Next Article in Journal
High Genetic Diversity of Hirudo verbana Carena, 1820 (Annelida: Hirudinea: Hirudinidae) in Romania Confirms That the Balkans Are Refugia Within Refugium
Previous Article in Journal
Trophic Interactions of Callinectes sapidus (Blue Crab) in Vendicari Nature Reserve (Central Mediterranean, Ionian Sea) and First Record of Penaeus aztecus (Brown Shrimp)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Diversity of Macrofungi in the Forests of Ningxia, Western China

by
Xiaojuan Deng
1,2,
Minqi Li
1,2,
Yucheng Dai
3,
Xuetai Zhu
4,
Xingfu Yan
1,2,
Zhaojun Wei
1,5,* and
Yuan Yuan
3,*
1
College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
2
Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of China, Yinchuan 750021, China
3
Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
4
College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
5
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
*
Authors to whom correspondence should be addressed.
Diversity 2024, 16(12), 725; https://doi.org/10.3390/d16120725
Submission received: 13 September 2024 / Revised: 20 November 2024 / Accepted: 22 November 2024 / Published: 26 November 2024

Abstract

:
The diversity of macrofungi has been closely associated with forest diversity and stability. However, such a correlation has not been established for the forests of the Ningxia Autonomous Region due to the lack of systematic data on its macrofungal diversity. Therefore, for the present study, we collected 3130 macrofungal specimens from the forests of the Helan Mts., Luo Mts., and Liupan Mts. in Ningxia and assessed them using morphological and molecular approaches. We identified 468 species belonging to 157 genera, 72 families, 18 orders, 11 classes, and 2 phyla. Among them, 31 species were ascomycetes, and 437 species were basidiomycetes. Tricholomataceae, with 96 species of 22 genera, was the most species-rich family, and Inocybe was the most species-rich genus (6.2%). The Jaccard similarity index measurement revealed the highest similarity in macrofungal species (16.15%) between the Helan and Liupan Mountains and the lowest (7.72%) between the Luo and Liupan Mountains. Further analyses of the macrofungal population of Ningxia showed that 206 species possess considerable potential for utilization, including 172 edible, 70 medicinal, and 36 edible–medicinal ones. Meanwhile, 54 species were identified as being poisonous. In these forests, saprophytic fungi were the most abundant, with 318 species (67.95%), followed by symbiotic fungi (31.62%) and parasitic fungi (0.04%). Grouping based on the geographical distribution indicated that the fungi of Ningxia are composed mainly of the cosmopolitan and north temperate types. These observations unveil the diversity and community structure of macrofungi in Ningxia forests.

1. Introduction

Macrofungi are fungal species that produce large basidiocarps or ascocarps and are visible to the naked eye. These fungi belong to two main phyla, the Basidiomycota and the Ascomycota. About 160–170 thousand macrofungal species are found worldwide, of which only 16 thousand (10%) have been characterized [1]. Macrofungi are distributed in diverse habitats, such as forests, grasslands, deserts, and oceans, with the highest species diversity detected in forest ecosystems [2,3,4]. China’s vast forest cover provides a favorable environment for the survival and expansion of macrofungi. A total of 4250 species of macrofungi had been discovered in the forests of China by 2021 [5].
The diversity of macrofungi is a crucial factor that regulates and improves forest ecosystem functions. As a nutrient-cycling component, the saprophytic and some pathogenetic macrofungi help degrade forest litter and release nutrients [6,7]. Consequently, they influence forest regeneration by regulating the efficiency of nutrient utilization by different plant species [8]. Many macrofungi establish symbiotic relationships with plants, enhance the absorption of water and nutrients, increase the ability of carbon synthesis, and improve resistance against stress and the plants’ survival rates [9]. These macrofungi, called mycorrhizal fungi, positively influence plant traits and regulate plant interactions with soil, altering various ecosystem processes [10]. Mycorrhizal fungi also influence plant community dynamics in forests by fixing nitrogen from the atmosphere and protecting plants from pathogen attacks [11,12]. All these functions of macrofungi are necessary for maintaining forest biodiversity and stability.
Edible and medicinal mushrooms are macrofungi with considerable economic value. More than 2200 species of macrofungi found worldwide are edible and/or medicinal [13]. China has remarkable microfungal diversity, with around 1020 edible and/or medicinal species making up approximately 50% of the world’s resources [14]. Edible mushrooms are considered top-tier food materials due to their high protein, low sugar, low fat, and low cholesterol levels. Moreover, the polysaccharides in mushrooms directly interact with the cell membrane receptors of humans, resulting in extensive pharmacological activity without any side effects [15]. Mushroom foraging is becoming increasingly popular in many countries, as it provides food and income for local people [16,17,18]. In China, the mushroom industry is the fifth largest agricultural industry, producing more than 70% of the mushroom yield from the wild [19]. As a major source of mushroom foraging, wild resources of macrofungi found in forests deserve more attention.
The Ningxia Autonomous Region has almost 5.13 × 105 hectares of forest land, which accounts for 9.88% of the total forest cover in China. This region, located in the northwest area of China, lies in the upper reaches of the Yellow River and the transitional zone between the Loess Plateau and the Inner Mongolian Plateau. However, currently, there are no systematic data available on the diversity of macrofungi in the forests of the Ningxia Autonomous Region, except for a few sporadic reports [20,21,22,23].
Therefore, the present study investigated the diversity of macrofungi in the forests of the Ningxia Autonomous Region. We collected multiple macrofungal samples from the forests of the Ningxia Autonomous Region from 2018 to 2023 and analyzed them using morphological and molecular biology methods. Furthermore, we analyzed their macrospecies composition, economic value, and nutritional type.

