Effects of Polycyclic Aromatic Hydrocarbons on Soil Bacterial and Fungal Communities in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Collection of Soil Samples
2.2. Determinations of PAHs in Soils
2.3. Health Risk Assessment
2.3.1. Toxic Equivalent Quantity (TEQ)
2.3.2. Incremental Lifetime Cancer Risk (ILCR)
2.4. Amplification and Sequencing
2.5. Data Analysis and Co-Occurrence Network Analysis
3. Results
3.1. PAH Contamination Levels in Soils and Health Risk Assessment
3.2. Soil Bacterial and Fungal Diversity and Community Composition Analysis
3.3. Relationships between Bacterial and Fungal Community Composition and Soil PAHs
3.4. Network Analysis
4. Discussion
4.1. Soil Bacterial and Fungal Network Analysis
4.2. Diversity and Community Composition of Bacterial and Fungal Communities in PAH-Contaminated Soils
4.3. The Key Factors of PAHs Driving Microbial Community Structure
4.4. Co-Occurrence Patterns of Microbial Communities in PAH-Contaminated Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cachada, A.; Pato, P.; Rocha–Santos, T.; da Silva, E.F.; Duarte, A.C. Levels sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Gorovtsov, A.V.; Sazykin, I.S.; Sazykina, M.A. The influence of heavy metals polyaromatic hydrocarbons and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. Environ. Sci. Pollut. Res. 2018, 25, 9283–9292. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, J.; Su, G.; Liu, Z.; Shi, B.; Wang, T. Source apportionment and risk assessment for polycyclic aromatic hydrocarbons in soils at a typical coking plant. Ecotoxicol. Environ. Saf. 2021, 222, 112509. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, X.; Liao, J.; Tang, X. Carcinogenic potential of PAHs in oil-contaminated soils from the main oil fields across China. Environ. Sci. Pollut. Res. 2015, 22, 10902–10909. [Google Scholar] [CrossRef]
- Peng, J.; Chen, Y.; Xia, Q.; Rong, G.; Zhang, J. Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs, and OCPs) in an industrial city Changchun China. Environ. Pollut. 2021, 272, 116038. [Google Scholar] [CrossRef]
- Ji, L.; Li, W.; Li, Y.; He, Q.; Bi, Y.; Zhang, M.; Zhang, G.; Wang, X. Spatial distribution potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in the surface soils under different land–use covers of Shanxi Province North China. Int. J. Environ. Res. Public Health 2022, 19, 11949. [Google Scholar] [CrossRef]
- Han, J.; Liang, Y.; Zhao, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, Y.; Chen, Y.; Yu, M.; Xia, Z. Construction of an atmospheric PAH emission inventory and health risk assessment in Jiangsu, China. Air Qual. Atmos. Health 2023, 16, 629–640. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, P.; Zhou, P.; Luo, P. Levels and health risk assessment of polycyclic aromatic hydrocarbons in vegetable oils and frying oils by using the margin of exposure (MOE) and the incremental lifetime cancer risk (ILCR) approach in China. Foods 2023, 12, 811. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.K.; Mishra, M.; Piyush; Kakkar, V.; Tiwari, A.; Kumar, S.; Yadav, V.P.; Gargava, P. Assessment of persistent organic pollutants in soil and sediments from an urbanized flood plain area. Environ. Geochem. Health 2021, 43, 3375–3392. [Google Scholar] [CrossRef]
- Yurdakul, S.; Çelik, I.; Çelen, M.; Öztürk, F.; Cetin, B. Levels temporal/spatial variations and sources of PAHs and PCBs in soil of a highly industrialized area. Atmos. Pollut. Res. 2019, 10, 1227–1238. [Google Scholar] [CrossRef]
- MEP (Ministry of Environmental Protection, China). Bulletin of National Soil Survey. 2020. Available online: http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf (accessed on 1 January 2023).
