Comparative Analysis of Rhizospheric Fungi Using High-Throughput Sequencing between Wild, Ex Situ, and Reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Measurement of Soil Physical and Chemical Properties
2.3. DNA Extraction, PCR Amplification, and High Throughput Sequencing
2.4. Data Analysis
3. Results
3.1. Sequencing Quality
3.2. Alpha Diversity
3.3. Fungal Communities in Rhizosphere Soil of P. squamata
3.3.1. Community Structure and Composition
3.3.2. Unique and Common Communities
3.4. Beta Diversity
3.5. Difference Analysis of Fungal Communities
3.6. Soil Physicochemical Properties and Their Relationships with Fungal Communities
3.6.1. Soil Physical and Chemical Properties
3.6.2. Redundancy Analysis
3.6.3. Heatmap of the Correlation between Fungal Community and Soil Physicochemical Properties
3.7. Functional Prediction in Rhizosphere Fungal Community of P. squamata
4. Discussion
4.1. Fungal Diversity of P. squamata Rhizosphere Soil
4.2. Community Structure of P. squamata Rhizosphere Fungi
4.3. Relationships between Fungal Community and Soil Physicochemical Properties
4.4. Functional Prediction of P. squamata Rhizosphere Fungal Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Buee, M.; De Boer, W.; Martin, F.; van Overbeek, L.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef]
- Frac, M.; Hannula, S.E.; Belka, M.; Jedryczk, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.X.; Ding, M.M. Soil microbial characteristics as bioindicators of soil health. Biodivers. Sci. 2007, 15, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.G.; Peng, J.J.; Wei, Z.; Shen, Q.R.; Zhang, F.S. Linking the soil microbiome to soil health. Sci. Sin. Vitae 2021, 51, 1–11. [Google Scholar] [CrossRef]
- Sun, W.B.; Han, C.Y. Researches and conservation for plant species with extremely small populations (PSESP). Biodivers. Sci. 2015, 23, 426–429. [Google Scholar] [CrossRef]
- Sun, W.B.; Yang, J.; Dao, Z.L. Study and Conservation of Plant Species with Extremely Small Populations (PSESP) in Yunnan Province; Science Press: Beijing, China, 2019. [Google Scholar]
- Yang, J.; Cai, L.; Liu, D.T.; Chen, G.; Gratzfeld, J.; Sun, W.B. China’s conservation program on Plant Species with Extremely Small Populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Cogoni, D.; Fenu, G.; Dessi, C.; Deidda, A.; Giotta, C.; Piccitto, M.; Bacchetta, G. Importance of plants with extremely small populations (PSESPs) in endemic-rich areas, elements often forgotten in conservation strategies. Plants 2021, 10, 1504. [Google Scholar] [CrossRef]
- Crane, P. Conserving our global botanical heritage: The PSESP plant conservation program. Plant Divers. 2020, 42, 319–322. [Google Scholar] [CrossRef]
- National Forestry Bureau and Agriculture Ministry of China. List of National Key Protected Wild Plants; National Forestry Bureau and Agriculture Ministry of China: Beijing, China, 1999.
- National Forestry Bureau and Agriculture Ministry of China. List of National Key Protected Wild Plants; National Forestry Bureau and Agriculture Ministry of China: Beijing, China, 2021.
