Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Microscopic Examination of the Samples
2.4. DNA Extraction and PCR
2.5. Phylogenetic Analysis and OTUs Placement
3. Results
3.1. Rust Lesions: Macroscopic and Microscopic Analysis
3.2. Phylogenetic Analysis and OTU Placement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venegas Sánchez, S.; Orellana Bueno, D.; Pérez Jara, P. La realidad Ecuatoriana en la producción de café. RECIMUNDO Rev. Cient. Investig. Conoc. 2018, 2, 72–91. [Google Scholar] [CrossRef]
- Arreaga-Ronquillo, E.; Quezada-Campoverde, J.; Barrezueta-Unda, S.; Cervantes-Alava, A.; Prado-Carpio, E. Impacto económico generado por la producción cafetalera en Ecuador en el periodo 2016–2019. 593 Digit. Publ. CEIT 2021, 6, 83–91. [Google Scholar] [CrossRef]
- Ríos-Orjuela, J.C.; Falcón-Espitia, N.; Arias-Escobar, A.; Plazas-Cardona, D. Conserving Biodiversity in Coffee Agroecosystems: Insights from a Herpetofauna Study in the Colombian Andes with Sustainable Management Proposal. Perspect. Ecol. Conserv. 2024, 22, 196–204. [Google Scholar] [CrossRef]
- Wasim, S.; Kukkar, V.; Awad, V.M.; Sakhamuru, S.; Malik, B.H. Neuroprotective and Neurodegenerative Aspects of Coffee and Its Active Ingredients in View of Scientific Literature. Cureus 2020, 12, e9578. [Google Scholar] [CrossRef]
- Ungvari, Z.; Kunutsor, S.K. Coffee Consumption and Cardiometabolic Health: A Comprehensive Review of the Evidence. GeroScience 2024. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Fernández, F. Gúia para Facilitar el Aprendizaje en el Manejo del Cultivo de Café Robusta (Coffe canephora p.); Guía de Aprendizaje; Instituto Nacional de Investigaciones Agropecuarias (INIAP): Quito, Ecuador, 2017; pp. 008–134. Available online: https://www.bivica.org/file/view/id/6061 (accessed on 5 October 2024).
- Ponce, L.; Orellana, K.; Acuña, I.; Alfonso, J.; Fuentes, T. Situation of the Ecuadorian Coffee Industry: Perspectives. Estud. Desarro. Soc. 2018, 6, 307–325. [Google Scholar]
- Talhinhas, P.; Batista, D.; Diniz, I.; Vieira, A.; Silva, D.; Loureiro, A.; Tavares, S.; Pereira, A.; Azinheira, H.; Guerra-Guimarães, L.; et al. The coffee leaf rust pathogen Hemileia vastatrix: One and a half centuries around the tropics. Mol. Plant Pathol. 2017, 18, 1039–1051. [Google Scholar] [CrossRef]
- Castillo, N.E.T.; Acosta, Y.A.; Parra-Arroyo, L.; Martínez-Prado, M.A.; Rivas-Galindo, V.M.; Iqbal, H.M.N.; Bonaccorso, A.D.; Melchor-Martínez, E.M.; Parra-Saldívar, R. Towards an Eco-Friendly Coffee Rust Control: Compilation of Natural Alternatives from a Nutritional and Antifungal Perspective. Plants 2022, 11, 2745. [Google Scholar] [CrossRef]
- Silva, M.; Guerra-Guimarães, L.; Diniz, I.; Loureiro, A.; Azinheira, H.; Pereira, A.; Tavares, S.; Batista, D.; Várzea, V. An Overview of the Mechanisms Involved in Coffee-Hemileia vastatrix Interactions: Plant and Pathogen Perspectives. Agronomy 2022, 12, 326. [Google Scholar] [CrossRef]
- De Resende, M.; Pozza, E.; Reichel, T.; Botelho, D. Strategies for Coffee Leaf Rust Management in Organic Crop Systems. Agronomy 2021, 11, 1865. [Google Scholar] [CrossRef]
- Kapeua-Ndacnou, M.; de Abreu, L.M.; de Macedo, D.M.; da Nóbrega, T.F.; Pereira, C.M.; Evans, H.C.; Barreto, R.W. Assessing the biocontrol potential of Clonostachys species isolated as endophytes from Coffea species and as mycoparasites of Hemileia rusts of coffee in Africa. J. Fungi 2023, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, S.; Yan, J.; Tang, Y.; Cheng, J.; Gao, A.; Yao, X.; Ruan, J.; Xu, B. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- De Oliveira Junqueira, A.; De Melo Pereira, G.; Coral Medina, J.; Alvear, M.; Rosero, R.; de Carvalho Neto, D.; Enríquez, H.; Soccol, C. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef]