- Zhang, P.; Chen, Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Sci. Total Environ. 2017, 605, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Passuello, A.; Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. POP accumulation in the food chain: Integrated risk model for sewage sludge application in agricultural soils. Environ. Int. 2010, 36, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Gao, M.; Zhang, Y.; Long, M.; Wu, Y.; Li, X. Effects of disturbance to moss biocrusts on soil nutrients enzyme activities and microbial communities in degraded karst landscapes in southwest China. Soil Biol. Biochem. 2021, 152, 108065. [Google Scholar] [CrossRef]
- Sopian, N.A.; Jalaludin, J. The Application of Biomarker in Determining Genotoxic Potential of Polyaromatic Hydrocarbon Exposure among children. Ann. Trop. Med. Public Health 2017, 10, 533. [Google Scholar] [CrossRef]
- Hisamuddin, N.H.; Jalaludin, J.; Abu Bakar, S.; Latif, M.T. The influence of environmental polycyclic aromatic hydrocarbons (PAHs) exposure on DNA damage among school children in urban traffic area, Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 2193. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Hu, B.; Chu, G. Ammonia–oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances but ammonia–oxidizing archaea are resistant. Geoderma 2021, 384, 114814. [Google Scholar] [CrossRef]
- Schloterm, M.; Dillym, O.; Munchm, J.C. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 2003, 98, 255–262. [Google Scholar] [CrossRef]
- Hermans, S.M.; Buckley, H.L.; Case, B.S.; Curran-Cournane, F.; Taylor, M.; Lear, G. Using soil bacterial communities to predict physico–chemical variables and soil quality. Microbiome 2020, 8, 79. [Google Scholar] [CrossRef]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Sakshi; Singh, S.K.; Haritash, A.K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol. 2019, 16, 6489–6512. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H. Microbial consortia are needed to degrade soil pollutants. Microorganisms 2022, 10, 261. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Wyszkowski, M. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. Environ. Sci. Pollut. Res. 2017, 24, 24346–24363. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Kumar, V.; Pal, A.K. Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycycl. Aromat. Compd. 2019, 39, 124–138. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Liu, H.; Yu, X.; Liu, Z.; Sun, Y. Occurrence characteristics and sources of polycyclic aromatic hydrocarbons in arable soils of Beijing China. Ecotoxicol. Environ. Saf. 2018, 159, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Cao, W.; Yuan, J.; Wang, Y.; Guo, Y.; Ding, A. Microbial diversity and co–occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol. Environ. Saf. 2020, 203, 110931. [Google Scholar] [CrossRef]
