Dynamics of Diversity of Woody Species Taxa under Human Impact in the Upper Volga Region (NW Russia) According to Pedoanthracological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Characteristics
2.3. Charcoal Sampling and Analysis
2.4. Morphological Patterns Registered in Soil Profiles
3. Results
3.1. Soil Description; Charcoals Stratigraphy and Concentration
3.2. Taxonomic Composition of Charcoal Record
3.3. Radiocarbon Dating of Soil Charcoal Samples
3.4. Historical Dynamics of Woody Taxa
4. Discussion
4.1. Pre-Early Iron Age: Charcoals in Sediments and Ancient Treefall Pits
4.2. Early Iron Age: Charcoals in Dark Earth on the Hillforts
4.3. From Medieval to Modern Times: Charcoals in Forest Soils
4.4. Tree Taxa Composition: Richness, Distribution, and Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carcaillet, C.; Thinon, M. Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): Methodology and preliminary data. Rev. Palaeobot. Palynol. 1996, 91, 399–416. [Google Scholar] [CrossRef]
- Nelle, O.; Robin, V.; Talon, B. Pedoanthracology: Analysing soil charcoal to study Holocene palaeoenvironments. Quat. Int. 2013, 289, 1–4. [Google Scholar] [CrossRef]
- Talon, B.; Payette, S.; Filion, L.; Delwaide, A. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils. Quat. Res. 2005, 64, 36–43. [Google Scholar] [CrossRef]
- Cunill, R.; Soriano, J.M.; Bal, M.C.; Pèlachs, A.; Pérez-Obiol, R. Holocene treeline changes on the south slope of the Pyrenees: A pedoanthracological analysis. Veg. Hist. Archaeobot. 2012, 21, 373–384. [Google Scholar] [CrossRef]
- Robin, V.; Nelle, O. Contribution to the reconstruction of central European fire history, based on the soil charcoal analysis of study sites in northern and central Germany. Veg. Hist. Archaeobot. 2014, 23, 51–65. [Google Scholar] [CrossRef]
- Ohlson, M.; Ellingsen, V.M.; del Olmo, M.V.; Lie, M.H.; Nybakken, L.; Asplund, J. Late-Holocene fire history as revealed by size, age and composition of the soil charcoal pool in neighbouring beech and spruce forest landscapes in SE Norway. Holocene 2017, 27, 397–403. [Google Scholar] [CrossRef]
- Saulnier, M.; Cunill Artigas, R.; Foumou, L.F.; Buscaino, S.; Métailié, J.P.; Galop, D.; Py-Saragaglia, V. A study of late Holocene local vegetation dynamics and responses to land use changes in an ancient charcoal making woodland in the central Pyrenees (Ariège, France), using pedoanthracology. Veg. Hist. Archaeobot. 2020, 29, 241–258. [Google Scholar] [CrossRef]
- Kaiser, K.; Tolksdorf, J.F.; de Boer, A.M.; Herbig, C.; Hieke, F.; Kasprzak, M.; Kočár, P.; Petr, L.; Schubert, M.; Schröder, F.; et al. Colluvial sediments originating from past land-use activities in the Erzgebirge Mountains, Central Europe: Occurrence, properties, and historic environmental implications. Archaeol. Anthropol. Sci. 2021, 13, 220. [Google Scholar] [CrossRef]
- Mas, B.; Allue, E.; Alonso, E.S.; Vaquero, M. From forest to settlement: Magdalenian hunter-gatherer interactions with the wood vegetation environment based on anthracology and intra-site spatial distribution. Archaeol. Anthropol. Sci. 2021, 13, 1–18. [Google Scholar] [CrossRef]
- Figueiral, I. Wood resources in north-west Portugal: Their availability and use from the late Bronze Age to the Roman period. Veg. Hist. Archaeobot. 1996, 5, 121–129. [Google Scholar] [CrossRef]
- Théry-Parisot, I.; Chabal, L.; Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 142–153. [Google Scholar] [CrossRef]
- Jansen, D.; Mischka, D.; Nelle, O. Wood usage and its influence on the environment from the Neolithic until the Iron Age: A case study of the graves at Flintbek (Schleswig–Holstein, Northern Germany). Veg. Hist. Archaeobot. 2013, 22, 335–349. [Google Scholar] [CrossRef]
- Ruiz-Giralt, A.; Bouchaud, C.; Salavert, A.; Lancelotti, C.; D’andrea, A.C. Human-woodland interactions during the Pre-Aksumite and Aksumite periods in northeastern Tigray, Ethiopia: Insights from the wood charcoal analyses from Mezber and Ona Adi. Veg. Hist. Archaeobot. 2021, 30, 713–728. [Google Scholar] [CrossRef]