2. Materials and Methods

2.1. Sample Plot

The present study analyzed macrofungi from three major forest zones in the Ningxia Autonomous Region of China, including the Helan Mountains (2.8 × 104 ha), Luo Mountains (6.4 × 103 ha), and Liupan Mountains (5.14 × 104 ha) (Figure 1). The Helan Mountains are located in the north of the Ningxia Autonomous Region at a junction of temperate grassland and desert and have primarily coniferous forest vegetation (1900–3000 m). The average temperature is 22 °C in summer and −10 °C in winter, with an annual precipitation of about 430 mm. Picea crassifolia, Pinus tabuliformis, and Populus davidiana are the major constructive species of the forest in the Helan Mountains, with the cinnamon soil type [24]. The Luo Mountains are an ecological barrier and water conservation area located in the central arid region of the Ningxia Autonomous Region. The average temperature is 21 °C in summer and −7 °C in winter, with an annual precipitation of about 296 mm. The dominant vegetation type is constructive species, such as Picea crassifolia and Pinus tabuliformis, with the sierozem soil type [25]. The Liupan Mountains are located in the southern part of the Ningxia Autonomous Region and provide a unique natural defense for the Loess Plateau. The average temperature is 18 °C in summer and −7 °C in winter, with an annual precipitation of about 676 mm. The Liupan Mountains are covered by temperate coniferous forests comprising coniferous species, such as Larix principis-rupprechtii and Pinus sylvestris var. mongolica, and secondary deciduous broad-leaved mixed forests with species such as Quercus wutaishanica, Betula platyphlla, and Populus davidiana, with the grey–cinnamon soil type [26].
Based on forest topography, vegetation type, and transport accessibility, macrofungal specimens were collected from 14 sample plots (Table 1). Four sample plots were in the Helan Mountains (Yingtao Valley, Tu Er Keng, Tou Dao Song, and Da Shui Gou), four were in the Luo Mountains (Da Luo Shan, Xiao Luo Shan, Lu Hua Tai Gou, and Hao Han Feng), and six were in the Liupan Mountains (Wang Hua Nan, Da Dao Gou, Xiao Dao Gou, Xiao Nan Chuan, Ye He Gu, and the botanical garden).

2.2. Collection of Macrofungal Specimens

All basidiocarps and ascocarps from each sample plot were collected following a random stepping method. From 2018 to 2023, collections were conducted once a month at all sample plots from June to September, with each collection lasting for one day for plots with a size of less than 4.0 × 104 m2 and two days for each bigger plot. Images of the basidiocarps and ascocarps were captured immediately after collection, and the sampling site and the integral details, including the pileus and hymenium of these freshly collected basidiocarps and ascocarps, were recorded (Figure 2). The basidiocarps and ascocarps were then dried in an oven at 55 °C and stored at 10–15 °C in a specimen bag.