- Han, L.; Bai, J.; Gao, Z.; Wang, W.; Wang, D.; Cui, B.; Liu, X. Polycyclic aromatic hydrocarbons (PAHs) in surface soils from reclaimed and ditch wetlands along a 100-year chronosequence of reclamation in a Chinese estuary: Occurrence, sources, and risk assessment. Agric. Ecosyst. Environ. 2019, 286, 106648. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Guo, Z.; Xiao, X.; Xiao, R. Polycyclic aromatic hydrocarbons in urban soils of China: Distribution influencing factors health risk and regression prediction. Environ. Pollut. 2019, 254, 112930. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Zhang, F.; Liu, X.; Zhou, M. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin China. Ecotoxicol. Environ. Saf. 2018, 156, 383–390. [Google Scholar] [CrossRef]
- Qi, H.; Chen, X.; Du, Y.E.; Niu, X.; Guo, F.; Li, W. Cancer risk assessment of soils contaminated by polycyclic aromatic hydrocarbons in Shanxi China. Ecotoxicol. Environ. Saf. 2019, 182, 109381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, C.; Ren, C.; Sun, Z. Effects of thinning on soil saprotrophic and ectomycorrhizal fungi in a Korean larch plantation. For. Ecol. Manag. 2020, 461, 117920. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Ku, Y.; Zhang, W.; Zhu, H.; Zhao, Z. Precipitation and soil pH drive the soil microbial spatial patterns in the Robinia pseudoacacia forests at the regional scale. Catena 2022, 212, 106120. [Google Scholar] [CrossRef]
- Li, P.; Ye, S.; Liu, H.; Pan, A.; Ming, F.; Tang, X. Cultivation of drought–tolerant and insect–resistant rice affects soil bacterial but not fungal abundances and community structures. Front. Microbiol. 2018, 9, 1390. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, L.; Ling, N.; Zhu, C.; Chi, F.; Li, W.; Hao, X.; Zhang, W.; Bian, J.; Chen, L.; et al. Exploring soil factors determining composition and structure of the bacterial communities in saline–alkali soils of Songnen Plain. Front. Microbiol. 2020, 10, 2902. [Google Scholar] [CrossRef]
- Li, J.; Hu, A.; Wang, X.; Zhao, C.; Jin, J.; Liu, G.; Han, Y.; Liu, B. Soil Microbial Communities show different patterns under different Land use types in the coastal area of Nantong, China. Agronomy 2023, 13, 2613. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, X.; Huang, L.; Shan, Q.; Hu, A.; Yan, D.; Zhang, J.; Long, X. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China. J. Soils Sediments 2021, 21, 1672–1687. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Yang, Y.; Yu, H.; Zhang, S.; Chen, F. Response of soil microbial community to vegetation reconstruction modes in mining areas of the Loess Plateau, China. Front. Microbiol. 2021, 12, 714967. [Google Scholar] [CrossRef]
- Liu, J.; Pei, S.; Zheng, Q.; Li, J.; Liu, X.; Ruan, Y.; Luo, B.; Ma, L.; Chen, R.; Hu, W.; et al. Heavy metal contamination impacts the structure and co-occurrence patterns of bacterial communities in agricultural soils. J. Basic Microbiol. 2024, 64, 2300435. [Google Scholar] [CrossRef]
- Xue, S.W.; Huang, C.; Tian, Y.X.; Li, Y.B.; Li, J.; Ma, Y.L. Synergistic Effect of rhamnolipids and inoculation on the bioremediation of petroleum–contaminated soils by bacterial consortia. Curr. Microbiol. 2020, 77, 997–1005. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Ruan, H.; Wang, S.; Yang, Y.; Naeem, I.; Wang, L.; Liu, L.; Wang, D. The diversity and co–occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 2021, 129, 107989. [Google Scholar] [CrossRef]