- Smirnov, A.L.; Menshikov, M.Y.; Bobrovsky, M.V.; Kupriyanov, D.A.; Kleshchenko, E.A.; Svirkina, N.G.; Tiunov, A.V.; Dobrovolskaya, M.V. Rasseleniye i istoricheskiye landshafty na zapade Valdaya v rannem zheleznom veke i srednevekovy. Ross. Arkheol. 2021, 3, 80–96. [Google Scholar]
- Kashkin, A.V. Archaeological Map of Russia. Tver’ Region. Part 4: Bologovskiy, Penoskiy, Udomelskiy and Firovskiy Districts; IA RAS: Moscow, Russia, 2012; Volume 4. [Google Scholar]
- Mazei, Y.; Tsyganov, A.; Bobrovsky, M.; Mazei, N.; Kupriyanov, D.; Gałka, M.; Rostanets, D.; Khazanova, K.; Stoiko, T.; Pastukhova, Y.; et al. Peatland development, vegetation history, climate change and human activity in Valdai Uplands (Central European Russia) during the Holocene: A multi-proxy palaeoecological study. Diversity 2020, 12, 462. [Google Scholar] [CrossRef]
- Smirnova, O.V.; Bobrovsky, M.V.; Khanina, L.G. (Eds.) European Russian Forests. Their Current State and Features of Their History; Springer: Dordrecht, The Netherlands, 2017; 566p. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Bobrovsky, M.V.; Kupriyanov, D.A.; Smirnov, A.L.; Khanina, L.G.; Dobrovolskaya, M.V. Woodland dynamics and human activity based on charcoal analysis from hillforts of the iron age and early middle ages in the upper Volga River. Geomorphologiya 2022, 53, 7–24. [Google Scholar]
- Carcaillet, C.; Talon, B. A view of the wood charcoal stratigraphy and dating in soil: A case study of some soils from the French Alps. Géogr. Phys. Quat. 1996, 50, 233–244. [Google Scholar]
- Benkova, V.E.; Schweingruber, F.H. Anatomy of Russian Woods. An Atlas for the Identification of Trees, Shrubs, Dwarf Shrubs and Woody Lianas from Russia; Haupt: Bern, Switzerland, 2004; 456p. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science Ltd.: Hoboken, NJ, USA, 2004; 272p. [Google Scholar]
- Reimer, P.J.; Austin, W.E.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Ramsey, C.B. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, C.B. Methods for summarizing radiocarbon datasets. Radiocarbon 2017, 59, 1809. [Google Scholar] [CrossRef] [Green Version]
- Feiss, T.; Horen, H.; Brasseur, B.; Buridant, J.; Gallet-Moron, E.; Decocq, G. Historical ecology of lowland forests: Does pedoanthracology support historical and archaeological data? Quat. Int. 2017, 457, 99–112. [Google Scholar] [CrossRef]
- Lertzman, K.; Gavin, D.; Hallett, D.; Brubaker, L.; Lepofsky, D.; Mathewes, R. Longterm fire regime estimated from soil charcoal in coastal temperate rainforests. Conserv. Ecol. 2002, 6, 5. [Google Scholar]
- Gavin, D.G.; Brubaker, L.B.; Lertzman, K.P. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 2003, 84, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Bobrovsky, M.V.; Kupriaynov, D.A.; Khanina, L.G. Anthracological and morphological analysis of soils for the reconstruction of the forest ecosystem history (Meshchera Lowlands, Russia). Quat. Int. 2019, 516, 70–82. [Google Scholar] [CrossRef]
- Moser, D.; Di Pasquale, G.; Scarciglia, F.; Nelle, O. Holocene mountain forest changes in central Mediterranean: Soil charcoal data from the Sila Massif (Calabria, southern Italy). Quat. Int. 2017, 457, 113–130. [Google Scholar] [CrossRef]
- Allen, J.R.L. Trees and their response to wind: Mid Flandrian strong winds, Severn Estuary and inner Bristol Channel, southwest Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1992, 338, 335–364. [Google Scholar]
- Beatty, S.W.; Stone, E.L. The variety of soil microsites created by tree falls. Agron. Pap. 1986, 1406, 539–548. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Burns, S.F.; Small, T.W.; Johnson, D.L. Tree uprooting: Review of types and patterns of soil disturbance. Phys. Geogr. 1990, 11, 277–291. [Google Scholar] [CrossRef]
- Šamonil, P.; Král, K.; Hort, L. The role of tree uprooting in soil formation: A critical literature review. Geoderma 2010, 157, 65–79. [Google Scholar] [CrossRef]