- Fulthorpe, R.; Martin, A.; Isaac, M. Root Endophytes of Coffee (Coffea arabica): Variation across Climatic Gradients and Relationships with Functional Traits. Phytobiomes J. 2020, 4, 27–39. [Google Scholar] [CrossRef]
- Duong, B.; Marraccini, P.; Maeght, J.; Vaast, P.; Lebrun, M.; Duponnois, R. Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. Front. Sustain. Food Syst. 2020, 4, 607935. [Google Scholar] [CrossRef]
- Lu, L.; Tibpromma, S.; Karunarathna, S.; Jayawardena, R.; Lumyong, S.; Xu, J.; Hyde, K. Comprehensive Review of Fungi on Coffee. Pathogens 2022, 11, 411. [Google Scholar] [CrossRef]
- Bosso, L.; Cristinzio, G.; Migliozzi, A.; Valentino, D.; Russo, D. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
- James, T.; Marino, J.; Perfecto, I.; Vandermeer, J. Identification of Putative Coffee Rust Mycoparasites via Single–Molecule DNA Sequencing of Infected Pustules. Appl. Environ. Microbiol. 2016, 82, 631–639. [Google Scholar] [CrossRef]
- Irannia, Z.; Chen, T. TACO: Taxonomic prediction of unknown OTUs through OTU co-abundance networks. Quant. Biol. 2016, 4, 149–158. [Google Scholar] [CrossRef]
- Tedersoo, L.; Drenkhan, R.; Anslan, S.; Morales-Rodriguez, C.; Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 2018, 19, 47–76. [Google Scholar] [CrossRef] [PubMed]
- Gómez-De La Cruz, I.; Pérez-Portilla, E.; Escamilla-Prado, E.; Martínez-Bolaños, M.; Carrión-Villarnovo, G.; Hernández-Leal, T. Selección in vitro de micoparásitos con potencial de control biológico sobre Roya del café (Hemileia vastatrix). Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2018, 36, 172–183. [Google Scholar] [CrossRef]
- Guatimosim, E.; Schwartsburd, P.; Barreto, R.; Crous, P. Novel fungi from an ancient niche: Cercosporoid and related sexual morphs on ferns. Persoonia—Mol. Phylogeny Evol. Fungi 2016, 37, 106–141. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Apaza, C.; Mansilla-Samaniego, R.; López-Bonilla, C.; Espejo-Joya, R.; Villanueva-Caceda, J.; Monzón, C. Diversidad genética de Hemileia vastatrix de dos Zonas productoras de café en el Perú. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2017, 35, 418–436. [Google Scholar] [CrossRef]
- Santana, M.; Zambolim, E.; Caixeta, E.; Zambolim, L. Population genetic structure of the coffee pathogen Hemileia vastatrix in Minas Gerais, Brazil. Trop. Plant Pathol. 2018, 43, 473–476. [Google Scholar] [CrossRef]
- Pereira, C.M.; Sarmiento, S.S.; Colmán, A.A.; Belachew-Bekele, K.; Evans, H.C.; Barreto, R.W. Mycodiversity in a micro-habitat: Twelve Cladosporium species, including four new taxa, isolated from uredinia of coffee leaf rust, Hemileia vastatrix. Fungal Syst. Evol. 2024, 14, 9–33. [Google Scholar] [CrossRef]
- Jackson, D.; Skillman, J.; Vandermeer, J. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biol. Control 2012, 61, 89–97. [Google Scholar] [CrossRef]
- Velásquez, O.R. Guía de Variedades de Café y Selección de Semilla; Asociación Nacional del Café: Anacafé, Guatemala, 2019; Available online: https://www.anacafe.org/uploads/file/bb091944490b490482f329b0ea0ec6bd/Guia-variedades-y-seleccion-semilla.pdf (accessed on 27 September 2024).
