A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor
Abstract
:1. Introduction
Predictors Considered | Source | Units | |
---|---|---|---|
FR | Minimum Temperature of the Coldest month (December) | PRISM | °C |
Maximum Temperature of the Warmest Month (October) | |||
Average Temperature (October to February) | |||
Average Dew Point (humidity) (October to February) | |||
Month with Lowest Minimum VPD (highest humidity) (December) | PRISM | 0–100 hPa | |
Month with Highest Maximum VPD (lowest humidity) (Octobeer) | |||
Total Seasonal Precipitation (October to February) | PRISM | mm | |
Annual Precipitation | |||
Month with Lowest Average Percent Cloud Cover (October) | EarthENV | % Cover × 0.01 | |
Month with Highest Average Percent Cloud Cover (December) | |||
Average Percent Cloud Cover (October to February) | |||
Month with Lowest Average Wind Speed (October) | WORLDCLIM | m/s | |
Month with Highest Average Wind Speed (February) | |||
COR | % Forest Land Cover | NLCD | % Coverage |
% Barren Land; Natural Land Cover | |||
% Urban- Low Dev. (Open Space) Land Cover | |||
% Urban- Low/Med Development Land Cover | |||
% Urban- High Development Land Cover | |||
% Cultivated Land Cover | |||
% Shrubs Land Cover | |||
% Wetlands Land Cover | |||
% Unclassified Land Cover | |||
% Open Water Land Cover | |||
% Tree Canopy Cover | |||
Stream Density | NHD | % Coverage | |
Stream Density, Excluding Ephemeral Water Sources | |||
Topographic Position Index (TPI) (aggregation = median) | EarthENV | Meters | |
Topographic Ruggedness Index (TRI) (aggregation = mean) | |||
Vector Ruggedness Measure (VRM) (aggregation = mean) | EarthENV | Index (0 to 1) | |
Human footprint | [27] | Rating (1 to 10) | |
Logistic Predictive Output from FR Model | FR model | 0 to 1 |
2. Materials and Methods
3. Results
3.1. Final Model Settings and AUC Scores
3.2. Final Models Relative Habitat Suitability: Geographic Heat Maps and Difference Map
3.3. Top Predictors–Percent Contribution and Jackknife Training Gain
3.4. Top Predictors–Univariate Response Curves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrison, M.L.; Marcot, B.G.; Mannan, R.W. Wildlife-Habitat Relationships: Concepts and Applications, 3rd ed.; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Johnson, D.H. The Comparison of Usage and Availability Measurements for Evaluating Resource Preference. Ecology 1980, 61, 65–71. [Google Scholar] [CrossRef]
- Mayor, S.J.; Schneider, D.C.; Schaefer, J.A.; Mahoney, S.P. Habitat selection at multiple scales. Ecoscience 2009, 16, 238–247. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385. [Google Scholar] [CrossRef]
- Loiselle, B.A.; Howell, C.A.; Graham, C.H.; Goerck, J.M.; Brooks, T.; Smith, K.G.; Williams, P.H. Avoiding Pitfalls of Using Species Distribution Models in Conservation Planning. Conserv. Biol. 2003, 17, 1591–1600. [Google Scholar] [CrossRef]
- Bellamy, C.; Boughey, K.; Hawkins, C.; Reveley, S.; Spake, R.; Williams, C.; Altringham, J. A sequential multi-level framework to improve habitat suitability modelling. Landsc. Ecol. 2020, 35, 1001–1020. [Google Scholar] [CrossRef]
- Rendón-Salinas, E.; Martínez-Meza, F.; Mendoza-Pérez, M.; Cruz-Piña, M.; Mondragon-Contreras, G. Superficie Forestal Ocupada Por Las Colonias De Mariposas Monarca En México Durante La Hibernación De 2018–2019; World Wildlife Fund México: Mexico City, Mexico, 2019. [Google Scholar]
- Xerces Society Western Monarch Count. Western Monarch Thanksgiving Count and New Year’s Count Data, 1997–2021. 2022. Available online: www.westernmonarchcount.org (accessed on 10 October 2024).