- Bobrovsky, M.; Loyko, S. Patterns of pedoturbation by tree uprooting in forest soils. Russ. J. Ecosys. Ecol. 2016, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gavin, D.G. Forest soil disturbance intervals inferred from soil charcoal radiocarbon dates. Can. J. For. Res. 2003, 33, 2514–2518. [Google Scholar] [CrossRef]
- Embleton-Hamann, C. Processes responsible for the development of a pit and mound microrelief. Catena 2004, 57, 175–188. [Google Scholar] [CrossRef]
- Šamonil, P.; Schaetzl, R.J.; Valtera, M.; Golias, V.; Baldrian, P.; Vasickova, I.; Adam, D.; Janik, D.; Hort, L. Crossdating of disturbances by tree uprooting: Can treethrow icrotopography persist for 6000 years? For. Ecol. Manag. 2013, 307, 123–135. [Google Scholar] [CrossRef]
- Loiko, S.V.; Kuz’mina, D.M.; Dudko, A.A.; Konstantinov, A.O.; Vasil’eva, Y.A.; Kurasova, A.O.; Lim, A.G.; Kulizhskii, S.P. Charcoals in the Middle Taiga Podzols of Western Siberia as an Indicator of Geosystem History. Eurasian J. Soil Sci. 2022, 55, 154–168. [Google Scholar] [CrossRef]
- Wiedner, K.; Schneeweiß, J.; Dippold, M.A.; Glaser, B. Anthropogenic dark earth in Northern Germany—The Nordic Analogue to terra preta de Índio in Amazonia. Catena 2015, 132, 114–125. [Google Scholar] [CrossRef]
- Holliday, V.T. Soils in archaeological research. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–12. [Google Scholar]
- Kappler, C.; Kaiser, K.; Küster, M.; Nicolay, A.; Fülling, A.; Bens, O.; Raab, T. Late Pleistocene and Holocene terrestrial geomorphodynamics and soil formation in northeastern Germany: A review of geochronological data. Phys. Geogr. 2019, 40, 405–432. [Google Scholar] [CrossRef]
- Krenke, N.A. Dyakovo Gorodishche: Kul’tura Naseleniya Basseyna Moskvy-Reki v I Tys. do n. e.–I Tys. n. e.; IA RAN: Moscow, Russia, 2011; 546p. [Google Scholar]
- Sedov, S.N.; Zazovskaya, E.P.; Bronnikova, M.A.; Kazdim, A.A.; Rosov, S.Y. Late Holocene man-induced environmental change in central Russian plain: Paleopedological evidences from early-medieval archaeological site. Chin. Sci. Bull. 1999, 44, 159. [Google Scholar]
- Ershova, E.G.; Krenke, N.A.; Kittel, P.; Lavrenov, N.G. Archaeological sites in the Katynka river basin (Smolensk Region). IOP Conf. Ser. Earth Environ. Sci. 2020, 438, 012007. [Google Scholar] [CrossRef]
- Trofimov, S.Y.; Yakimenko, O.S.; Sedov, S.N.; Dorofeeva, E.I.; Gorshkova, E.I.; Zazovskaya, E.P.; Dorofeeva, E.I.; Oleinik, S.A.; Gorshkova, E.I.; Demin, V.V. Composition and properties of organic matter in the soils of ancient Slavic settlements in the forest zone. Eurasian J. Soil Sci. 2004, 37, 927–936. [Google Scholar]
- Glazov, V.N.; Otchet, V.N. Glazova o Poyezdke 1903 g. na Verkhov’ya Volgi i v Demyanskiy Uyezd; ZORSA: St. Petersburg, Russia, 1905; Volume VII(1). [Google Scholar]
- Tarakanova, S.A. Ob arkheologicheskom izuchenii sel’skikh feodal’nykh poseleniy v pyatinakh Velikogo Novgoroda. Kratk. Soobshcheniya Dokl. Polevykh Issled. Inst. Istor. Mater. Kul’tury 1945, 11, 73–78. [Google Scholar]
- Islanova, I.V. Drevnosti v Verkhov’yakh Volgi (Ranniy Zheleznyy Vek i Ranneye Srednevekovye); IA RAN: Moscow, Russia, 2012; 219p. [Google Scholar]
- Stankevich, Y.V. K istorii naseleniya Verkhnego Podvin’ya v I i nachale II tysyacheletiy n. e. In Drevnosti Severo-Zapadnykh Oblastey RSFSR. Materialy i Issledovaniya po Arkheologii SSSR; Akademiya Nauk SSSR: Moscow, Russia, 1960; Volume 76, pp. 7–327. [Google Scholar]
- Macphail, R.I. The micromorphology of dark earth from Gloucester, London, and Norwich: An analysis of urban anthropogenic deposits from the Late Roman to Early Medieval periods in England. In Soil Micromorphology; Bullock, P., Murphy, C.P., Eds.; A B Academic Publishers: Berkhamsted, UK, 1983; pp. 245–252. [Google Scholar]
- Devos, Y.; Nicosia, C.; Vrydaghs, L.; Speleers, L.; Van der Valk, J.; Marinova, E.; Claes, B.; Albert, R.M.; Esteban, I.; Ball, T.; et al. An integrated study of Dark Earth from the alluvial valley of the Senne river (Brussels, Belgium). Quat. Int. 2017, 460, 175–197. [Google Scholar] [CrossRef]
- Macphail, R.I.; Carey, C.J.; Allan, J.P. Contrasting the use of space in post-Roman Exeter: Geoarchaeology of dark earth and medieval deposits below Exeter Cathedral. Antiquity 2021, 96, 487–493. [Google Scholar] [CrossRef]
