A Multidisciplinary Approach for the Assessment of the Last Surviving ‘Marrone di Chiusa Pesio’ Chestnut Trees in the Piemonte Region (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Census and Identification
2.2. Genetic Analysis
2.3. Visual Tree Assessment (VTA)
2.4. Morphological and Qualitative Fruit Analysis
2.5. Nutraceutical–Nutritional Analysis
2.5.1. Sample Preparation
2.5.2. Extraction Protocols
2.5.3. Spectrophotometric Analysis
2.5.4. Chromatographic Analysis
2.5.5. Data Analysis
3. Results and Discussion
3.1. Genetic Analysis
3.2. Visual Tree Assessment (VTA)
3.3. Nutraceutical Analysis
3.4. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The Cultivation of Castanea sativa (Mill.) in Europe, from Its Origin to Its Diffusion on a Continental Scale. Veg. Hist. Archaeobot. 2004, 13, 161–179. [Google Scholar] [CrossRef]
- Bellat, J.; Dasue, J.; Guérin, B.; Gomes-Laranjo, J.; Fernandez, J.; Castelloti, T.; Beccaro, G.; Forget, L. European Chestnut White Paper; EUROCASTANEA/AREFLH: Bordeaux, France, 2019; Volume 2, pp. 163–176. [Google Scholar]
- Arnaud, M.; Chassany, J.; Dejean, R.; Ribart, J.; Queno, L. Economic and Ecological Consequences of the Disappearance of Traditional Practices Related to Chestnut Groves. J. Environ. Manag. 1997, 49, 373–391. [Google Scholar] [CrossRef]
- Maresi, G.; Battisti, A.; Maltoni, A.; Turchetti, T. Others Gestione Dei Boschi Di Castagno e Problematiche Fitosanitarie. In Proceedings of the Secondo Congresso Internazionale di Selvicoltura: Progettare il Futuro per il Settore Forestale, Firenze, Italy, 26–29 November 2014; Accademia Italiana di Scienze Forestali: Firenze, Italy, 2015; pp. 148–154. [Google Scholar]
- Bounous, G. Il Castagno; Agricoltura e tecnologie connesse; Edagricole: Bologna, Italy, 2014; ISBN 978-88-506-5415-4. [Google Scholar]
- MIPAAF. National Register of Orchards; MIPAAF: Rome, Italy, 2021. [Google Scholar]
- Gamba, G.; Mellano, M.G.; Donno, D.; Malacarne, E.; Rocca, M.; Corgnati, M.; Bergero, P.; Beccaro, G.L. Advances in the Chestnut Nursery Industry: The New Castanea Spp. Conservation and Certification Center. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovative Perennial Crops Management 1366, Angers, France, 14–20 August 2022; pp. 283–288. [Google Scholar]
- European Comunity (EC). Commission Regulation (EC) No 1050/2007 of 12 September 2007 Registering Certain. Names in the Register of Protected Designations of Origin and Protected Geographical Indications (Mejillón de Galicia or Mexillón de Galicia (PDO)—Café de Colombia (PGI)—Castagna Cuneo (PGI)—Asparago Bianco Di Bassano (PDO)); EC: Brussels, Belgium, 2007; Volume 240, pp. 7–8. [Google Scholar]
- Beltrutti, G.; Hogg, J.; Merola, M. Analecta Cartusiana. In La Certosa di Pesio; C. e B. di Natale Bertolero: Salzburg, Austria, 1979. [Google Scholar]
- Remondino, C. Studi Sulle Principali Varietà di Castagne Coltivate Nella Provincia di Cuneo. In Proceedings of the Atti Settimana del Castagno; Istituto Grafico Bertello & Comp.: Borgo san Dalmazzo, Italy, 1927. [Google Scholar]