- Wu, Y.; Song, Q.; Wu, J.; Zhou, J.; Zhou, L.; Wu, W. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants. Sci. Total Environ. 2021, 778, 146282. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Q.; An, X.; Xie, Y.; Liu, X.; Lian, B. Organomineral fertilizer application enhances Perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils. Front. Microbiol. 2022, 13, 1058067. [Google Scholar] [CrossRef]
- Cao, W.; Yin, L.; Zhang, D.; Wang, Y.; Yuan, J.; Zhu, Y.; Dou, J. Contamination sources and health risks associated with soil PAHs in rebuilt land from a coking plant Beijing China. Int. J. Environ. Res. Public Health 2019, 16, 670. [Google Scholar] [CrossRef]
- Zhang, G.; He, L.; Guo, X.; Han, Z.; Ji, L.; He, Q.; Han, L.; Sun, K. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant. Geoderma 2020, 375, 114497. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Z.; Li, Y.; Cao, H.; Su, C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 2019, 226, 483–491. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, S.; Cui, Z.; Cao, X. Distribution characteristics and risk assessment of polycyclic aromatic hydrocarbons in soils of a steel enterprise in East China. Bull. Environ. Contam. Toxicol. 2021, 106, 873–877. [Google Scholar] [CrossRef]
- Ren, M.; Zheng, L.; Hu, J.; Chen, X.; Zhang, Y.; Dong, X.; Wei, X.; Cheng, H. Characterization of polycyclic aromatic hydrocarbons in soil in a coal mining area East China, Spatial distribution sources and carcinogenic risk assessment. Front. Earth Sci. 2022, 10, 1035792. [Google Scholar] [CrossRef]
- Chai, C.; Cheng, Q.; Wu, J.; Zeng, L.; Chen, Q.; Zhu, X.; Ma, D.; Ge, W. Contamination source identification and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong China. Ecotoxicol. Environ. Saf. 2017, 142, 181–188. [Google Scholar] [CrossRef]
- Qu, Y.; Gong, Y.; Ma, J.; Wei, H.; Liu, Q.; Liu, L.; Wu, H.; Yang, S.; Chen, Y. Potential sources influencing factors and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing China. Environ. Pollut. 2020, 260, 114016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xing, X.; Hu, T.; Zhang, Y.; Zhang, J.; Zhu, G.; Li, Y.; Qi, S. Biomass burning contributed most to the human cancer risk exposed to the soil–bound PAHs from Chengdu Economic Region western China. Ecotoxicol. Environ. Saf. 2018, 159, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, Y.; Yao, L.; Du, H. Polycyclic aromatic hydrocarbons in soil–turfgrass systems in urban Shanghai, Contamination profiles in situ bioconcentration and potential health risks. J. Clean. Prod. 2021, 289, 125833. [Google Scholar] [CrossRef]
- Meza-Figueroa, D.; De la O-Villanueva, M.; De la Parra, M.L. Heavy metal distribution in dust from elementary schools in Hermosillo Sonora México. Atmos. Environ. 2007, 41, 276–288. [Google Scholar] [CrossRef]
- Dreij, K.; Lundin, L.; Le Bihanic, F.; Lundstedt, S. Polycyclic aromatic compounds in urban soils of Stockholm City, Occurrence sources and human health risk assessment. Environ. Res. 2020, 182, 108989. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, C.; Li, H.; Xu, S.; Du, J.; Chen, Y.; Ma, C.; Tang, J. Concentration distribution source apportionment and risk assessment of surrounding soil PAHs in industrial and rural areas, A comparative study. Ecol. Indic. 2021, 125, 107513. [Google Scholar] [CrossRef]