- Devos, Y.; De Groote, K.; Moens, J.; Vrydaghs, L. Facing complexity: An interdisciplinary study of a medieval pre-urban Dark Earth from the centre of Aalst (Belgium). In Soils as Records of Past and Present. From Soil Surveys to Archaeological Sites: Research Strategies for Interpreting Soil Characteristics; Raakvlak: Bruges, Belgium, 2019; pp. 159–171. [Google Scholar]
- Negassa, W.; Acksel, A.; Eckhardt, K.U.; Regier, T.; Leinweber, P. Soil organic matter characteristics in drained and rewetted peatlands of northern Germany: Chemical and spectroscopic analyses. Geoderma 2019, 353, 468–481. [Google Scholar] [CrossRef]
- Asare, M.O.; Horák, J.; Šmejda, L.; Janovský, M.; Hejcman, M. A medieval hillfort as an island of extraordinary fertile Archaeological Dark Earth soil in the Czech Republic. Eur. J. Soil. Sci. 2021, 72, 98–113. [Google Scholar] [CrossRef]
- Acksel, A.; Amelung, W.; Kühn, P.; Gehrt, E.; Regier, T.; Leinweber, P. Soil organic matter characteristics as indicator of Chernozem genesis in the Baltic Sea region. Geoderma Reg. 2016, 7, 187–200. [Google Scholar] [CrossRef]
- Acksel, A.; Kappenberg, A.; Kühn, P.; Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Reg 2017, 10, 93–101. [Google Scholar] [CrossRef]
- Nicosia, C.; Langohr, R.; Mees, F.; Arnoldus-Huyzendveld, A.; Bruttini, J.; Cantini, F. Medieval Dark Earth in an Active Alluvial Setting from the Uffizi Gallery Complex in Florence, Italy. Geoarchaeology 2012, 27, 105–122. [Google Scholar] [CrossRef]
- Asare, M.O.; Afriyie, J.O. Tracing the past from the analysis of Cu, Zn, Mn, Sr, and Rb in Archaeological Dark Earth soils from the tropics and temperate zone. Quat. Int. 2020, 562, 13–26. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Prins, F. Charcoal analysis and the “Principle of Least Effort”—A conceptual model. J. Archaeol. Sci. 1992, 19, 631–637. [Google Scholar] [CrossRef]
- Asouti, E.; Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 2005, 10, 1–18. [Google Scholar] [CrossRef]
- Marston, J.M. Modeling wood acquisition strategies from archaeological charcoal remains. J. Archaeol. Sci. 2009, 36, 2192–2200. [Google Scholar] [CrossRef]
- Rubiales, J.M.; Hernández, L.; Romero, F.; Sanz, C. The use of forest resources in central Iberia during the Late Iron Age. Insights from the wood charcoal analysis of Pintia, a Vaccaean oppidum. J. Archaeol. Sci. 2011, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jakobitsch, T.; Wiesinger, S.; Heiss, A.G.; Faltner, F.; Oeggl, K.; Grabner, M.; Trebsche, P. Wood use and forest management at the Late Bronze Age copper mining site of Prigglitz-Gasteil in the Eastern Alps—A combined anthracological, archaeological, and palynological approach. J. Archaeol. Sci. Rep. 2022, 46, 103673. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Tsyganov, A.N.; Pisarchuk, N.M.; Volkova, E.M.; Babeshko, K.V.; Kozlov, D.N.; Shilov, P.M.; Payne, R.J.; Mazei, Y.A.; Olchev, A.V. Forest history, peatland development and mid- to late Holocene environmental change in the southern taiga forest of central European Russia. Quat. Res. 2018, 89, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Poska, A.; Saarse, L.; Veski, S. Reflections of pre-and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr. Palaeoclim. Palaeoecol. 2004, 209, 37–50. [Google Scholar] [CrossRef]
- Zernitskaya, V.; Mikhailov, N. Evidence of early farming in the Holocene pollen spectra of Belarus. Quat. Int. 2009, 203, 91–104. [Google Scholar] [CrossRef]
- Mazurkevich, A.N.; Korotkevich, B.S.; Dolukhanov, P.M.; Shukurov, A.M.; Arslanov, K.A.; Savel’eva, L.A.; Dzinoridze, E.N.; Kulkova, M.A.; Zaitseva, G.I. Climate, subsistence and human movements in the Western Dvina—Lovat River Basins. Quat. Int. 2009, 203, 52–66. [Google Scholar] [CrossRef]
