 2016, 44, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Abdelhalim, T.S.; Kamal, N.M.; Hassan, A.B. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench). Food Sci. Nutr. 2019, 7, 1529–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mofokeng, M.; Shimelis, H.; Tongoona, P.; Laing, M. Protein content and amino acid composition among selected South African sorghum genotypes. J. Food Chem. Nutr. 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ng’uni, D.; Geleta, M.; Hofvander, P.; Fatih, M.; Bryngelsson, T. Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions [Sorghum bicolor (L.) Moench]. Aust. J. Crop Sci. 2012, 6, 56. [Google Scholar] [CrossRef]
- Ebadi, M.; Pourreza, J.; Jamalian, J.; Edriss, M.; Samie, A.; Mirhadi, S. Amino acid content and availability in low, medium and high tannin sorghum grain for poultry. Int. J. Poult. Sci. 2005, 4, 27–31. [Google Scholar]
- Wirnas, D.; Sopandie, D.; Tesso, T. Genotypes X environment interaction effect on nutritional quality of sorghum lines in Indonesia. Ekin J. Crop Breed. Genetic. 2015, 1, 26–31. [Google Scholar]
- Wu, G. Amino Acids: Metabolism, functions, and nutrition. Amino Acids. 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Mokrane, H.; Amoura, H.; Belhaneche-Bensemra, N.; Courtin, C.M.; Delcour, J.A.; Nadjemi, B. Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chem. 2010, 121, 719–723. [Google Scholar] [CrossRef]
- Afify, A.E.M.M.; El-Beltagi, H.S.; Abd El-Salam, S.M.; Omran, A.A. Protein solubility, digestibility, and fractionation after germination of sorghum varieties. PLoS ONE 2012, 7, 31154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shegro, A.; Shargie, N.G.; van Biljon, A.; Labuschagne, M.T. Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. J. Crop. Sci. Biotechnol. 2012, 15, 275–280. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.M.; Roemer, E.; Boffa, A.; Giudice, A.D.; Pizzolante, G. Mineral contents in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. Aust. J. Crop Sci. 2014, 8, 1550. [Google Scholar] [CrossRef]
- Phuke, R.M.; Anuradha, K.; Radhika, K.; Jabeen, F.; Anuradha, G.; Ramesh, T.; Hariprasanna, K.; Mehtre, S.P.; Deshpande, S.P.; Anil, G. Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Front. Plant Sci. 2017, 8, 712. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Anuradha, K.; Ramaiah, B. Increasing grain Fe and Zn concentration in sorghum: Progress and way forward. J. Agric. Res. 2013, 11, 1–5. [Google Scholar]
- Shergo, A.N.G.; Labuschagne, L.T.; Shargie, N.G.; van Biljon, A. Multivariate analysis of nutritional diversity in sorghum landrace accessions from Western Ethiopia. J. Biol. Sci. 2013, 13, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gerrano, A.; Labuschagne, M.; Van Biljon, A.; Shargie, N. Quantification of mineral composition and total protein content in sorghum [Sorghum bicolor (L.) Moench]. genotypes. Cereal Res. Commun. 2016, 44, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Hamidou, M.; Souleymane, O.; Malick, B.A.; Danquah, E.; Kapran, I.; Gracen, V.; Ofori, K. Principal component analysis of early generation sorghum lines for yield-contributing traits and resistance to midge. J Crop Improv. 2018, 32, 757–765. [Google Scholar] [CrossRef]