- Mihai, R.A.; Ortiz-Pillajo, D.C.; Iturralde-Proaño, K.M.; Vinueza-Pullotasig, M.Y.; Sisa-Tolagasí, L.A.; Villares-Ledesma, M.L.; Melo-Heras, E.J.; Cubi-Insuaste, N.S.; Catana, R.D. Comprehensive Assessment of Coffee Varieties (Coffea arabica L.; Coffea canephora L.) from Coastal, Andean, and Amazonian Regions of Ecuador; A Holistic Evaluation of Metabolism, Antioxidant Capacity and Sensory Attributes. Horticulturae 2024, 10, 200. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejía, D.; Burneo, J.I.; Ruíz-Sinoga, J.D.; Cerdà, A. Effects of Climate, Land Cover and Topography on Soil Erosion Risk in a Semiarid Basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Apolo, D.; Fernández, J.M.; Benítez, Á.; Figueroa, J.G.; Estrada, K.; Cruz, D. Phenotypic and Molecular Characterization of Yeast Diversity Associated to Postharvest Fermentation Process of Coffee Fruits in Southern Ecuador. Diversity 2023, 15, 984. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D., Sninsky, J., White, T., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Göker, M.; Grimm, G.; Auch, A.; Aurahs, R.; Kučera, M. A Clustering Optimization Strategy for Molecular Taxonomy Applied to Planktonic Foraminifera SSU rDNA. Evol. Bioinform. 2010, 6, EBO.S5504. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.; Suárez, J.; Kottke, I.; Piepenbring, M. Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella. Mycologia 2014, 106, 708–722. [Google Scholar] [CrossRef]
- Herrera, P.; Kottke, I.; Molina, M.; Méndez, M.; Suárez, J. Generalism in the interaction of Tulasnellaceae mycobionts with orchids characterizes a biodiversity hotspot in the tropical Andes of Southern Ecuador. Mycoscience 2018, 59, 38–48. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Vrålstad, T. ITS, OTUs and beyond-fungal hyperdiversity calls for supplementary solutions. Mol. Ecol. 2011, 20, 2873–2875. [Google Scholar] [CrossRef]
- Schoch, C.; Seifert, K.; Huhndorf, S.; Robert, V.; Spouge, J.; Levesque, C.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Nageen, Y.; Asemoloye, M.D.; Põlme, S.; Wang, X.; Xu, S.; Ramteke, P.W.; Pecoraro, L. Analysis of culturable airborne fungi in outdoor environments in Tianjin, China. BMC Microbiol. 2021, 21, 134. [Google Scholar] [CrossRef]
- Frohlich-Nowoisky, J.; Pickersgill, D.A.; Despres, V.R.; Poschl, U. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. USA 2009, 106, 12814–12819. [Google Scholar] [CrossRef]
- Barrowclough, M.; Stehouwer, R.; Alwang, J.; Gallagher, R.; Mosquera, V.; Dominguez, J. Conservation agriculture on steep slopes in the Andes: Promise and obstacles. J. Soil Water Conserv. 2016, 71, 91–102. [Google Scholar] [CrossRef]
- Tomao, A.; Antonio Bonet, J.; Castaño, C.; de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 2020, 457, 117678. [Google Scholar] [CrossRef]
- Kurtzman, C.; Mateo, R.; Kolecka, A.; Theelen, B.; Robert, V.; Boekhout, T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res. 2015, 15, fov050. [Google Scholar] [CrossRef]