- Tarasov, P.E.; Savelieva, L.A.; Long, T.; Leipe, C. Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quat. Int. 2019, 516, 21–41. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Tsyganov, A.N.; Mazei, N.G.; Kupriyanov, D.A.; Rudenko, O.V.; Bobrovsky, M.V.; Erman, N.F.; Nizovtsev, V.A. Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4,200 years: A case study from the Kaluzhskiye Zaseki Nature Reserve. Quat. Int. 2019, 516, 58–69. [Google Scholar] [CrossRef]
- Alenius, T.; Gerasimov, D.; Sapelko, T.; Ludikova, A.; Kuznetsov, D.; Golyeva, A.; Nordqvist, K. Human-environment interaction during the Holocene along the shoreline of the Ancient Lake Ladoga: A case study based on palaeoecological and archaeological material from the Karelian Isthmus, Russia. Holocene 2020, 30, 1622–1636. [Google Scholar]
- Yershova, E.G.; Krenke, N.A.; Nosova, M.B. Istoriya razvitiya proizvodyashchego khozyaystva v Moskovskom i sopredel’nykh regionakh: Obzor paleobotanicheskikh i arkheologicheskikh dannykh (k 50-letiyu knigi YU.A. Krasnova «Ranneye zemledeliye i zhivotnovodstvo v lesnoy polose Vostochnoy Yevropy». M.: Nauka, 1971). Ross. Arkheol. 2022, 2, 7–19. [Google Scholar]
- Kittel, P.; Mazurkevich, A.; Gauthier, E.; Kazakov, E.; Kublitskiy, Y.; Rzodkiewicz, M.; Mroczkowska, A.; Okupny, D.; Szmańda, J.; Dolbunova, E. A deep history within a small wetland: 13,000 years of human-environment relations on the East European Plain. Antiquity 2022, 97, e3. [Google Scholar] [CrossRef]
- Nosova, M.; Severova, E.; Volkova, O. A 6500-year pollen record from the Polistovo-Lovatskaya Mire System (northwest European Russia). Vegetation dynamics and signs of human impact. Grana 2017, 56, 410–423. [Google Scholar] [CrossRef]
- Nosova, M.B.; Novenko, E.Y.; Severova, E.E.; Volkova, O.A. Vegetation and climate changes within and around the Polistovo-Lovatskaya mire system (Pskov Oblast, north-western Russia) during the past 10,500 years. Veg. Hist. Archaeobot. 2019, 28, 123–140. [Google Scholar] [CrossRef]
- Nosova, M.B. Sporovo-pyl’tsevyye diagrammy golotsenovykh otlozheniy kak istochnik informatsii ob antropogennom vozdeystvii na rastitel’nost’ v doistoricheskiy period (na primere Tsentral’no-Lesnogo zapovednika). Byulleten MOIP. Seriya Biol. 2009, 114, 30–36. [Google Scholar]
- Novenko, E.Y.; Volkova, E.M.; Nosova, N.B.; Zuganova, I.S. Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quat. Int. 2009, 207, 93–103. [Google Scholar] [CrossRef]
- Novenko, E.; Shilov, P.; Khitrov, D.; Kozlov, D. The last hundred years of land use history in the southern part of Valdai Hills (European Russia): Reconstruction by pollen and historical data. Stud. Quat. 2017, 34, 73–81. [Google Scholar] [CrossRef]
- Yeremeyev, I.I.; Dzyuba, O.F.; Lisitsyna, O.V. Drevneye rasseleniye i zemledeliye na vostochnom beregu oz. Il’men’ po dannym arkheologii i paleogeografii. Zap. Inst. Istor. Mater. Kul’tury 2007, 2, 215–256. [Google Scholar]
- Yeremeyev, I.I.; Dzyuba, O.F. Ocherki Istoricheskoy Geografii Lesnoy Chasti Puti iz Varyag v Greki: Arkheologicheskiye i Paleogeograficheskiye Issledovaniya Mezhdu Zapadnoy Dvinoy i Ozerom Ilmen; Nestor-Istoriya: St. Petersburg, Russia, 2010; 670p. [Google Scholar]
- Krenke, N.A. Drevnosti Basseina Moskvy Reki s Neolita do Srednevekoviya (Antiquities of the Moscow River Basin from the Neolith to Middle Ages); Svitok: Moscow, Russia; Smolensk, Russia, 2019; 392p. [Google Scholar]
- Krenke, N.A.; Abramzon, M.G.; Ganichev, K.A.; Yershova, Y.G.; Kudryavtsev, A.A.; Lazukin, A.V.; Lavrikov, M.V.; Pronin, M.I.; Chaukin, S.N.; Yanishevskiy, B.Y. Gorodishche Busharino na r. Setun’ i yego resursnaya zona. Brief. Comm. Inst. Archaeol. 2021, 263, 46–59. [Google Scholar]
- Ponomarenko, E.V.; Ershova, E.G.; Krenke, N.A.; Bakumenko, V.O. Sledy podsechnogo zemledeliya zheleznogo veka pod slavianskimi kurganami Zvenigorodskoy biostancii MGU (Traces of Iron Age slash-and-burn agriculture under the slavic kurgans at the MSU Zvenigorod Biological Station). Brief. Comm. Inst. Archaeol. 2021, 263, 60–73. [Google Scholar]