- Bigović, M.; Đurović, D.; Nikolić, I.; Ivanović, L.; Bajić, B. Profile Sources Ecological and Health Risk Assessment of PAHs in Agricultural Soil in a Pljevlja Municipality. Int. J. Environ. Res. 2022, 16, 90. [Google Scholar] [CrossRef]
- Quero, G.M.; Cassin, D.; Botter, M.; Perini, L.; Luna, G.M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 2015, 6, 1053. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, M.; Sun, X.; Wang, Y.; Yuan, C.; Sun, H. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community. J. Environ. Sci. 2023, 128, 1–11. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Dai, H.; Gui, D.; Hu, B.X.; Zhang, J. Spatial distribution and source apportionment of polycyclic aromatic hydrocarbons in typical oasis soil of north–western China and the bacterial community response. Environ. Res. 2022, 204, 112401. [Google Scholar] [CrossRef]
- Andreoni, V.; Cavalca, L.; Rao, M.A.; Nocerino, G.; Bernasconi, S.; Dell’Amico, E.; Colombo, M.; Gianfreda, L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 2004, 57, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Guo, M.; Zhao, X.; Gong, Z.; Jia, C.; Li, X.; Zhuang, J. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto–microbial remediation of a contaminated soil. Chemosphere 2020, 261, 127779. [Google Scholar] [CrossRef] [PubMed]
- Gorovtsov, A.; Demin, K.; Sushkova, S.; Minkina, T.; Grigoryeva, T.; Dudnikova, T. The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of Spolic Technosols of the lake Atamanskoe Southern Russia. Environ. Geochem. Health 2021, 44, 1299–1315. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; He, R.; Yuan, K.; Chen, E.; Lin, L.; Chen, X.; Sha, S.; Zhong, J.; Lin, L.; Yang, L.; et al. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. Environ. Pollut. 2017, 220, 1005–1013. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, Y.; Zeng, J.; Wang, X.; Zhang, T.; Lin, X. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils. Environ. Pollut. 2019, 247, 229–237. [Google Scholar] [CrossRef]
- Yang, Z.N.; Liu, Z.S.; Wang, K.H.; Liang, Z.L.; Abdughen, R.; Huang, Y.; Wang, R.; Ma, H.; Wang, X.; Yang, M.; et al. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. Environ. Sci. Ecotechnol. 2022, 10, 100169. [Google Scholar] [CrossRef]
- Zhao, Z.; Oury, B.M.; Xia, L.; Qin, Z.; Pan, X.; Qian, J.; Luo, F.; Wu, Y.; Liu, L.; Wang, W. The ecological response and distribution characteristics of microorganisms and polycyclic aromatic hydrocarbons in a retired coal gas plant post–thermal remediation site. Sci. Total Environ. 2023, 857, 159314. [Google Scholar] [CrossRef]
- Sazykina, M.A.; Minkina, T.M.; Konstantinova, E.Y.; Khmelevtsova, L.E.; Azhogina, T.N.; Antonenko, E.M.; Karchava, S.K.; Klimova, M.V.; Sushkova, S.N.; Polienko, E.A.; et al. Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiol. Res. 2022, 254, 126913. [Google Scholar] [CrossRef]
- Anastasi, A.; Coppola, T.; Prigione, V.; Varese, G.C. Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: Role of laccases and peroxidases. J. Hazard. Mater. 2009, 165, 1229–1233. [Google Scholar] [CrossRef]