- Pelton, E.; Jepsen, S.J.; Schultz, C.B.; Fallon, C.; Black, S.H. State of the Monarch Butterfly Overwintering Sites in California|Xerces Society; The Xerces Society for Invertebrate Conservation: Portland, OR, USA, 2016; Available online: https://www.xerces.org/publications/scientific-reports/state-of-monarch-butterfly-overwintering-sites-in-california (accessed on 21 November 2023).
- Pelton, E.M.; Schultz, C.B.; Jepsen, S.J.; Black, S.H.; Crone, E.E. Western Monarch Population Plummets: Status, Probable Causes, and Recommended Conservation Actions. Front. Ecol. Evol. 2019, 7, 258. [Google Scholar] [CrossRef]
- Saniee, K.; Villablanca, F. Hierarchy and Scale Influence the Western Monarch Butterfly Overwintering Microclimate. Front. Conserv. Sci. 2022, 3, 844299. [Google Scholar] [CrossRef]
- Lane, J. Overwintering Monarch Butterflies in California: Past and Present. In The Monarch Butterfly: Biology and Conservation; Malcolm, S.B., Zalucki, M.P., Eds.; Cornell University Press: Ithaca, NY, USA, 1993. [Google Scholar]
- Leong, K.L.H.; Sakai, W.; Bremer, W.; Feuerstein, D.; Yoshimura, G. Analysis of the Pattern of Distribution and Abundance of Monarch Overwintering Sites Along the California Coastline. In The Monarch Butterfly: Biology and Conservation; Oberhauser, K., Ed.; Cornell University Press: Ithaca, NY, USA, 2004. [Google Scholar]
- Tuskes, P.M.; Brower, L.P. Overwintering ecology of the monarch butterfly, Danaus plexippus L., in California. Ecol. Entomol. 1978, 3, 141–153. [Google Scholar] [CrossRef]
- Batalden, R.V.; Oberhauser, K.; Peterson, A.T. Ecological niches in sequential generations of Eastern North American monarch butterflies (Lepidoptera: Danaidae): The ecology of migration and likely climate change implications. Environ. Entomol. 2007, 36, 1365–1373. [Google Scholar] [CrossRef]
- Fisher, A.; Saniee, K.; Van der Heide, C.; Griffiths, J.; Meade, D.; Villablanca, F. Climatic Niche Model for Overwintering Monarch Butterflies in a Topographically Complex Region of California. Insects 2018, 9, 167. [Google Scholar] [CrossRef]
- Oberhauser, K.; Peterson, A.T. Modeling current and future potential wintering distributions of eastern North American monarch butterflies. Proc. Natl. Acad. Sci. USA 2003, 100, 14063–14068. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.B.; Brower, L.P. Freeze-protection of overwintering monarch butterflies in Mexico: Critical role of the forest as a blanket and an umbrella. Ecol. Entomol. 1996, 21, 107–116. [Google Scholar] [CrossRef]
- Brower, L.P.; Williams, E.H.; Fink, L.S.; Slayback, D.A.; Ramírez, M.I.; García, M.V.L.; Zubieta, R.R.; Weiss, S.B.; Calvert, W.H.; Zuchowski, W. Overwintering Clusters of the Monarch Butterfly Coincide with the Least Hazardous Vertical Temperatures in the Oyamel Forest. J. Lepidopterists' Soc. 2011, 65, 27–46. [Google Scholar] [CrossRef]
- Calvert, W.H.; Zuchowski, W.; Brower, L.P. The Effect of Rain, Snow and Freezing Temperatures on Overwintering Monarch Butterflies in Mexico. Biotropica 1983, 15, 42–47. [Google Scholar] [CrossRef]
- Urquhart, F.A.; Urquhart, N. The overwintering site of the eastern population of the monarch butterfly (Danaus p. plexipus; Danaidae) in southern Mexico. J. Lepid. Soc. 1976, 30, 153–158. [Google Scholar]
- Urquhart, F.A.; Urquhart, N. Overwintering Areas And Migratory Routes Of The Monarch Butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) In North America, With Special Reference To The Western Population. Can. Entomol. 1977, 109, 1583–1589. [Google Scholar] [CrossRef]
- Chaplin, S.B.; Wells, P.H. Energy reserves and metabolic expenditures of monarch butterflies overwintering in southern California. Ecol. Entomol. 1982, 7, 249–256. [Google Scholar] [CrossRef]
- Baker, R.H.A.; Sansford, C.E.; Jarvis, C.H.; Cannon, R.J.C.; MacLeod, A.; Walters, K.F.A. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric. Ecosyst. Environ. 2000, 82, 57–71. [Google Scholar] [CrossRef]