- IUCN Species Survival Commission. IUCN Red List Categories and Criteria: Version 3.1; IUCN: Gland, Switzerland; Cambridge, UK, 2001. [Google Scholar]
- Li, X.W. A new series and a new species of Pinus from Yunnan. Acta Bot. Yunnanica 1992, 14, 259–260. [Google Scholar]
- Fan, G.S.; Li, X.W.; Deng, L.L. A study of floristic geography of Pinus squamata flora. J. Cent.-South For. Univ. 1996, 16, 23–27+33. [Google Scholar] [CrossRef]
- Lu, S.J.; Deng, L.L.; Li, X.W. A study on endangered causes of Pinus squamata. J. Northwest For. Univ. 1999, 14, 44–46. [Google Scholar]
- Zhang, Z.Y.; Chen, Y.Y.; Li, D.Z. Detection of low genetic variation in a critically endangered chinese pine, Pinus squamata, using RAPD and ISSR Markers. Biochem. Genet. 2005, 43, 239–249. [Google Scholar] [CrossRef]
- Ruan, Z.Y.; Wang, B.Y.; Ouyang, Z.Q.; Liao, L.B.; Su, T.W.; Qiao, L. Characterization of microsatellites in genome of Pinus squamata, a critically endangered species in the world. Bull. Bot. Res. 2016, 36, 775–781. [Google Scholar] [CrossRef]
- Wu, Y.; Su, T.W.; Wu, J.R. Investigation and prevention on major diseases and pests of Pinus squamata artificial breeding populations. For. Inventory Plan. 2016, 41, 73–77. [Google Scholar] [CrossRef]
- Ruan, Z.Y.; Qiao, L.; Su, T.W.; Bai, B.; Cao, Y.C. A study on tissue culture of Pinus squamata. J. West China For Sci. 2017, 46, 44–49. [Google Scholar] [CrossRef]
- Yang, X.; Wang, P.; Gao, D.W.; Gao, N.N.; Li, L.S.; Yang, X.L.; Zhong, Q.J. Ecological stoichiometry of form. Quercus pannosa and form. Pinus squamata in the Yaoshan nature reserve, Yunnan. Acta Ecol. Sin. 2019, 39, 4021–4028. [Google Scholar]
- Yu, F.Q. Effects of Rhizospheric Microorganisms on Populations of Scutellaria tsinyunensis. Master’s Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
- National Agricultural Technology Extension and Service Center. Technical Specification for Soil Analysis; Chinese Agricultural Press: Beijing, China, 2006. [Google Scholar]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Polme, S.; Riit, T.; Liiv, I.; Koljalg, U.; Kisand, V.; Nilsson, R.H.; Hildebrand, F.; et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 2015, 10, 1–43. [Google Scholar] [CrossRef]
- Fan, G.M.; Sun, Q.L.; Shi, W.Y.; Qi, H.Y.; Sun, D.Z.; Li, F.H.; Pang, H.F.; Ma, J.C.; Wu, L.H. The services and applications of national microbiology data center. Acta Microbiol. Sin. 2021, 61, 3761–3773. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glockner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.W.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, G.; Shi, C.P.; Liu, L.M.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.X.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multi-omics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Shen, Q.Q.; Yang, J.Y.; Su, D.F.; Li, Z.Y.; Xiao, W.; Wang, Y.X.; Cui, X.L. Comparative analysis of fungal diversity in rhizospheric soil from wild and reintroduced Magnolia sinica estimated via high-throughput sequencing. Plants 2020, 9, 600. [Google Scholar] [CrossRef]
- Li, P.L.; Zong, D.; Gan, P.H.; Li, H.L.; Wu, Z.Y.; Li, F.H.; Zhao, C.L.; Li, L.G.; He, C.Z. Comparison of the diversity and structure of the rhizosphere microbial community between the straight and twisted trunk types of Pinus yunnanensis. Front. Microbiol. 2023, 14, 1066805. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.T.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [Green Version]