- de la Cruz-Izquierdo, R.I.; Paz-González, A.D.; Reyes-Espinosa, F.; Vazquez-Jimenez, L.K.; Salinas-Sandoval, M.; González-Domínguez, M.I.; Rivera, G. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Lett. Appl. Microbiol. 2021, 72, 542–555. [Google Scholar] [CrossRef]
- Czaplicki, L.M.; Dharia, M.; Cooper, E.M.; Ferguson, P.L.; Gunsch, C.K. Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation 2018, 29, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, F.; Pizzul, L.; del Pilar Castillo, M.; Cuevas, R.; Diez, M.C. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolo. J. Hazard. Mater. 2011, 185, 212–219. [Google Scholar] [CrossRef]
- Young, D.; Rice, J.; Martin, R.; Lindquist, E.; Lipzen, A.; Grigoriev, I.; Hibbett, D. Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS ONE 2015, 10, e0130381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.; Dai, J.; Xu, P.; Tang, H. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. mLife 2022, 1, 287–302. [Google Scholar] [CrossRef]
- Wu, C.; Wu, H.; Liu, D.; Han, G.; Zhao, P.; Kang, Y. Crab bioturbation significantly alters sediment microbial composition and function in an intertidal marsh. Estuar. Coast. Shelf Sci. 2021, 249, 107116. [Google Scholar] [CrossRef]
- Shen, Q.; Fu, W.; Chen, B.; Zhang, X.; Xing, S.; Ji, C.; Zhang, X. Community response of soil microorganisms to combined contamination of polycyclic aromatic hydrocarbons and potentially toxic elements in a typical coking plant. Front. Microbiol. 2023, 14, 1143742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, R.; Song, R.; An, X.; Chu, G.; Jia, H. Soil pqqC–harboring bacterial community response to increasing aridity in semi–arid grassland ecosystems, Diversity co–occurrence network and assembly process. Front. Microbiol. 2022, 13, 1019023. [Google Scholar] [CrossRef]
- Huang, L.; Ye, J.; Jiang, K.; Wang, Y.; Li, Y. Oil contamination drives the transformation of soil microbial communities, Co–occurrence pattern metabolic enzymes and culturable hydrocarbon–degrading bacteria. Ecotoxicol. Environ. Saf. 2021, 225, 112740. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Peng, C. Shift of soil polycyclic aromatic hydrocarbons (PAHs) dissipation pattern and microbial community composition due to rhamnolipid supplementation. Water Air Soil Pollut. 2019, 230, 107. [Google Scholar] [CrossRef]
- Muckian, L.; Grant, R.; Doyle, E.; Clipson, N. Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 2007, 68, 1535–1541. [Google Scholar] [CrossRef]
- Thavamani, P.; Megharaj, M.; Naidu, R. Bioremediation of high molecular weight polyaromatic hydrocarbons co–contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 2012, 23, 823–835. [Google Scholar] [CrossRef] [PubMed]
Aromatic Ring | 16 PAHs | Abbreviations | NC (μg/kg) | LC (μg/kg) | HC (μg/kg) |
---|---|---|---|---|---|
Two rings | Naphthalene | Nap | 7.3 a ± 1.0 | 44.2 b ± 7.1 | 86.9 c ± 15.0 |
Three rings | Acenaphthene | Ace | 1.4 a ± 0.2 | 21.2 b ± 5.2 | 31.9 b ± 9.4 |
Acenaphthylene | Acy | 3.0 a ± 0.5 | 11.6 b ± 2.2 | 28.1 c ± 5.7 | |
Fluorene | Flu | 8.2 a ± 1.2 | 52.9 b ± 8.7 | 189.3 c ± 29.7 | |
Phenanthrene | Phe | 10.5 a ± 2.0 | 36.9 a ± 6.5 | 134.3 b ± 23.4 | |