- Davidson, D.A.; Carter, S.P. Micromorphological evidence of past agricultural practices in cultivated soils: The impact of a traditional agricultural system on soils in Papa Stour, Shetland. J. Archaeol. Sci. 1998, 25, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Davidson, D.A. Bioturbation in old arable soils: Quantitative evidence from soil micromorphology. J. Archaeol. Sci. 2002, 29, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, E.; Tomson, P.; Ershova, E.; Bakumenko, V. A multi-proxy analysis of sandy soils in historical slash-and-burn sites: A case study from southern Estonia. Quart. Int. 2019, 516, 190–206. [Google Scholar] [CrossRef]
- Tomson, P.; Kaart, T.; Sepp, K. Forest soil charcoal and historical land use. Balt. For. 2021, 27, 478. [Google Scholar] [CrossRef]
- Nikodemus, O.; Dirnēna, B.; Bārdiņa, E.; Bērziņš, V.; Brūmelis, G.; Kukuļs, I.; Kasparinskis, R. Impacts of historical land use on forest soil properties in the hemiboreal forest zone, Latvia. Geoderma Reg. 2022, 31, e00574. [Google Scholar] [CrossRef]
- Bobrovsky, M.V. Lesnye Pochvy Evropeyskoy Rossii: Bioticheskie I Antropogennye Faktory Formirovaniya; KMK: Moscow, Russia, 2010; 359p. [Google Scholar]
- Larsen, A.; Robin, V.; Heckmann, T.; Fülling, A.; Larsen, J.R.; Bork, H.R. The influence of historic land-use changes on hillslope erosion and sediment redistribution. Holocene 2016, 26, 1248–1261. [Google Scholar] [CrossRef]
- Henkner, J.; Ahlrichs, J.J.; Downey, S.; Fuchs, M.; James, B.R.; Knopf, T.; Scholten, T.; Teuber, S.; Kühn, P. Archaeopedology and chronostratigraphy of colluvial deposits as a proxy for regional land use history (Baar, southwest Germany). Catena 2017, 155, 93–113. [Google Scholar] [CrossRef]
- Carcaillet, C.; Richard, P.J.; Asnong, H.; Capece, L.; Bergeron, Y. Fire and soil erosion history in East Canadian boreal and temperate forests. Quat. Sci. Rev. 2006, 25, 1489–1500. [Google Scholar] [CrossRef]
- Islanova, I.V. Poseleniya rannego zheleznogo veka na Verkhney Volge (istochnikovaya baza) (Settlements of the early Iron Age on the Upper Volga (source base)). Brief. Comm. Inst. Archaeol. 2014, 233, 46–54. [Google Scholar]
- Islanova, I.V. Kulturno-Istoricheskiye Protsessy vo II–VIII vv. n.e. v Basseynakh Verkhney Volgi i Verkhney Msty; IA RAN: Moscow, Russia, 2020; 51p. [Google Scholar]
- Dobrovolskaya, M.V.; Smirnov, A.L.; Prorokova, E.N.; Chelogayeva, E.O. Krematsiya polnoy sokhrannosti iz urnovogo pogrebeniya rannesrednevekovogo kurgana mogil’nika Bervenets. Brief. Comm. Inst. Archaeol. 2022, 266, 321–334. [Google Scholar]
- Islanova, I.V. O lokalnykh gruppakh dyakovskikh pamyatnikov. Tver. Arkheologichesky Sb. 2002, 5, 451–460. [Google Scholar]
- Kappler, C.; Kaiser, K.; Tanski, P.; Klos, F.; Fülling, A.; Mrotzek, A.; Sommer, M.; Bens, O. Stratigraphy and age of colluvial deposits indicating Late Holocene soil erosion in northeastern Germany. Catena 2018, 170, 224–245. [Google Scholar] [CrossRef] [Green Version]
- Dotterweich, M. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment—A review. Geomorphology 2008, 101, 192–208. [Google Scholar] [CrossRef]
- Mjærum, A.; Loftsgarden, K.; Solheim, S. Human-vegetation dynamics in Holocene south-eastern Norway based on radiocarbon dated charcoal from archaeological excavations. Holocene 2022, 32, 690–702. [Google Scholar] [CrossRef]
- Soto, B.; Basanta, R.; Perez, R.; Diaz-Fierros, F. An experimental study of the influence of traditional slash-and-burn practices on soil erosion. Catena 1995, 24, 13–23. [Google Scholar] [CrossRef]
- Rumpel, C.; Chaplot, V.; Planchon, O.; Bernadou, J.; Valentin, C.; Mariotti, A. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 2006, 65, 30–40. [Google Scholar] [CrossRef]
- Henkner, J.; Ahlrichs, J.; Downey, S.; Fuchs, M.; James, B.; Junge, A.; Knopf, T.; Scholten, T.; Kühn, P. Archaeopedological analysis of colluvial deposits in favourable and unfavourable areas: Reconstruction of land use dynamics in SW Germany. R. Soc. Open Sci. 2018, 5, 171624. [Google Scholar] [CrossRef] [Green Version]
- Mende, A.I. Topograficheskaya Mezhevaya Karta Tverskoy Gubernii. S”Yemka pod Rukovodstvom A.I. Mende. 1:84000; Imperatorskoye Russkoye Geograficheskoye Obshchestvo: St. Petersburg, Russia, 1853. [Google Scholar]