- He, M.Q.; Zhao, R.L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.C.; Raspe, O.; Kakishima, M.; Sanchez-Ramirez, S.; et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef] [Green Version]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium Pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.Z.; Xiong, L.M.; Shi, H.Z.; Yang, S.H.; Herrera-Estrella, L.R.; Xu, G.H.; Chao, D.Y.; Li, J.R.; Wang, P.Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Begic, H.B.; Zovko, M.; Filipovic, L.; Merino-Gergichevich, C.; Savic, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef] [PubMed]
Group | Sobs | Ace | Chao1 | Shannon | Simpson | Good’s Coverage |
---|---|---|---|---|---|---|
EC | 558.67 ± 116.34 b | 661.55 ± 136.84 b | 665.72 ± 137.41 b | 3.65 ± 0.64 ab | 0.0808 ± 0.0441 b | 0.9967 ± 0.0007 bc |
EY | 209.00 ± 7.81 d | 271.02 ± 49.14 d | 267.06 ± 31.68 d | 2.82 ± 0.10 c | 0.1133 ± 0.0101 ab | 0.9988 ± 0.0003 a |
EK | 797.00 ± 91.41 a | 979.90 ± 72.71 a | 975.72 ± 68.27 a | 4.30 ± 0.45 a | 0.0614 ± 0.0389 b | 0.9949 ± 0.0005 d |
WQ | 359.67 ± 75.70 cd | 458.26 ± 90.49 c | 446.56 ± 73.48 c | 3.10 ± 0.22 bc | 0.0979 ± 0.0242 ab | 0.9975 ± 0.0005 b |
RQ | 443.00 ± 107.39 bc | 559.39 ± 127.91 bc | 559.84 ± 130.51 bc | 2.80 ± 0.51 c | 0.1757 ± 0.0741 a | 0.9969 ± 0.0006 bc |
EQ | 524.00 ± 63.41 b | 656.31 ± 51.88 b | 657.61 ± 43.53 b | 3.57 ± 0.32 abc | 0.0792 ± 0.0300 b | 0.9964 ± 0.0001 c |
Samples | pH | OM (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|---|
WQ | 6.52 ± 0.07 b | 54.31 ± 18.77 ab | 1.88 ± 0.48 bcd | 1.02 ± 0.25 b | 13.35 ± 0.45 b | 140.38 ± 44.96 bc | 15.47 ± 3.30 bc | 99.77 ± 13.47 c |
RQ | 6.72 ± 0.07 b | 41.41 ± 2.48 b | 1.55 ± 0.10 cd | 1.55 ± 0.06 a | 13.21 ± 0.10 b | 115.32 ± 9.85 bc | 28.91 ± 1.25 a | 108.85 ± 11.75 bc |
EQ | 7.62 ± 0.09 a | 77.65 ± 16.07 ab | 3.03 ± 0.34 abc | 1.31 ± 0.03 ab | 8.61 ± 1.59 c | 186.40 ± 24.93 b | 17.01 ± 2.20 b | 151.07 ± 12.81 ab |
EC | 5.28 ± 0.66 c | 121.87 ± 7.59 a | 4.16 ± 0.48 a | 1.00 ± 0.10 b | 20.44 ± 1.41 a | 305.63 ± 32.61 a | 15.89 ± 1.49 bc | 134.08 ± 22.76 abc |
EY | 4.48 ± 0.05 c | 30.23 ± 2.98 b | 0.76 ± 0.10 d | 0.25 ± 0.02 c | 15.33 ± 1.40 b | 68.31 ± 12.74 c | 6.93 ± 0.25 c | 107.05 ± 15.31 bc |
EK | 8.03 ± 0.10 a | 118.14 ± 48.70 a | 3.20 ± 0.81 ab | 0.96 ± 0.13 b | 7.27 ± 0.69 c | 171.11 ± 36.24 b | 22.19 ± 5.91 ab | 174.50 ± 1.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Sun, W. Comparative Analysis of Rhizospheric Fungi Using High-Throughput Sequencing between Wild, Ex Situ, and Reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China. Diversity 2023, 15, 868. https://doi.org/10.3390/d15070868
Li F, Sun W. Comparative Analysis of Rhizospheric Fungi Using High-Throughput Sequencing between Wild, Ex Situ, and Reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China. Diversity. 2023; 15(7):868. https://doi.org/10.3390/d15070868
Chicago/Turabian StyleLi, Fengrong, and Weibang Sun. 2023. "Comparative Analysis of Rhizospheric Fungi Using High-Throughput Sequencing between Wild, Ex Situ, and Reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China" Diversity 15, no. 7: 868. https://doi.org/10.3390/d15070868
APA StyleLi, F., & Sun, W. (2023). Comparative Analysis of Rhizospheric Fungi Using High-Throughput Sequencing between Wild, Ex Situ, and Reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China. Diversity, 15(7), 868. https://doi.org/10.3390/d15070868