Anthracene | Ant | 3.8 a ± 0.7 | 13.0 b ± 2.5 | 30.1 c ± 5.5 | |
Four rings | Fluoranthene | Fla | 3.9 a ± 0.4 | 20.7 b ± 5.3 | 34.0 c ± 6.4 |
Pyrene | Pyr | 13.6 a ± 2.4 | 54.6 a ± 10.4 | 175.0 b ± 34.1 | |
Benzo[a]anthracene | BaA | 11.4 a ± 2.0 | 38.5 b ± 7.5 | 133.6 c ± 10.6 | |
Chrysene | Chr | 12.4 a ± 2.2 | 49.8 b ±9.3 | 148.2 c ± 11.7 | |
Five rings | Benzo[b]fluoranthene | BbF | 13.9 a ± 2.8 | 47.1 b ± 5.7 | 156.1 c ± 17.3 |
Benzo[k]fluoranthene | BkF | 10.1 a ± 1.9 | 40.2 b ± 4.9 | 130.9 c ± 15.6 | |
Benzo[a]pyrene | BaP | 15.0 a ±2.9 | 44.4 b ± 6.4 | 131.6 c ± 19.1 | |
Indeno[1,2,3-cd]pyrene | IDP | 11.8 a ±1.9 | 34.1 b ± 4.6 | 73.9 c ± 9.4 | |
Six rings | Dibenzo[a,h]anthracene | DBahA | 4.2 a ± 0.9 | 14.2 b ± 2.4 | 30.5 c ± 5.2 |
Benzo[g,h,i]perylene | BghiP | 10.9 a ± 1.2 | 20.7 b ± 2.8 | 42.8 c ± 7.7 | |
Total 7 PAHs d | 78.8 | 268.3 | 804.8 | ||
Total 16 PAHs | 141.4 | 544.0 | 1557.0 |
PAHs | TEF | NC-1 | NC-2 | NC-3 | LC-1 | LC-2 | LC-3 | HC-1 | HC-2 | HC-3 |
---|---|---|---|---|---|---|---|---|---|---|
Nap | 0.001 | 0.0085 | 0.0068 | 0.0066 | 0.0468 | 0.0361 | 0.0496 | 0.0749 | 0.0821 | 0.1038 |
Ace | 0.001 | 0.0015 | 0.0012 | 0.0016 | 0.0158 | 0.0217 | 0.0262 | 0.0409 | 0.0326 | 0.0221 |
Acy | 0.001 | 0.0026 | 0.0029 | 0.0035 | 0.0105 | 0.0101 | 0.0141 | 0.0323 | 0.0216 | 0.0305 |
Flu | 0.001 | 0.0095 | 0.0073 | 0.0077 | 0.0587 | 0.0571 | 0.0429 | 0.1583 | 0.2174 | 0.1922 |
Phe | 0.001 | 0.0120 | 0.0112 | 0.0082 | 0.0442 | 0.0318 | 0.0346 | 0.1318 | 0.1123 | 0.1589 |
Ant | 0.01 | 0.039 | 0.031 | 0.045 | 0.143 | 0.101 | 0.145 | 0.289 | 0.253 | 0.361 |
Fla | 0.001 | 0.0035 | 0.0039 | 0.0043 | 0.0192 | 0.0266 | 0.0163 | 0.0282 | 0.0328 | 0.0409 |
Pyr | 0.001 | 0.0108 | 0.0147 | 0.0152 | 0.0446 | 0.0653 | 0.0539 | 0.1897 | 0.1993 | 0.1361 |
BaA | 0.1 | 0.93 | 1.32 | 1.18 | 3.04 | 3.99 | 4.51 | 12.42 | 14.51 | 13.15 |
Chr | 0.01 | 0.102 | 0.145 | 0.125 | 0.401 | 0.507 | 0.586 | 1.368 | 1.602 | 1.476 |
BbF | 0.1 | 1.21 | 1.71 | 1.26 | 4.21 | 4.59 | 5.33 | 14.11 | 17.51 | 15.22 |
BkF | 0.1 | 0.83 | 1.21 | 0.98 | 3.65 | 3.84 | 4.58 | 11.61 | 14.71 | 12.94 |
BaP | 1 | 12.3 | 18.1 | 14.5 | 38.8 | 43.1 | 51.3 | 118.2 | 153.5 | 123.1 |
IDP | 0.1 | 0.98 | 1.36 | 1.19 | 3.02 | 3.29 | 3.91 | 6.39 | 8.26 | 7.51 |
DBahA | 1 | 3.4 | 5.1 | 4.1 | 12.1 | 13.7 | 16.9 | 25.3 | 35.7 | 30.6 |
BghiP | 0.01 | 0.098 | 0.122 | 0.108 | 0.179 | 0.206 | 0.235 | 0.351 | 0.505 | 0.427 |
∑7PAHs a | 19.752 | 28.945 | 23.335 | 65.221 | 73.017 | 87.116 | 189.398 | 245.792 | 203.996 | |
∑16PAHs | 19.9374 | 29.1460 | 23.5351 | 65.7829 | 73.5727 | 87.7336 | 190.6941 | 247.2481 | 205.4685 |
Sampling Sites | PAHs | Cs (TEQs) | Adulthood | Childhood | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TCR | TCR | |||||||||
NC1 | ∑7PAHs | 19.752 | 9.51 × 10−8 | 1.69 × 10−7 | 6.45 × 10−12 | 2.64 × 10−7 | 9.92 × 10−8 | 1.24 × 10−7 | 2.10 × 10−12 | 2.23 × 10−7 |
∑16PAHs | 19.9374 | 9.60 × 10−8 | 1.71 × 10−7 | 6.51 × 10−12 | 2.67 × 10−7 | 1.00 × 10−7 | 1.25 × 10−7 | 2.12 × 10−12 | 2.25 × 10−7 | |
NC2 | ∑7PAHs | 28.945 | 1.39 × 10−7 | 2.48 × 10−7 | 9.46 × 10−12 | 3.87 × 10−7 | 1.45 × 10−7 | 1.81 × 10−7 | 3.07 × 10−12 | 3.27 × 10−7 |