- Hinek, G. Il Castagno, La Sua Coltivazione, Le Sue Utilizzazioni; Istituto Grafico Bertello & Comp.: Borgo san Dalmazzo, Italy, 1936. [Google Scholar]
- Castellini, A.; Palmieri, A.; Pirazzoli, C. Economic Aspects of the Chestnut Market in Italy. In Proceedings of the I European Congress on Chestnut-Castanea, Cuneo–Torino, Italy, 13–16 October 2009; Volume 866, pp. 485–492. [Google Scholar]
- Negri, V. Landraces in Central Italy: Where and Why They Are Conserved and Perspectives for Their on-Farm Conservation. Genet. Resour. Crop Evol. 2003, 50, 871–885. [Google Scholar] [CrossRef]
- QGIS. Org. QGIS Geographic Information System; QGIS: London, UK, 2004. [Google Scholar]
- Doyle, J.J. Isolation of Plant DNA from Fresh Tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Marinoni, D.; Akkak, A.; Bounous, G.; Edwards, K.J.; Botta, R. Development and Characterization of Microsatellite Markers in Castanea sativa (Mill.). Mol. Breed. 2003, 11, 127–136. [Google Scholar] [CrossRef]
- Steinkellner, H.; Fluch, S.; Turetschek, E.; Lexer, C.; Streiff, R.; Kremer, A.; Burg, K.; Glössl, J. Identification and Characterization of (GA/CT)n-Microsatellite Loci from Quercus Petraea. Plant Mol. Biol. 1997, 33, 1093–1096. [Google Scholar] [CrossRef]
- Buck, E.J.; Hadonou, M.; James, C.J.; Blakesley, D.; Russell, K. Isolation and Characterization of Polymorphic Microsatellites in European Chestnut (Castanea sativa Mill.). Mol. Ecol. Notes 2003, 3, 239–241. [Google Scholar] [CrossRef]
- Mattheck, C.; Breloer, H. Field Guide for Visual Tree Assessment (VTA). Arboric. J. 1994, 18, 1–23. [Google Scholar] [CrossRef]
- UPOV. Guidelines for the Conduct of Tests for Distinctness, Homogeneity and Stability, TG/124/3 1989. Int. Crops Res. Inst. Semi-Arid. Trop. 2008, 48, 259. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F.; Serafini, M. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Randriamampionona, D.; Andriamaniraka, H.; Torti, V.; Mellano, M.G.; Giacoma, C.; Beccaro, G.L. Others Biodiversity and Traditional Medicinal Plants from Madagascar: Phytochemical Evaluation of Brachylaena Ramiflora (DC.) Humbert Decoctions and Infusions. J. Appl. Bot. Food Qual. 2017, 90, 205–213. [Google Scholar]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Barreneche, T.; Mattioni, C.; Villani, F.; Díaz-Hernández, M.B.; Martín, L.M.; Martín, Á. Database of European Chestnut Cultivars and Definition of a Core Collection Using Simple Sequence Repeats. Tree Genet. Genomes 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Alessandri, S.; Cabrer, A.M.R.; Martìn, M.A.; Mattioni, C.; Pereira-Lorenzo, S.; Dondini, L. Genetic Characterization of Italian and Spanish Wild and Domesticated Chestnut Trees. Sci. Hortic. 2022, 295, 110882. [Google Scholar] [CrossRef]
- Reynolds, D.L.; Burke, K.L. The Effect of Growth Rate, Age, and Chestnut Blight on American Chestnut Mortality. Castanea 2011, 76, 129–139. [Google Scholar] [CrossRef]
- Benedetti-Ruiz, S.; Loewe-Muñoz, V.; Del Río, R.; Delard, C.; Barrales, L.; Balzarini, M. Effect of Thinning on Growth and Shape of Castanea sativa Adult Tree Plantations for Timber Production in Chile. For. Ecol. Manag. 2023, 530, 120762. [Google Scholar] [CrossRef]