2.3. Morphological Analysis

All collected specimens were deposited in the herbarium of North Minzu University (NMU). The macro-morphological details of the basidiocarps and ascocarps, including the color, shape, size, and appendages in the surfaces of the cap, stipe, and hymenium (lamellated, poroid, hydnoid, and corticioid), were analyzed and recorded based on the field notes (Figure 2). Similarly, the micro-morphological details of the epidermis, hymenium, spores, and mycelia were observed in a 5% KOH solution in dry specimens using a Nikon E400 biological microscope [27,28,29]. The morphological identification process was mostly based on significant references [30,31,32,33,34,35,36,37,38,39]. The identified species names were verified in the Index Fungorum (www.indexfungorum.org) or MycoBank (www.mycobank.org) accessed on 10 November 2024 to ensure the accuracy of the species names.

2.4. Molecular Analysis

When we were unable to identify species using morphological approaches, molecular analysis was used to assist in their identification. The total DNA was isolated from the macrofungal dried specimens using a rapid fungal genomic DNA isolation kit (Sangon Biotech Co., Ltd., Shanghai, China). Polymerase chain reaction (PCR) was performed with the obtained DNA and the ITS1F [40] and ITS4 [41] primers according to the method by Liu et al. (2023) [42] to amplify the fungal internal transcribed spacer (ITS). The amplicons were sequenced at Sangon Biotech Co., Ltd. (Shanghai, China). The ITS sequences were assembled and quality-checked using Contig Express (v3.0.0) software and then submitted to the NCBI or UNITE databases for BLAST. High-homology sequences were selected, and then multi-sequence alignment construction was performed using BioEdit (7.2.5) and MAFFT-7.505 (https://mafft.cbrc.jp/alignment/software) software. A phylogenetic tree was constructed using the maximum likelihood method (ML) with RAxML (Windows Executables v8.2.10) software, and it was processed using FigTree (v1.4.0) software. Finally, species identification was conducted based on the morphological characteristics of the specimens and the sequence alignment results [43].

2.5. Analysis of Species Composition

The species were counted and sorted based on family and genus. Families with ≥10 species and genera with ≥5 species were identified as dominant [44].
The Jaccard similarity index (Jsim) was calculated using the following equation to assess the differences in the macrofungal species compositions among the Helan, Luo, and Liupan Mountains [45]:
Jsim = c/(a + b − c) × 100%, where Jsim is the Jaccard similarity index, a and b are the numbers of species in sample plots 1 and 2, and c is the number of species shared among plots 1 and 2. A higher Jaccard similarity index means greater fungal similarity and closer fungal relationships among the forests.
Based on published data, the identified macrofungal species were categorized as edible, medicinal, edible–medicinal, or poisonous [14]. Similarly, based on the published details on the trophic type, the macrofungi were grouped as saprophytic, symbiotic, or parasitic [30].

2.6. Analysis of Funga

Funga are related to fungal flora. This study defined the funga based on previous data [46,47,48,49].

3. Results

3.1. Macrofungal Composition in the Forests of the Ningxia Autonomous Region

We collected 3130 macrofungal specimens, including 1236 from the Helan Mountains, 329 from the Luo Mountains, and 1565 from the Liupan Mountains. The number of specimens corresponded to the size of the forest in each mountain. From these specimens, 468 species were identified, of which 119 species were identified by molecular method, belonging to 157 genera, 72 families, 18 orders, 11 classes, and 2 phyla (Table 2). Among them, 31 species belonging to 7 genera, 11 families, 6 orders, and 4 classes were ascomycetes, and 437 species belonging to 150 genera, 61 families, 12 orders, and 7 classes were basidiomycetes (Table 2). These initial observations indicated an abundance of macrofungi in the forests of the Ningxia Autonomous Region. Specifically, basidiomycetes dominated these forests (Table 2).