- Milov, L.V. Velikorusskiy Pakhar i Osobennosti Rossiyskogo Istoricheskogo Protsessa; ROSSPEN: Moscow, Russia, 1998; 573p. [Google Scholar]
- Gribova, S.A.; Isachenko, T.I.; Lavrenko, E.M. (Eds.) Rastitelnost Evropeiskoy Chasti SSSR; Nauka: Leningrad, Russia, 1980; 426p. [Google Scholar]
- Khanina, L.G.; Smirnov, V.E.; Romanov, M.S.; Bobrovsky, M.V. Effect of spring grass fires on vegetation patterns and soil quality in abandoned agricultural lands at local and landscape scales in Central European Russia. Ecol. Proc. 2018, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Bobek, P.; Svobodová-Svitavská, H.; Pokorný, P.; Šamonil, P.; Kuneš, P.; Kozáková, R.; Vojtěch Abraham, V.; Klinerová, T.; Švarcová, M.G.; Jamrichová, E.; et al. Divergent fire history trajectories in Central European temperate forests revealed a pronounced influence of broadleaved trees on fire dynamics. Quat. Sci. Rev. 2019, 222, 105865. [Google Scholar] [CrossRef]
- Benatti, A.; Bal, M.; Allée, P.; Bosi, G.; Mercuri, A.M. Plant landscape reconstruction above the current timberline at the Monte Cimone and Corno alle Scale mountain areas (Northern Apennines, Italy) during the Late Holocene: The evidence from soil charcoal. Holocene 2019, 29, 1767–1781. [Google Scholar] [CrossRef]
- Tolksdorf, J.F.; Kaiser, K.; Petr, L.; Herbig, C.; Kočár, P.; Heinrich, S.; Wilke, F.D.H.; Theuerkauf, M.; Fülling, A.; Schubert, M.; et al. Past human impact in a mountain forest: Geoarchaeology of a medieval glass production and charcoal hearth site in the Erzgebirge, Germany. Reg. Environ. Chang. 2020, 20, 71. [Google Scholar] [CrossRef]
- Moskal-del Hoyo, M. Open canopy forests of the loess regions of southern Poland: A review based on wood charcoal assemblages from Neolithic and Bronze Age archaeological sites. Quat. Int. 2021, 593, 204–223. [Google Scholar] [CrossRef]
- Novák, J.; Kočárová, R.; Kočár, P.; Abraham, V. Long–term history of woodland under human impact, archaeoanthracological synthesis for lowlands in Czech Republic. Quat. Int. 2021, 593, 195–203. [Google Scholar] [CrossRef]
- Bal, M.C.; Garcia-Alvarez, S. Inferring the ancientness of the Mirambel woodland from soil charcoal: A local exception to the regional pattern of the Millevaches plateau (Limousin, Massif Central, France). Quat. Int. 2022, 636, 196–208. [Google Scholar] [CrossRef]
Type of Lands | Site (Local Area) | |||
---|---|---|---|---|
Zaborovka-Likhusha (ZL) | Runa-Zaborovka (RZ) | Voroshilovo (V) | Krasnyi Bor (KB) | |
Hillforts | 1 (19) | 1 (41) | 1 (24) | |
Sediments below hillforts | 1 (6) | 1 (29) | ||
Forest soils | 16 (1, 8, 10, 11, 13, 15, 16, 17, 18, 21, 31, 36, 37, 38, 40, 49) | 3 (46, 47, 48) | 2 (28, 30) | 3 (3, 5, 22) |
Sediments below slopes in the forests | 4 (7, 12, 14, 20) | 2 (4, 23) | ||
Modern arable lands | 2 (25, 26) | 2 (27, 42) | ||
Vegetable gardens | 2 (34, 35) |
Land Types | Horizons | µ Mean | SE |
---|---|---|---|
Hillforts | Axp | 0.76 | 0.23 |
BC | 0.12 | 0.05 | |
Total | 0.55 | 0.16 | |
Sediments below hillforts | M | 11.99 | 9.67 |
B | 0.06 | 0.06 | |
Total | 7.65 | 6.24 | |
Forest soils | A, AB, AE, E | 3.63 | 1.19 |
B | 0.12 | 0.03 | |
Total | 1.74 | 0.57 | |
Sediments below slopes in the forests | M | 2.22 | 0.46 |
B | 0.22 | 0.15 | |
Total | 1.22 | 0.52 | |
Arable lands | Ap | 0.013 | 0.007 |
B | 0.000 | ||
Total | 0.009 | 0.005 | |
Vegetable gardens | Ap | 0.195 | 0.074 |
B | 0.021 | 0.012 | |
Total | 0.108 | 0.041 |
Lab. Code | Soil Profile | Soil Horizon (Depth, cm) | Taxon | Lab. 14C Age (Yr BP) | Calibrated Age (cal Yr BP) | Calibrated Age (cal Yr BC/AD) |
---|---|---|---|---|---|---|
IGANAMS-7314 | ZL14 | M5 (BC) (120) | Pinus | 10,395 ± 35 | 12,481–12,046 | 10,532–10,097 BC |
IGANAMS-7303 | ZL12 | BE (70–75) | Pinus | 5060 ± 25 | 5901–5741 | 3952–3792 BC |
IGANAMS-8079 | ZL21 | B3 (60–70) | Picea | 4380 ± 30 | 5042–4860 | 3093–2911 BC |
IGANAMS-8080 | ZL21 | HH (90–100) | Picea | 2970 ± 30 | 3233–3004 | 1284–1055 BC |
IGANAMS-7316 | ZL21 | B2 (60–80) | Picea | 2455 ± 20 | 2701–2366 | 752–417 BC |
IGANAMS-8084 | V24 | BC (115–120) | Picea | 2220 ± 30 | 2334–2146 | 385–197 BC |