- Menéndez Miguélez, M. Growth and Yield Modelling for Castanea sativa Mill. Coppices Stands in Northwestern. Ph.D. Dissertation, Departamento de Biología de Organismos y Sistemas, Repositorio Institucional de la Universidad de Oviedo, Oviedo, Spain, 2015. [Google Scholar]
- Broadmeadow, M.S.; Jackson, S.B. Growth Responses of Quercus Petraea, Fraxinus Excelsior and Pinus Sylvestris to Elevated Carbon Dioxide, Ozone and Water Supply. New Phytol. 2000, 146, 437–451. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- de Vasconcelos, M.d.C.B.M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Evaluating the Potential of Chestnut (Castanea sativa Mill.) Fruit Pericarp and Integument as a Source of Tocopherols, Pigments and Polyphenols. Ind. Crops Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Niki, E. Assessment of Antioxidant Capacity in Vitro and in Vivo. Free Radic. Biol. Med. 2010, 49, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical Composition and Antioxidant Activity of Cured Chestnuts from Three Sweet Chestnut (Castanea sativa Mill.) Ecotypes from Italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea Spp. Agrobiodiversity Conservation: Genotype Influence on Chemical and Sensorial Traits of Cultivars Grown on the Same Clonal Rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Ammar, I.; Ennouri, M.; Bouaziz, M.; Ben Amira, A.; Attia, H. Phenolic Profiles, Phytochemicals and Mineral Content of Decoction and Infusion of Opuntia Ficus-Indica Flowers. Plant Foods Hum. Nutr. 2015, 70, 388–394. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans and Flavonoids in Human Health–A Review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Araujo, A.R.; Araujo, A.C.; Reis, R.L.; Pires, R.A. Vescalagin and Castalagin Present Bactericidal Activity toward Methicillin-Resistant Bacteria. ACS Biomater. Sci. Eng. 2021, 7, 1022–1030. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Terao, J. Flavonols: Metabolism, Bioavailability, and Health Impacts. In Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 185–196. [Google Scholar]
- Landete, J. Ellagitannins, Ellagic Acid and Their Derived Metabolites: A Review about Source, Metabolism, Functions and Health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Rodolfi, M.; Paciulli, M.; Ganino, T.; Pugliese, A.; Rinaldi, M.; Chiancone, B.; Chiavaro, E. Profilo Aromatico di Biscotti e Pasta Fresca Arrichiti Con Farina di Casta-Gna e Sottoprodotti della Lavorazione della Castagna. In Proceedings of the ACTA N. 25, Firenze, Italy, 11 June 2019; pp. 83–85. [Google Scholar]
- Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: A Model for Exploring Labdane-Type Diterpenes’ Biosynthesis and a Natural Source of High Value Products with Biological, Aromatic, and Pharmacological Properties. Front. Chem. 2014, 2, 35. [Google Scholar] [CrossRef]
- de Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Eyduran, S.P.; Ercisli, S.; Akin, M.; Beyhan, O.; Geçer, M.K.; Eyduran, E.; Erturk, Y. Organic Acids, Sugars, Vitamin C, Antioxidant Capacity, and Phenolic Compounds in Fruits of White (Morus alba L.) and Black (Morus nigra L.) Mulberry Genotypes. J. Appl. Bot. Food Qual. 2015, 88, 134–138. [Google Scholar]