∑16PAHs | 29.1460 | 1.40 × 10−7 | 2.49 × 10−7 | 9.52 × 10−12 | 3.90 × 10−7 | 1.46 × 10−7 | 1.83 × 10−7 | 3.10 × 10−12 | 3.29 × 10−7 | |
NC3 | ∑7PAHs | 23.335 | 1.12 × 10−7 | 2.00 × 10−7 | 7.63 × 10−12 | 3.12 × 10−7 | 1.17 × 10−7 | 1.46 × 10−7 | 2.48 × 10−12 | 2.63 × 10−7 |
∑16PAHs | 23.5351 | 1.13 × 10−7 | 2.01 × 10−7 | 7.69 × 10−12 | 3.15 × 10−7 | 1.18 × 10−7 | 1.47 × 10−7 | 2.50 × 10−12 | 2.66 × 10−7 | |
LC1 | ∑7PAHs | 65.221 | 3.14 × 10−7 | 5.58 × 10−7 | 2.13 × 10−11 | 8.72 × 10−7 | 3.28 × 10−7 | 4.09 × 10−7 | 6.93 × 10−12 | 7.36 × 10−7 |
∑16PAHs | 65.7829 | 3.17 × 10−7 | 5.63 × 10−7 | 2.15 × 10−11 | 8.79 × 10−7 | 3.31 × 10−7 | 4.12 × 10−7 | 6.99 × 10−12 | 7.43 × 10−7 | |
LC2 | ∑7PAHs | 73.017 | 3.52 × 10−7 | 6.25 × 10−7 | 2.39 × 10−11 | 9.76 × 10−7 | 3.67 × 10−7 | 4.57 × 10−7 | 7.75 × 10−12 | 8.24 × 10−7 |
∑16PAHs | 73.5727 | 3.54 × 10−7 | 6.29 × 10−7 | 2.40 × 10−11 | 9.84 × 10−7 | 3.70 × 10−7 | 4.61 × 10−7 | 7.81 × 10−12 | 8.31 × 10−7 | |
LC3 | ∑7PAHs | 87.116 | 4.19 × 10−7 | 7.45 × 10−7 | 2.85 × 10−11 | 1.16 × 10−6 | 4.38 × 10−7 | 5.46 × 10−7 | 9.25 × 10−12 | 9.83 × 10−7 |
∑16PAHs | 87.7336 | 4.22 × 10−7 | 7.50 × 10−7 | 2.87 × 10−11 | 1.17 × 10−6 | 4.41 × 10−7 | 5.50 × 10−7 | 9.32 × 10−12 | 9.90 × 10−7 | |
HC1 | ∑7PAHs | 189.398 | 9.12 × 10−7 | 1.62 × 10−6 | 6.19 × 10−11 | 2.53 × 10−6 | 9.52 × 10−7 | 1.19 × 10−6 | 2.01 × 10−11 | 2.14 × 10−6 |
∑16PAHs | 190.6941 | 9.18 × 10−7 | 1.63 × 10−6 | 6.23 × 10−11 | 2.55 × 10−6 | 9.58 × 10−7 | 1.19 × 10−6 | 2.03 × 10−11 | 2.15 × 10−6 | |
HC2 | ∑7PAHs | 245.792 | 1.18 × 10−7 | 2.10 × 10−6 | 8.03 × 10−11 | 3.29 × 10−6 | 1.23 × 10−6 | 1.54 × 10−6 | 2.61 × 10−11 | 2.77 × 10−6 |
∑16PAHs | 247.2481 | 1.19 × 10−7 | 2.11 × 10−6 | 8.08 × 10−11 | 3.31 × 10−6 | 1.24 × 10−6 | 1.55 × 10−6 | 2.63 × 10−11 | 2.79 × 10−6 | |
HC3 | ∑7PAHs | 203.996 | 9.82 × 10−7 | 1.74 × 10−6 | 6.67 × 10−11 | 2.73 × 10−6 | 1.02 × 10−6 | 1.28 × 10−6 | 2.17 × 10−11 | 2.30 × 10−6 |
∑16PAHs | 205.4685 | 9.89 × 10−7 | 1.76 × 10−6 | 6.71 × 10−11 | 2.75 × 10−6 | 1.03 × 10−6 | 1.29 × 10−6 | 2.18 × 10−11 | 2.32 × 10−6 |
Soil Microbial Communities | Phylum | Class | Order | Family | Genus | Species | ASVs |
---|---|---|---|---|---|---|---|
Bacterial communities | 35 | 100 | 232 | 391 | 792 | 1404 | 4919 |
Fungal communities | 15 | 37 | 88 | 188 | 405 | 620 | 1784 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wu, H.; Zhao, W.; Zhu, B.; Yang, J. Effects of Polycyclic Aromatic Hydrocarbons on Soil Bacterial and Fungal Communities in Soils. Diversity 2024, 16, 675. https://doi.org/10.3390/d16110675
Wang C, Wu H, Zhao W, Zhu B, Yang J. Effects of Polycyclic Aromatic Hydrocarbons on Soil Bacterial and Fungal Communities in Soils. Diversity. 2024; 16(11):675. https://doi.org/10.3390/d16110675
Chicago/Turabian StyleWang, Chunyong, Haitao Wu, Weinong Zhao, Bo Zhu, and Jiali Yang. 2024. "Effects of Polycyclic Aromatic Hydrocarbons on Soil Bacterial and Fungal Communities in Soils" Diversity 16, no. 11: 675. https://doi.org/10.3390/d16110675
APA StyleWang, C., Wu, H., Zhao, W., Zhu, B., & Yang, J. (2024). Effects of Polycyclic Aromatic Hydrocarbons on Soil Bacterial and Fungal Communities in Soils. Diversity, 16(11), 675. https://doi.org/10.3390/d16110675