- Abraha, T.; Githiri, S.M.; Kasili, R.; Araia, W.; Nyende, A.B. Genetic variation among Sorghum (Sorghum bicolor L. Moench) landraces from Eritrea under post-flowering drought stress conditions. Am. J. Plant Sci. 2015, 6, 1410. [Google Scholar] [CrossRef] [Green Version]
- Gasura, E.; Setimela, P.S.; Tarekegne, A.; Icishahayo, D.; Edema, R.; Gibson, P.T.; Okori, P. Variability of Grain-Filling Traits in Early Maturing CIMMYT Tropical Maize Inbred Lines. Crop Sci. 2014, 54, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Reddy, B.V.; Ramaiah, B.; Sahrawat, K.L.; Pfeiffer, W.H. Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur. J. Plant Sci. Biotechnol. 2012, 6, 1–5. [Google Scholar]
Entry Number | Genotype/Designation | Source | Description | Striga Resistance | Compatibility to FOS |
---|---|---|---|---|---|
E1 | 105 × 654 | ACCI/SA | Elite line | Resistant | Compatible |
E2 | 672 | ACCI/SA | Elite line | Resistant | Compatible |
E3 | 105 × 672 | ACCI/SA | Elite line | Resistant | Compatible |
E4 | 675 × 630 | ACCI/SA | Elite line | Resistant | Compatible |
E5 | AS436 | ICRISAT/India | Parental line | Resistant | Compatible |
E6 | 3484 × 424 | ACCI/SA | Elite line | Resistant | Compatible |
E7 | 3984 × 630 | ACCI/SA | Elite line | Resistant | Compatible |
E8 | AS426 × 672 | ACCI/SA | Elite line | Resistant | Compatible |
E9 | Macia | ICRISAT/India | Check | Susceptible | Incompatible |
E10 | PAN8816 | PSC/South Africa | Check | Not available | Not available |
E11 | AS1 | ACCI/SA | Check | Not available | Not available |
E12 | SS49 | ARC/SA | Check | Not available | Not available |
Genotype | DF | PH | PW | BM | SY | HSW |
---|---|---|---|---|---|---|
105 × 654 | 66.00 | 149.50 | 50.28 | 176.80 | 34.40 | 3.10 |
672 | 74.25 | 202.20 | 58.46 | 191.40 | 41.17 | 2.60 |
105 × 672 | 63.25 | 167.60 | 46.16 | 172.00 | 20.47 | 3.24 |
675 × 630 | 70.00 | 175.00 | 34.67 | 110.80 | 24.51 | 2.52 |
AS436 | 55.00 | 175.70 | 26.48 | 98.50 | 17.48 | 2.63 |
3484 × 424 | 73.25 | 142.10 | 55.53 | 193.80 | 38.83 | 2.90 |
3984 × 630 | 64.25 | 152.60 | 32.59 | 195.90 | 20.25 | 2.58 |
AS426 × 672 | 78.00 | 145.00 | 31.50 | 135.30 | 15.12 | 2.35 |
Macia | 72.75 | 184.10 | 33.22 | 155.00 | 22.19 | 2.64 |
PAN8816 | 62.50 | 160.00 | 67.30 | 139.10 | 51.74 | 3.22 |
AS1 | 65.00 | 130.40 | 83.15 | 124.90 | 43.31 | 3.44 |
SS49 | 71.00 | 146.20 | 56.29 | 138.30 | 27.78 | 3.50 |
Mean | 67.94 | 160.87 | 47.97 | 152.65 | 29.77 | 2.89 |
CV (%) | 6.25 | 7.27 | 30.9 | 18.69 | 23.43 | 5.83 |
LSD (5%) | 6.22 | 17.14 | 21.73 | 41.84 | 10.23 | 0.25 |
F-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Amino Acids | Minerals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | His (%) | Ile (%) | Leu (%) | Lys (%) | Met (%) | Phe (%) | Thr (%) | Val (%) | Prot (%) | Fe (mg/kg) | Zn (mg/kg) |
105 × 654 | 2.13 | 3.69 | 11 | 2.07 | 0.65 | 8.63 | 4.41 | 4.91 | 10.81 | 86.51 | 33.66 |
672 | 2.02 | 3.58 | 10.3 | 2.55 | 0.52 | 8.3 | 3.97 | 4.81 | 11.48 | 55.3 | 19.45 |
105 × 672 | 2.48 | 3.52 | 11.28 | 1.92 | 0.65 | 8.48 | 4.25 | 4.90 | 11.39 | 66.95 | 25.44 |
675 × 630 | 1.95 | 3.79 | 11.4 | 2.31 | 0.42 | 8.03 | 4.03 | 4.82 | 12.04 | 57.60 | 23.70 |
AS 436 | 2.02 | 3.57 | 9.66 | 3.08 | 1.20 | 7.57 | 4.10 | 4.89 | 10.38 | 81.97 | 21.20 |
3484 × 424 | 2.09 | 3.68 | 10.10 | 2.11 | 0.91 | 7.77 | 3.79 | 4.67 | 12.77 | 35.26 | 14.45 |