- Forister, M.L.; Halsch, C.A.; Nice, C.C.; Fordyce, J.A.; Dilts, T.E.; Oliver, J.C.; Prudic, K.L.; Shapiro, A.M.; Wilson, J.K.; Glassberg, J. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 2021, 371, 1042–1045. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Leu, M.; Hanser, S.E.; Knick, S.T. The Human Footprint in the West: A Large-Scale Analysis of Anthropogenic Impacts. Ecol. Appl. 2008, 18, 1119–1139. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.L.H. Microenvironmental Factors Associated with the Winter Habitat of the Monarch Butterfly (Lepidoptera: Danaidae) in Central California. Ann. Entomol. Soc. Am. 1990, 83, 906–910. [Google Scholar] [CrossRef]
- Leong, K.L.H.; Frey, D.; Brenner, G.; Baker, S.; Fox, D. Use of Multivariate Analyses to Characterize the Monarch Butterfly (Lepidoptera: Danaidae) Winter Habitat. Ann. Entomol. Soc. Am. 1991, 84, 263–267. [Google Scholar] [CrossRef]
- Crone, E.E.; Pelton, E.M.; Brown, L.M.; Thomas, C.C.; Schultz, C.B. Why are monarch butterflies declining in the West? Understanding the importance of multiple correlated drivers. Ecol. Appl. 2019, 29, e01975. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.; Villablanca, F. Managing monarch butterfly overwintering groves: Making. Calif. Fish Game 2015, 101, 11. [Google Scholar]
- Masters, A.R.; Malcolm, S.B.; Brower, L.P. Monarch Butterfly (Danaus plexippus) Thermoregulatory Behavior and Adaptations for Overwintering in Mexico. Ecology 1988, 69, 458–467. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Dingle, H.; Zalucki, M.P.; Rochester, W.A.; Armijo-Prewitt, T. Distribution of the monarch butterfly, Danaus plexippus (L.) (Lepidoptera: Nymphalidae), in western North America: Monarch Butterflies in Western North America. Biol. J. Linn. Soc. 2005, 85, 491–500. [Google Scholar] [CrossRef]
- PRISM Climate Group. PRISM Climate Group, Oregon State University. 2014. Available online: https://prism.oregonstate.edu/ (accessed on 15 June 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 12 October 2022).
- ESRI. ArcMap, version 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2020. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Billings, J. Opening a window on southwestern monarchs: Fall migrant monarch butterflies, Danaus plexippus (L.), tagged synchronously in southeastern Arizona migrate to overwintering regions in either southern California or Central Mexico. J. Lepid. Soc. 2019, 73, 257–267. [Google Scholar] [CrossRef]
- Griffiths, J.L. Monarch butterfly (Danaus plexippus) Tree Preference and Intersite Movement at California Overwintering Sites. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2014. Available online: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2308&context=theses (accessed on 14 December 2014).
- James, D.G.; Kappen, L. Further Insights on the Migration Biology of Monarch Butterflies, Danaus plexippus (Lepidoptera: Nymphalidae) from the Pacific Northwest. Insects 2021, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Fick, S.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wilson, A.M.; Jetz, W. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. (R Package). 2022. Available online: https://CRAN.R-project.org/package=raster (accessed on 5 January 2023).
- Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef]
- Moore, R.B.; McKay, L.D.; Rea, A.H.; Bondelid, T.R.; Price, C.V.; Dewald, T.G.; Johnston, C.M. User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution U.S. Geological Survey Open-File Report. In Open-File Report (No. 2019-1096); U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- U.S. Geological Survey. National Hydrography Dataset for California State, 2.2.1; U.S. Geological Survey: Reston, VA, USA, 2020.