- Monteiro, M.; Alves, N.; Queiroz, M.; Pinho, D.; Pereira, O.; Souza, S.; Cardoso, P. Antimicrobial activity of endophytic fungi from coffee plants. Biosci. J. 2017, 33, 381–389. [Google Scholar] [CrossRef]
- Silva, H.; Tozzi, J.; Terrasan, C.; Bettiol, W. Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biol. Control 2012, 63, 62–67. [Google Scholar] [CrossRef]
- Salgado, M.; Lima, C.; Almeida, A.; Santos, L.; Pfenning, L. First report of the occurence of Didymella sp., teleomorph of Phoma tarda, on Coffea arabica in Brazil. In Anais Simpósio de Pesquisa dos Cafés do Brasil, 5; Embrapa-Café: Águas de Lindóia, Brasil; Brasília, Brasil, 2007; pp. 1–3. [Google Scholar]
- Vega, F.; Simpkins, A.; Aime, M.; Posada, F.; Peterson, S.; Rehner, S.; Infante, F.; Castillo, A.; Arnold, A. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol. 2010, 3, 122–138. [Google Scholar] [CrossRef]
- Cañarte, C.; Fuentes, T.; Manobanda, M.; Ayón, N.; Vera, B. Prevalencia y diseminación de Verticillium sp. para el control biologico de la roya del café. Rev. Cient. Investig. Actual. Mundo Cienc. 2018, 2, 92–119. [Google Scholar]
- Mosca, S.; Li Destri Nicosia, M.; Cacciola, S.; Schena, L. Molecular Analysis of Colletotrichum Species in the Carposphere and Phyllosphere of Olive. PLoS ONE 2014, 9, e114031. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Várzea, V.; Guerra-Guimarães, L.; Azinheira, H.; Fernandez, D.; Petitot, A.; Bertrand, B.; Lashermes, P.; Nicole, M. Coffee resistance to the main diseases: Leaf rust and coffee berry disease. Braz. J. Plant Physiol. 2006, 18, 119–147. [Google Scholar] [CrossRef]
- Yasuda, F.; Izawa, H.; Yamagishi, D.; Akamatsu, H.; Kodama, M.; Otani, H. Meira nashicola sp. nov., a novel basidiomycetous, anamorphic yeastlike fungus isolated from Japanese pear fruit with reddish stain. Mycoscience 2006, 47, 36–40. [Google Scholar] [CrossRef]
- Landell, M.; Brandão, L.; Barbosa, A.; Ramos, J.; Safar, S.; Gomes, F.; Sousa, F.; Morais, P.; Broetto, L.; Leoncini, O.; et al. Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Surussawadee, J.; Khunnamwong, P.; Srisuk, N.; Limtong, S. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int. J. Syst. Evol. Microbiol. 2014, 64, 3058–3062. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Singh, B.; Chakdar, H.; Saxena, A. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J. Microbiol. Biotechnol. 2021, 37, 54. [Google Scholar] [CrossRef] [PubMed]
- Nishad, R.; Ahmed, T.; Rahman, V.; Kareem, A. Modulation of Plant Defense System in Response to Microbial Interactions. Front. Microbiol. 2020, 11, 1298. [Google Scholar] [CrossRef]
- Poma-Angamarca, R.A.; Rojas, J.R.; Sánchez-Rodríguez, A.; Ruiz-González, M.X. Diversity of Leaf Fungal Endophytes from Two Coffea arabica Varieties and Antagonism towards Coffee Leaf Rust. Plants 2024, 13, 814. [Google Scholar] [CrossRef]
Canton | Coffee Farms by Sector | Number of Samples | Plant Varieties | Latitude and Longitude | Altitude m.a.s.l |
---|---|---|---|---|---|
Loja | El Cristal | 6 | Typica/criolla | −4.1206; −79.1993 | 1973.7 |
San Pedro de Vilcabamba. Farm 1 | 14 | Typica/criolla | −4.2343; −79.2206 | 1678.6 | |