3.2. Dominant Macrofungal Families and Genera in the Forests of the Ningxia Autonomous Region

3.2.1. Dominant Families

In-depth analysis revealed divergence in the dominant families among the forests of the Ningxia Autonomous Region (Table 3). The Liupan Mountains had nine dominant families, in which Tricholomataceae was the most species-rich one, with 29 species of 10 genera (11.46%), followed by Strophariaceae, with 22 species of 5 genera (8.7%), and Psathyrellaceae, with 18 species of 5 genera (7.11%). Similarly, four families dominated the forests of the Helan Mountains, where Tricholomataceae was the most species-rich, with 55 species of 16 genera (23.31%). However, only two families dominated the Luo Mountains (Tricholomataceae and Inocybaceae, with 12 species each).
Combining the observations from all the regions, 12 families (≥10) encompassing 330 species of 86 genera (70.51% of the total species) were found to be dominant in the forests of the Ningxia Autonomous Region. The most species-rich family was Tricholomataceae (96 species in 22 genera; 20.51% of the total species), which was followed by Polyporaceae (41 species; 8.7%) and Agaricaceae (36 species; 7.69%) (Figure 3).

3.2.2. Dominant Genera

The dominant genera also differed among the forests of the Ningxia Autonomous Region (Table 4). A total of 18 dominant genera with 119 species (44.24%) were identified in the Liupan Mountains, in which the most species-rich genus was Mycena (13 species; 5.14%), followed by Inocybe (11 species; 4.35%) and Helvella (8 species; 3.16%). Meanwhile, 11 genera with 100 species (42.37%) dominated in the Helan Mountains, in which the most species-rich genus was Cortinarius (16 species; 6.8%), followed by Clitocybe (14 species; 5.93%) and Tricholoma (12 species; 5.08%) and Agaricus (12 species; 5.1%). Inocybe, including 12 species (14.63%), was the only dominant genus in the Luo Mountains.
Combining the data from all regions analyzed in this study, 27 genera with 298 species were identified as the dominant ones in the Ningxia macrofungi; these species accounted for 63.68% of the total species (Figure 4). The most species-rich genus was Inocybe, with 29 species (6.2% of the total species), followed by Cortinarius, with 24 species (5.13%).

3.3. Species Similarity Among the Forests of the Ningxia Autonomous Region

The forest macrofungal species of the Helan Mountains, Luo Mountains, and Liupan Mountains were compared based on the Jaccard similarity index to assess their differences in composition. The Jaccard similarity index was the highest (16.15%) between the Helan and Liupan Mountains, with the maximum shared species and the highest similarity in species composition. Meanwhile, the index was the lowest (7.72%) between the Liupan and Luo Mountains, with the fewest shared species and the lowest similarity in species composition (Table 5).

3.4. Classification of Macrofungi Based on Function and Trophic Type in the Forests of the Ningxia Autonomous Region

Analysis of the macrofungal species identified in the Ningxia Autonomous Region revealed that 207 species of 10 genera, 8 families, 3 orders, and 2 classes possessed potential values; these species were primarily edible and medicinal mushrooms. The analysis identified 173 edible species (36.97% of total species), 70 medicinal species (14.96%), and 36 edible–medicinal species (7.69%) (Table 6). In addition, 54 poisonous species were also identified from the forests of the Ningxia Autonomous Region (11.54%).
Further grouping based on the trophic type revealed that the Ningxia Autonomous Region had mostly saprophytic macrofungi, with 333 species (71.15% of the total species), symbiotic fungi (133 species; 28.42%), and parasitic fungi (2 species; Cordyceps sp. and Cordyceps ningxiaensis) (Table 6). Among the 253 species distributed in the Liupan Mountains, 191 were saprophytic (75.49%), 60 were symbiotic (23.72%), and 2 were parasitic (0.8%). Among the 236 species of the Helan Mountains, 183 were saprophytic (77.54%), and 53 were symbiotic (22.46%). Among the 82 species of the Luo Mountains, 52 were saprophytic (63.41%), and 30 were symbiotic (36.59%).