IGANAMS-7118 | ZL24 | Axp (50) | N/A | 2180 ± 25 | 2310–2104 | 361–155 BC |
IGANAMS-7297 | ZL6 | M3 (35–49) | Pinus | 2125 ± 20 | 2289–2002 | 340–53 BC |
IGANAMS-7293 | V2 | Axp (40) | Pinus | 2050 ± 20 | 2097 | 148 BC–21 AD |
IGANAMS-8088 | RZ41 | BC (60–75) | Picea | 2040 ± 30 | 2100–1889 | 151 BC–62 AD |
IGANAMS-8075 | ZL19 | Axp (15–30) | Acer | 2020 ± 30 | 2047–1844 | 98 BC–106 AD |
IGANAMS-8083 | V24 | Axp (60–75) | Ulmus | 1985 ± 30 | 1993–1833 | 44 BC–117 AD |
IGANAMS-8082 | V24 | Axp (15–30) | Ulmus | 1740 ± 30 | 1705–1549 | 245–402 AD |
IGSB-1982 | ZL14 | M1 (13–15) | Pinus, Picea | 1550 ± 70 | 1566–1303 | 384–648 AD |
IGSB-1979 | ZL1 | B (30–40) | Pinus | 1475 ± 75 | 1530–1281 | 420–669 AD |
IGSB-1981 | ZL13 | AB (10–20) | Pinus | 1475 ± 75 | 1530–1281 | 420–669 AD |
IGANAMS-7119 | ZL24 | Axp (40) | N/A | 1450 ± 20 | 1367–1302 | 583–649 AD |
IGANAMS-7298 | ZL6 | M2 (16–35) | Pinus | 1360 ± 20 | 1308–1192 | 643–758 AD |
IGANAMS-8076 | ZL19 | Axp (45–60) | Ulmus | 1250 ± 20 | 1274–1078 | 677–873 AD |
IGANAMS-7313 | ZL14 | M3 (50) | Pinus | 1230 ± 20 | 1248–1070 | 702–881 AD |
IGANAMS-7315 | ZL20 | M3 (12–20) | Populus | 1115 ± 20 | 1059–960 | 891–991 AD |
IGSB-1983 | ZL36 | AE (5–10) | Pinus, Betula | 1045 ± 65 | 1175–788 | 775–1162 AD |
IGANAMS-8087 | RZ41 | Axp (15–30) | Quercus | 1030 ± 30 | 1051–804 | 899–1147 AD |
IGSB-1985 | ZL40 | A (0–15) | Pinus, Picea | 990 ± 75 | 1058–732 | 893–1218 AD |
IGANAMS-7292 | ZL1 | AB (10–15) | Pinus | 765 ± 20 | 724–670 | 1226–1280 AD |
IGANAMS-7291 | ZL1 | A (4–14) | Pinus | 680 ± 20 | 673–565 | 1277–1385 AD |
IGANAMS-7318 | ZL12 | AE (10–20) | Picea | 570 ± 20 | 631–532 | 1320–1419 AD |
IGANAMS-7302 | ZL31 | M2 (18–23) | Pinus | 570 ± 20 | 631–532 | 1320–1419 AD |
IGSB-1984 | ZL49 | B1 (10–30) | Pinus | 565 ± 70 | 663–503 | 1288–1447 AD |
IGANAMS-8081 | KB23 | B1 (25–35) | Picea | 525 ± 30 | 624–509 | 1327–1442 AD |
IGANAMS-8078 | ZL21 | B1 (15–30) | Quercus | 485 ± 20 | 537–503 | 1413–1447 AD |
IGANAMS-8086 | RZ41 | Axp (0–15) | Picea | 450 ± 30 | 537–470 | 1413–1480 AD |
IGANAMS-7295 | KB4 | M3 (22–30) | Picea | 370 ± 20 | 495–320 | 1455–1630 AD |
IGANAMS-7299 | ZL6 | M1 (8–16) | Pinus | 290 ± 20 | 433–294 | 1517–1657 AD |
IGANAMS-7317 | KB23 | M1 (2–12) | Corylus | 280 ± 20 | 430–289 | 1521–1662 AD |
IGANAMS-7301 | ZL11 | B (9–19) | Picea | 250 ± 20 | 422–151 | 1529–1799 AD |
IGANAMS-7312 | ZL13 | B2 (80) | Pinus | 225 ± 20 | 309–… | 1641–… AD |
IGANAMS-8085 | ZL34 | B (30–40) | Picea | 210 ± 30 | 308–… | 1642–… AD |
IGANAMS-7300 | ZL10 | AE (4–12) | Pinus | 110 ± 20 | 262–27 | 1689–1924 AD |
IGANAMS-7296 | KB5 | AB (1–9) | Pinus | 95 ± 20 | 257–33 | 1694–1918 AD |
IGANAMS-7294 | KB3 | AE (1–7) | Picea | 50 ± 20 | 254–38 | 1696–1912 AD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrovsky, M.V.; Kupriyanov, D.A.; Smirnov, A.L.; Khanina, L.G.; Dobrovolskaya, M.V.; Tiunov, A.V. Dynamics of Diversity of Woody Species Taxa under Human Impact in the Upper Volga Region (NW Russia) According to Pedoanthracological Data. Diversity 2023, 15, 403. https://doi.org/10.3390/d15030403
Bobrovsky MV, Kupriyanov DA, Smirnov AL, Khanina LG, Dobrovolskaya MV, Tiunov AV. Dynamics of Diversity of Woody Species Taxa under Human Impact in the Upper Volga Region (NW Russia) According to Pedoanthracological Data. Diversity. 2023; 15(3):403. https://doi.org/10.3390/d15030403
Chicago/Turabian StyleBobrovsky, Maxim V., Dmitry A. Kupriyanov, Alexei L. Smirnov, Larisa G. Khanina, Maria V. Dobrovolskaya, and Alexei V. Tiunov. 2023. "Dynamics of Diversity of Woody Species Taxa under Human Impact in the Upper Volga Region (NW Russia) According to Pedoanthracological Data" Diversity 15, no. 3: 403. https://doi.org/10.3390/d15030403
APA StyleBobrovsky, M. V., Kupriyanov, D. A., Smirnov, A. L., Khanina, L. G., Dobrovolskaya, M. V., & Tiunov, A. V. (2023). Dynamics of Diversity of Woody Species Taxa under Human Impact in the Upper Volga Region (NW Russia) According to Pedoanthracological Data. Diversity, 15(3), 403. https://doi.org/10.3390/d15030403