3984 × 630 | 1.48 | 3.80 | 10.13 | 2.72 | 0.64 | 7.93 | 4.32 | 4.81 | 10.44 | 103.21 | 25.39 |
AS426 × 672 | 1.99 | 3.68 | 11.76 | 1.13 | 1.58 | 9.16 | 4.15 | 4.71 | 11.89 | 127.41 | 30.21 |
Macia | 2.11 | 3.92 | 10.40 | 2.37 | 0.92 | 7.42 | 4.61 | 5.04 | 13.6 | 156.32 | 44.64 |
AS1 | 2.10 | 3.61 | 10.66 | 2.11 | 1.20 | 8.23 | 4.41 | 4.67 | 13.37 | 52.83 | 15.96 |
PAN 8816 | 2.29 | 3.39 | 11.24 | 1.84 | 1.08 | 8.33 | 4.27 | 4.66 | 9.59 | 40.51 | 16.42 |
SS49 | 2.35 | 3.70 | 10.92 | 1.58 | 1.32 | 8.83 | 4.20 | 4.84 | 11.88 | 75.97 | 28.45 |
Mean | 2.08 | 3.66 | 10.74 | 2.15 | 0.87 | 8.22 | 4.21 | 4.81 | 11.64 | 78.32 | 24.91 |
CV (%) | 14.17 | 5.07 | 5.30 | 13.13 | 6.55 | 5.27 | 2.60 | 2.08 | 5.91 | 0.90 | 0.99 |
LSD (5%) | 0.47 | 0.29 | 0.89 | 0.44 | 0.09 | 0.67 | 0.17 | 0.16 | 1.07 | 1.1 | 0.38 |
p-value | 0.330 | 0.015 | 0.077 | 0.002 | <0.001 | 0.051 | <0.001 | 0.055 | <0.001 | <0.001 | 0.009 |
Trait | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
Days to flowering | 0.08 | 0.52 | −0.75 | 0.22 | −0.05 | 0.11 |
Plant height | 0.56 | −0.36 | −0.04 | 0.26 | −0.13 | 0.54 |
Panicle weight | −0.86 | −0.08 | 0.04 | 0.41 | 0.04 | −0.11 |
Biomass | 0.08 | −0.16 | −0.44 | 0.49 | −0.36 | −0.47 |
Hundred seed weight | −0.70 | 0.10 | 0.48 | 0.39 | 0.01 | −0.10 |
Seed yield | −0.66 | −0.32 | −0.13 | 0.52 | 0.23 | −0.10 |
Histidine | −0.50 | 0.33 | 0.40 | 0.35 | −0.07 | 0.50 |
Isoleucine | 0.80 | 0.21 | −0.28 | 0.21 | 0.19 | −0.15 |
Leucine | −0.33 | 0.75 | −0.05 | −0.08 | −0.33 | 0.15 |
Lysine | 0.47 | −0.86 | 0.20 | −0.01 | 0.02 | −0.01 |
Methionine | −0.25 | 0.50 | 0.13 | −0.37 | 0.64 | −0.02 |
Phenylalanine | −0.47 | 0.67 | −0.13 | −0.15 | −0.34 | −0.04 |
Threonine | 0.30 | 0.36 | 0.60 | 0.36 | 0.13 | −0.38 |
Valine | 0.76 | 0.08 | 0.45 | 0.28 | −0.26 | 0.17 |
Protein | 0.25 | 0.23 | −0.36 | 0.54 | 0.54 | 0.29 |
Iron | 0.78 | 0.52 | 0.13 | −0.04 | 0.12 | −0.19 |
Zinc | 0.71 | 0.59 | 0.24 | 0.24 | −0.10 | −0.07 |
Eigenvalue | 5.32 | 3.50 | 2.10 | 1.85 | 1.29 | 1.16 |
Proportion of variance (%) | 31.31 | 20.58 | 12.34 | 10.87 | 7.58 | 6.80 |
Cumulative variance (%) | 31.31 | 51.89 | 64.23 | 75.10 | 82.67 | 89.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makebe, A.; Shimelis, H. Diversity Analysis for Grain Nutrient Content and Agronomic Traits among Newly Bred Striga-Resistant and Fusarium oxysporum f.sp. strigae (FOS)-Compatible Sorghum Genotypes. Diversity 2023, 15, 371. https://doi.org/10.3390/d15030371
Makebe A, Shimelis H. Diversity Analysis for Grain Nutrient Content and Agronomic Traits among Newly Bred Striga-Resistant and Fusarium oxysporum f.sp. strigae (FOS)-Compatible Sorghum Genotypes. Diversity. 2023; 15(3):371. https://doi.org/10.3390/d15030371
Chicago/Turabian StyleMakebe, Athenkosi, and Hussein Shimelis. 2023. "Diversity Analysis for Grain Nutrient Content and Agronomic Traits among Newly Bred Striga-Resistant and Fusarium oxysporum f.sp. strigae (FOS)-Compatible Sorghum Genotypes" Diversity 15, no. 3: 371. https://doi.org/10.3390/d15030371
APA StyleMakebe, A., & Shimelis, H. (2023). Diversity Analysis for Grain Nutrient Content and Agronomic Traits among Newly Bred Striga-Resistant and Fusarium oxysporum f.sp. strigae (FOS)-Compatible Sorghum Genotypes. Diversity, 15(3), 371. https://doi.org/10.3390/d15030371