- Spiller, G.A.; Story, J.A.; Furumoto, E.J.; Chezem, J.C.; Spiller, M. Effect of Tartaric Acid and Dietary Fibre from Sun-Dried Raisins on Colonic Function and on Bile Acid and Volatile Fatty Acid Excretion in Healthy Adults. Br. J. Nutr. 2003, 90, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Jung, T.; Wesson, J.A.; Ward, M.D. Adhesion at Calcium Oxalate Crystal Surfaces and the Effect of Urinary Constituents. Proc. Natl. Acad. Sci. USA 2005, 102, 267–272. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European Chestnut (Castanea sativa Mill.) and Association with Health Effects: Fresh and Processed Products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- Prezzi, E.; Donno, D.; Mellano, M.G.; Beccaro, G.L.; Gamba, G. Castanea Spp. Nut Traceability: A Multivariate Strategy Based on Phytochemical Data. Appl. Sci. 2023, 13, 12524. [Google Scholar] [CrossRef]
- Authority (EFSA), E.F.S. Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Vekiari, S.; Mallidis, C.; Panagou, E. Compositional Analysis of Chesnuts in Mediterranean Countries. Adv. Hortic. Sci. 2006, 20, 90–95. [Google Scholar]
No. | Descriptor |
---|---|
Burr Morphology (Exterior) | |
27 | Burr: density of prickles |
Burr: prickle ramification | |
Burr: prickle length | |
Chestnut Morphology (Exterior) | |
Weight: fruits per kg | |
36 | Fruit: size |
31 | Fruit: shape |
Fruit hairiness | |
35 | Fruit: color |
Fruit: stripes | |
32 | Fruit: size of the hilum |
Chestnut morphology (Inside) | |
27 | Fruit: embryony |
29 | Fruit: penetration of seed coat into the embryo |
30 | Fruit: degree of penetration of seed coat into the embryo |
% Seed-episperm detachment | |
37 | Seed coat: adherence to the kernel (fresh fruit) |
38 | Kernel: color of flesh |
Method | Compounds of Interest | Stationary Phase | Mobile Phase | Flow (mL min−1) | Wavelength (nm) |
---|---|---|---|---|---|
A 1 | cinnamic acids, flavonols | KINETEX—C18 column (4.6 × 150 mm, 5 μm) | A: 10 mM KH2PO4/H3PO4 pH = 2.8 B: CH3CN | 1.5 | 330 |
B 2 | benzoic acids, catechins, tannins | KINETEX—C18 column (4.6 × 150 mm, 5 μm) | A: H2O/CH3OH/HCOOH (5:95:0.1, v/v/v) pH = 2.5 B: CH3OH/HCOOH (100:0.1, v/v) | 0.6 | 280 |
C 3 | monoterpenes | KINETEX—C18 column (4.6 × 150 mm, 5 μm) | A: H2O B: CH3CN | 1.0 | 210–250 |
D 4 | organic acids | KINETEX—C18 column (4.6 × 150 mm, 5 μm) | A: 10 mM KH2PO4 /H3PO4 pH = 2.8 B: CH3CN | 0.6 | 214 |
E 5 | vitamins | KINETEX—C18 column (4.6 × 150 mm, 5 μm) | A: 50 mM KH2PO4 B: 5 mM C16H33N(CH3)3Br/CH3OH/H20 (5:95, v/v) | 0.9 | 261, 348 |
F 6 | sugars | SphereClone—NH2 column (4.6 × 250 mm, 5 μm) | A: H2O B: CH3CN | 0.5 | 267 |
Accession | Identification | CsCAT1 | QpZAG110 | CsCAT3 | CsCAT17 | CsCAT6 | CsCAT16 | EMCs38 | CsCAT8 | CsCAT14 | CsCAT41 |
---|---|---|---|---|---|---|---|---|---|---|---|
From 101 to 112 and from 114 to 120 | Marrone di Chiusa di Pesio | 215–223 | 208–208 | 226–240 | 147–153 | 160–174 | 127–133 | 238–242 | 202–208 | 133–150 | 227–233 |