- Dewitz, J. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2019. [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. dismo: Species Distribution Modeling, R package version 1.3-9; 2023; Available online: https://github.com/rspatial/dismo (accessed on 10 October 2024).
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Brower, L. Understanding And Misunderstanding The Migratnon of the Monarch Butterfly (Nymphalidae) in North America: 1857–1995. J. Lepid. Soc. 1995, 49, 304–385. [Google Scholar]
- Hodek, I.; Hodková, M. Multiple role of temperature during insect diapause: A review. Entomol. Exp. Appl. 1988, 49, 153–165. [Google Scholar] [CrossRef]
- Huey, R.B.; Kingsolver, J.G. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms. Am. Nat. 2019, 194, E140–E150. [Google Scholar] [CrossRef] [PubMed]
- Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006, 52, 113–127. [Google Scholar] [CrossRef]
- Abraham, J.; Cheng, L.; Mann, M.E.; Trenberth, K.; von Schuckmann, K. The ocean response to climate change guides both adaptation and mitigation efforts. Atmos. Ocean. Sci. Lett. 2022, 15, 100221. Available online: https://www.sciencedirect.com/science/article/pii/S1674283422000964 (accessed on 22 July 2024). [CrossRef]
- Kahle, A.B.; Schieldge, J.P.; Alley, R.E. Sensitivity of thermal inertia calculations to variations in environmental factors. Remote Sens. Environ. 1984, 16, 211–232. Available online: https://www.sciencedirect.com/science/article/abs/pii/0034425784900658 (accessed on 22 July 2024). [CrossRef]
- Pyle, R.M. Chasing Monarchs: Migrating with the Butterflies of Passage; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Morris, G.M.; Kline, C.; Morris, S.M. Status of Danaus plexippus population in Arizona. J. Lepid. Soc. 2015, 69, 91–107. [Google Scholar] [CrossRef]
- Frey, D.; Schaffner, A. Spatial and Temporal Pattern of Monarch Overwintering Abundance in Western North America. In The Monarch Butterfly: Biology and Conservation; Cornell University Press: Ithaca, NY, USA, 2004; pp. 167–176. [Google Scholar]
- Geldmann, J.; Heilmann-Clausen, J.; Holm, T.E.; Levinsky, I.; Markussen, B.; Olsen, K.; Rahbek, C.; Tøttrup, A.P. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 2016, 22, 1139–1149. [Google Scholar] [CrossRef]
- James, D.G.; Schaefer, M.C.; Krimmer Easton, K.; Carl, A. First Population Study on Winter Breeding Monarch Butterflies, Danaus plexippus (Lepidoptera: Nymphalidae) in the Urban South Bay of San Francisco, California. Insects 2021, 12, 946. [Google Scholar] [CrossRef]
- Satterfield, D.A.; Maerz, J.C.; Altizer, S. Loss of migratory behaviour increases infection risk for a butterfly host. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141734. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, D.A.; Villablanca, F.; Maerz, J.; Altizer, S. Migratory monarchs wintering in California experience low infection risk compared to monarchs breeding year-round on non-native milkweed. Integr. Comp. Biol. 2016, 56, 343–352. [Google Scholar] [CrossRef]
- Wenner, A.M.; Harris, A.M. Do California Monarchs Undergo Long-Distance Directed Migration; Natural History Museum of Los Angeles County: Los Angeles, CA, USA, 1993; Volume 38, pp. 209–218. [Google Scholar]
- Bean, W.T.; Prugh, L.R.; Stafford, R.; Butterfield, H.S.; Westphal, M.; Brashares, J.S. Species distribution models of an endangered rodent offer conflicting measures of habitat quality at multiple scales. J. Appl. Ecol. 2014, 51, 1116–1125. [Google Scholar] [CrossRef]