San Pedro de Vilcabamba. Farm 2 | 4 | Typica/criolla | −4.2341; −79.2215 | 1706.7 | |
San Pedro de Vilcabamba. Farm 3 | 4 | Typica/criolla | −4.2342; −79.2225 | 1730.5 | |
Calvas | Jiropamba | 14 | Paca, yellow Bourbon, red Bourbon, | −4.3556; −79.5789 | 2090.7 |
Surunuma | 9 | Catucai, yellow Bourbon. | −4.2996; −79.7188 | 2001.6 | |
Cango Bajo | 11 | Typica/criolla, yellow Bourbon, red Bourbon | −4.3448; −79.5789 | 1908.4 | |
Quilanga | San José. Farm 1 | 8 | Catucai, San Salvador | −4.3743; −79.3948 | 1582.8 |
San José. Farm 2 | 11 | criollo, Paca, San Salvador | −4.3719; −79.4031 | 1706.8 | |
San José. Farm 3 | 3 | caturra | −4.3746; −79.3997 | 1642.4 | |
Total | 84 |
Loja | Calvas | Quilanga | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fungi | OTU Number | El Cristal | San Pedro de Vilcabamba. Farm 1 | San Pedro de Vilcabamba. Farm 2 | San Pedro de Vilcabamba. Farm 3 | Jiropamba | Surunuma | Cango Bajo | San José. Farm 1 | San José. Farm 2 | San José. Farm 3 |
ASCOMYCETES | |||||||||||
Akanthomyces sp. | 1 | 3 | 2 | 6 | |||||||
Akanthomyces sp. | 2 | 1 | |||||||||
Akanthomyces sp. | 3 | 1 | |||||||||
Akanthomyces sp. | 4 | 2 | |||||||||
Hypocreales | 5 | 1 | |||||||||
Hypocreales | 6 | 1 | |||||||||
Hypocreales | 7 | 1 | |||||||||
Simplicillium sp. | 8 | 1 | |||||||||
Trichothecium sp. | 9 | 1 | |||||||||
Hypocreales | 10 | 1 | |||||||||
Fusarium sp. | 11 | 1 | |||||||||
Capnodiales | 12 | 1 | 1 | ||||||||
Neoceratosperma yunnanensis | 13 | 1 | |||||||||
Capnodiales | 14 | 1 | |||||||||
Cladosporium sp. | 15 | 1 | 1 | ||||||||
Cladosporium sp. | 16 | 1 | |||||||||
Capnodiales | 17 | 1 | |||||||||
Capnodiales | 18 | 1 | |||||||||
Capnodiales | 19 | 2 | 2 | ||||||||
Capnodiales | 20 | 1 | |||||||||
Ceramothyrium sp. | 21 | 1 | |||||||||
Didymella sp. | 22 | 1 | |||||||||
BASIDIOMYCETES | |||||||||||
Hannaella oryzae | 1 | 1 | 3 | 1 | |||||||
Tremellales | 2 | 1 | |||||||||
Tremellales | 3 | 1 | |||||||||
Tremellales | 4 | 1 | |||||||||
Bulleribasidium sp. | 5 | 1 | |||||||||
Basidiomycete | 6 | 1 | |||||||||
Basidiomycete | 7 | 1 | 3 | ||||||||
Basidiomycete | 8 | 2 | |||||||||
Hemileia vastatrix | 9 | 1 | |||||||||
Meira sp. | 10 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, D.; Jaramillo-Riofrío, A.; Herrera, P.; Aguinsaca, R.; Chamba, M. Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador. Diversity 2024, 16, 633. https://doi.org/10.3390/d16100633
Cruz D, Jaramillo-Riofrío A, Herrera P, Aguinsaca R, Chamba M. Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador. Diversity. 2024; 16(10):633. https://doi.org/10.3390/d16100633
Chicago/Turabian StyleCruz, Darío, Andrea Jaramillo-Riofrío, Paulo Herrera, Ruth Aguinsaca, and Marianela Chamba. 2024. "Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador" Diversity 16, no. 10: 633. https://doi.org/10.3390/d16100633
APA StyleCruz, D., Jaramillo-Riofrío, A., Herrera, P., Aguinsaca, R., & Chamba, M. (2024). Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador. Diversity, 16(10), 633. https://doi.org/10.3390/d16100633