113 | unknown | 194–215 | 208–211 | 226–278 | 130–153 | 160–183 | 133–144 | 242–262 | 202–208 | 133–133 | 212–233 |
Reference | Marrone di Viterbo Marrone della Val di Susa Marrone di Chiusa di Pesio | 215–223 | 208–208 | 226–240 | 147–153 | 160–174 | 127–133 | 238–242 | 202–208 | 133–150 | 227–233 |
Plant No. | Collar Defects | Trunk Defects | Crown Defects |
---|---|---|---|
101 | - | - | - |
102 | - | - | Dieback |
103 | - | Bifurcation | Dieback |
104 | Suckers | - | Apical dieback |
105 | Suckers | Inclination | Reduced crown insertion height |
106 | - | Inclination; Vines | Dieback |
107 | - | Inclination | Irregular crown |
Dieback | |||
108 | - | Inclination; Healed and/or open wounds | Sparse crown |
Healed wounds | Dieback | ||
109 | Suckers | Inclination; Epicormic branches | Dieback; Poor vegetative vigour |
110 | - | Healed wound | Dieback |
111 | - | Inclination | - |
112 | - | - | Dieback; Sparse crown |
114 | - | Inclination; Healed wound; Cavity | Unbalanced crown |
115 | - | - | Dieback |
116 | - | - | Dieback |
117 | Suckers | Inclination | Apical dieback; Unbalanced crown |
Unbalanced crown | |||
118 | - | - | - |
119 | - | Vines | Dieback |
120 | - | - | - |
Plant No. | Diameter h 1.30 (cm) | Height (m) | Age (Year) | Crown Diameter (m) | Crown Insertion Height (m) |
---|---|---|---|---|---|
101 | 3 | 1.2 | 2 | 0.5 | 0.5 |
102 | 25–35 | ||||
103 | 60 | 9 | 38 | 10 | 180 |
104 | 37 | 10 | 32 | 4 | 185 |
105 | 35 | 10 | 32 | 120 | |
106 | 106 | 180 | |||
107 | 81 | 15 | 74 | 12 | 180 |
108 | 67 | 18 | 57 | 8 | 230 |
109 | 59 | 19 | 63 | 9 | 240 |
110 | 62 | 11 | 67 | 7 | 210 |
111 | 82 | 19 | 97 | 16 | 330 |
112 | 50+ | ||||
114 | 81 | 11 | 50+ | 10 | 240 |
115 | 64 | 12 | 50+ | 7 | 280 |
116 | 94 | 15 | 50+ | 12 | 230 |
117 | 85 | 11 | 50+ | 8 | 250 |
118 | 38 | 7 | 25–30 | 5 | 220 |
119 | 107 | 17 | 76 | 12 | 230 |
120 | 50+ |
Plant No. | Irrigation | Morpho-Functional Conditions | No. Fruits per kg | Fruit Size | Episperm Intrusion |
---|---|---|---|---|---|
101 | Present | - | - | - | - |
102 | Present | Good | 86 | Medium | Weak 1 |
103 | Present | Good | 94 | Medium | Weak 3 |
104 | Present | Good | 78 | Large | Weak 1 |
105 | Present | Good | 81 | Medium | Weak 1 |
106 | Present | Good | 73 | Large | Weak 2 |
107 | Present | Fair | 86 | Medium | Weak 3 |
108 | Present | Mediocre | 83 | Medium | Weak 3 |
109 | Present | Mediocre | 102 | Small | Weak 4 |
110 | Present | Fair | 77 | Large | Weak 3 |
111 | Absent | Good | 87 | Medium | Strong |
112 | Present | Good | 86 | Medium | Weak 3 |
114 | Absent | Fair | 104 | Small | Weak 1 |
115 | Present | Good | 82 | Medium | Weak 1 |
116 | Present | Good | 89 | Medium | Weak 2 |
117 | Absent | Mediocre | 101 | Small | Weak 3 |
118 | Present | Excellent | 76 | Large | Weak 1 |
119 | Present | Good | 79 | Large | Weak 1 |
120 | Present | Good | 74 | Large | Weak 2 |
ID | Total Polyphenol Content (TPC) (mgGAE/100 g DW) | Antioxidant Activity (AA) (mmol Fe2+/kg DW) |
---|---|---|
104 | 77.20 ± 0.69 d | 21.41 ± 2.73 a |
111 | 36.51 ± 1.60 a | 18.15 ± 2.04 a |
112 | 42.33 ± 1.18 b | 19.14 ± 2.09 a |