- Weber, M.M.; Stevens, R.D.; Diniz-Filho, J.A.F.; Grelle, C.E.V. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 2017, 40, 817–828. [Google Scholar] [CrossRef]
- Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 2004, 18, 1482–1491. [Google Scholar] [CrossRef]
- Semerdjian, A.E.; Butterfield, H.S.; Stafford, R.; Westphal, M.F.; Bean, W.T. Combining occurrence and habitat suitability data improve conservation guidance for the giant kangaroo rat. J. Wildl. Manag. 2021, 85, 855–867. [Google Scholar] [CrossRef]
- Crone, E.E.; Schultz, C.B. Resilience or catastrophe? A possible state change for monarch butterflies in western North America. Ecol. Lett. 2021, 24, 1533–1538. [Google Scholar] [CrossRef]
- Halsch, C.A.; Code, A.; Hoyle, S.M.; Fordyce, J.A.; Baert, N.; Forister, M.L. Pesticide Contamination of Milkweeds Across the Agricultural, Urban, and Open Spaces of Low-Elevation Northern California. Front. Ecol. Evol. 2020, 8, 162. [Google Scholar] [CrossRef]
- Schultz, C.B.; Brown, L.M.; Pelton, E.; Crone, E.E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 2017, 214, 343–346. [Google Scholar] [CrossRef]
- WAFWA. Western Monarch Butterfly Conservation Plan 2019–2069; Western Association of Fish and Wildlife Agencies (WAFWA): Boise, ID, USA, 2019. [Google Scholar]
Predictor | Percent Contribution | Jacknife Training Gain |
---|---|---|
Minimum Temperature (December) | 83.7 | 1.4192 |
Cloud Cover (December) | 9.1 | 0.4655 |
Precipitation Total (October to February) | 4.4 | 0.2271 |
Vapor Pressure Deficit (December) | 2.0 | 0.5341 |
Wind (February) | 0.8 | 0.1435 |
Predictor | Optimal Scale | Percent Contribution (LT) | Jacknife Training Gain (LT) | Percent Contribution (LQT) | Jacknife Training Gain (LQT) |
---|---|---|---|---|---|
FR Logistic Output | 1 km | 61.3 | 1.6001 | 63.3 | 1.6003 |
% Cover Medium Development | 1 km | 31.8 | 1.2995 | 30.1 | 1.3045 |
Human Footprint Level | 4 km * | 1.8 | 0.7334 | 0.2 | 0.7334 |
% Cover Low Development | 1 km | 1.8 | 0.8257 | 1.5 | 0.8291 |
% Cover Open Water | 4 km | 0.9 | 0.524 | 0.2 | 0.5342 |
% Cover Shrubs | 4 km | 0.8 | 0.3575 | 2.1 | 0.3587 |
% Cover Cultivated Land | 4 km | 0.5 | 0.6535 | 1.1 | 0.6535 |
% Cover Wetlands | 4 km | 0.3 | 0.2177 | 0.2 | 0.2177 |
Topographic Rugosity Index | 4 km | 0.3 | 0.2313 | 0.3 | 0.2313 |
% Tree Cover | 1 km | 0.2 | 0.5769 | 0.6 | 0.5769 |
Topographic Position Index | 1 km | 0.1 | 0.0906 | 0.1 | 0.0906 |
Stream Density (Excluding Ephemeral Water Sources) | 4 km | 0.1 | 0.1988 | 0 | 0.1988 |
Stream Density | 4 km | 0 | 0.222 | 0.1 | 0.222 |
% Cover High Development | 1 km | 0 | 0.9946 | 0 | 0.9946 |
% Cover Barren Land | 4 km | 0 | 0.2211 | 0 | 0.2211 |
% Cover Unclassified Land | 4 km | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, A.R.; Bean, W.T.; Villablanca, F.X. A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor. Diversity 2024, 16, 640. https://doi.org/10.3390/d16100640
Fisher AR, Bean WT, Villablanca FX. A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor. Diversity. 2024; 16(10):640. https://doi.org/10.3390/d16100640
Chicago/Turabian StyleFisher, Ashley R., William T. Bean, and Francis X. Villablanca. 2024. "A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor" Diversity 16, no. 10: 640. https://doi.org/10.3390/d16100640
APA StyleFisher, A. R., Bean, W. T., & Villablanca, F. X. (2024). A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor. Diversity, 16(10), 640. https://doi.org/10.3390/d16100640