115 | 49.34 ± 3.35 c | 20.70 ± 5.90 a |
116 | 103.14 ± 1.24 d | 23.88 ± 2.96 a |
120 | 73.28 ± 1.24 d | 21.40 ± 2.23 a |
ID | Cinnamic Acids (mg/100 gDW) | Benzoic Acids (mg/100 gDW) | Catechins (mg/100 gDW) | Tannins (mg/100 gDW) | Flavonols (mg/100 gDW) |
---|---|---|---|---|---|
104 | 23.32 ± 1.66 | 2.92 ± 0.74 | 9.19 ± 0.48 | 27.62 ± 3.26 | 16.99 ± 1.84 |
111 | 23.86 ± 1.95 | 2.87 ± 0.58 | 9.29 ± 0.92 | 27.57 ± 6.55 | 17.34 ± 1.93 |
112 | 23.16 ± 1.42 | 2.73 ± 0.19 | 9.59 ± 0.32 | 26.99 ± 3.04 | 16.95 ± 1.90 |
115 | 23.53 ± 0.84 | 3.28 ± 0.09 | 9.94 ± 0.34 | 23.58 ± 1.94 | 17.61 ± 2.90 |
116 | 24.09 ± 1.27 | 3.20 ± 0.15 | 9.20 ± 0.73 | 26.89 ± 1.46 | 17.07 ± 1.89 |
120 | 23.67 ± 0.34 | 2.80 ± 0.33 | 8.89 ± 0.46 | 22.97 ± 2.53 | 17.41 ± 3.07 |
ID | Quercetin (mg/100 g DW) | Quercitrin (mg/100 g DW) |
---|---|---|
104 | 0.70 ± 0.04 ab | 0.64 ± 0.04 b |
111 | 0.59 ± 0.17 a | 0.72 ± 0.16 b |
112 | 0.85 ± 0.07 b | 0.51 ± 0.17 ab |
115 | 0.68 ± 0.10 ab | 0.78 ± 0.09 b |
116 | 0.84 ± 0.03 b | 0.58 ± 0.08 ab |
120 | 0.69 ± 0.07 ab | 0.29 ± 0.09 a |
ID | Monoterpenes (mg/100 g DW) | Organic Acids (mg/100 g DW) | Vitamin C (mg/100 g DW) | Sugars (g/100 g DW) |
---|---|---|---|---|
104 | 269.29 ± 1.62 | 317.18 ± 2.32 | 11.46 ± 0.58 | 4.14 ± 0.68 |
111 | 264.92 ± 7.31 | 318.79 ± 7.11 | 11.73 ± 1.55 | 4.29 ± 0.49 |
112 | 282.17 ± 5.23 | 330.76 ± 9.94 | 11.77 ± 0.58 | 4.57 ± 0.35 |
115 | 263.94 ± 10.23 | 328.33 ± 4.44 | 11.88 ± 1.51 | 4.25 ± 0.06 |
116 | 284.00 ± 8.56 | 322.39 ± 7.65 | 12.21 ± 1.05 | 4.03 ± 0.67 |
120 | 276.82 ± 10.02 | 319.32 ± 4.65 | 11.77 ± 0.67 | 4.10 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neirotti, G.; Tomatis, A.; Germanà, F.; Imparato, A.; Valisena, A.; Mellano, M.G.; Ruffa, P.; Donno, D.; Torello Marinoni, D.; Beccaro, G.L.; et al. A Multidisciplinary Approach for the Assessment of the Last Surviving ‘Marrone di Chiusa Pesio’ Chestnut Trees in the Piemonte Region (Italy). Diversity 2024, 16, 711. https://doi.org/10.3390/d16120711
Neirotti G, Tomatis A, Germanà F, Imparato A, Valisena A, Mellano MG, Ruffa P, Donno D, Torello Marinoni D, Beccaro GL, et al. A Multidisciplinary Approach for the Assessment of the Last Surviving ‘Marrone di Chiusa Pesio’ Chestnut Trees in the Piemonte Region (Italy). Diversity. 2024; 16(12):711. https://doi.org/10.3390/d16120711
Chicago/Turabian StyleNeirotti, Giovanna, Alessandro Tomatis, Federica Germanà, Alessia Imparato, Andrea Valisena, Maria Gabriella Mellano, Paola Ruffa, Dario Donno, Daniela Torello Marinoni, Gabriele Loris Beccaro, and et al. 2024. "A Multidisciplinary Approach for the Assessment of the Last Surviving ‘Marrone di Chiusa Pesio’ Chestnut Trees in the Piemonte Region (Italy)" Diversity 16, no. 12: 711. https://doi.org/10.3390/d16120711
APA StyleNeirotti, G., Tomatis, A., Germanà, F., Imparato, A., Valisena, A., Mellano, M. G., Ruffa, P., Donno, D., Torello Marinoni, D., Beccaro, G. L., & Gamba, G. (2024). A Multidisciplinary Approach for the Assessment of the Last Surviving ‘Marrone di Chiusa Pesio’ Chestnut Trees in the Piemonte Region (Italy). Diversity, 16(12), 711. https://doi.org/10.3390/d16120711