3.5. Analysis of the Funga of the Forests of the Ningxia Autonomous Region

3.5.1. Families in the Funga

Finally, analysis of the geographical distribution pattern showed that macrofungi with cosmopolitan distribution dominated the forests of the Ningxia Autonomous Region (77.78% of total families) (Figure 5). Cudoniaceae, Lyophyllaceae, Hygrophoraceae, Helvellaceae, Tuberaceae, Sarcosomataceae, Exidiaceae, Fistulinaceae, Bolbitiaceae, Coniophoraceae, and Thelephoraceae families exhibited north-temperate distribution (15.28%), while Strobilomycetaceae, Entolomataceae, Marasmiaceae, and Ganodermataceae displayed tropical–subtropical distribution (5.56%). Radulomycetaceae is named undetermined distribution, refers to family with no explicit published data about distribution patterns. No macrofungi with endemic distribution were detected in forests of the Ningxia Autonomous Region.

3.5.2. Genera in Funga

Meanwhile, four geographical distribution patterns were defined for the various genera in this region: cosmopolitan, north-temperate, pan-tropical, and Mediterranean–Western Asian to Central Asian distribution (Figure 6).
(1)
Cosmopolitan (D1)
Cosmopolitan indicates that the genera are distributed across all the world. A total of 78 genera of the Ningxia macrofungi (49.4% of total genera), including Mycena, Lepista, Psathyrella, Agaricus, Russula, Gymnopus, Polyporus, Stropharia, Melanoleuca, Amanita, Clitocybe, Pluteus, Fomitopsis, Lepiota, Daedaleopsis, Oxyporus, Armillaria, Trametes, Calvatia, Clavariadelphus, Cordyceps, Daldinia, Heterobasidion, Lycoperdon, Tremella, Xylaria, Fomitiporia, and Fuscoporia showed cosmopolitan distribution.
(2)
North-temperate (D2)
North-temperate indicates that the genera are widely distributed in the northern hemisphere’s temperate regions (Eurasia Continent and North America). Here, 64 genera (39.76% of total genera), including Inocybe, Helvella, Lactarius, Hebeloma, Gomphidius, Cortinarius, Tricholoma, Agrocybe, Clavulina, Ramaria, Suillellus, Hygrophorus, Pseudoclitocybe, Leccinum, Diplomitoporus, Clitopaxillus, Cudonia, Calocybe, Geastrum, Humaria, Anellaria, Limacella, Nigroboletus, Rhizopogon, Xerocomus, Pseudoclitopilus, Exidia, and Phellinus showed north-temperate distribution.
(3)
Pan-tropical (D3)
Pan-tropical indicates that the genera are distributed in the tropics of the eastern and western hemispheres, extending to the subtropical to temperate regions but still centered around the tropics. Only Entoloma, Marasmius, Ganoderma, and Xylodon (four genera; 2.41% of total genera) showed pan-tropical distribution in Ningxia Autonomous Region.
(4)
Mediterranean–Western Asian to Central Asian (D4)
Mediterranean–Western Asian to Central Asian indicates that the genera are distributed around the Mediterranean region, passing through West Asia–Southwest Asia–Xinjiang–Qinghai Tibet Plateau and the Mongolian Plateau. Among the various macrofungi, only Skeletocutis showed this distribution pattern (1.2% of total genera) in the Ningxia forest.
The final group, named undetermined distribution, refers to genera with no explicit published data about distribution patterns. In the forests of the Ningxia Autonomous Region, Hypholoma, Postia, Spodocybe, Stereopsis, Tephrocybe, Echinoderma, Tomentella, Skvortzovia, Vuilleminia, and Rugosomyces were grouped into this category.

4. Discussion

The current comprehensive study revealed a high macrofungal diversity in the forests of the Ningxia Autonomous Region. We identified 468 species from 157 genera, 72 families, 18 orders, 11 classes, and 2 phyla in the Ningxia forests. We found that the Basidiomycota phylum (437 species) dominated the Ningxia macrofungi, which is consistent with previous reports on the dominant phylum in forests [50].
Many studies on the diversity of macrofungi have been carried out in different regions of China [51,52,53,54,55,56,57]. A total of 345 species were identified in the Taihang Mountains of North China, belonging to 138 genera, 64 families, and 2 phyla [51]. Among them, 11 families, including Cortinariaceae, Russulaceae, Polyporaceae, Inocybaceae, Agaricaceae, and Mycenaceae, were the most species-rich; 16 genera, including Cortinarius, Inocybe, Russula, Hebeloma, Agaricus, and Mycena were the most species-rich. A total of 392 species were identified in the Fuyan Nature Reserve of Guizhou province, belonging to 152 genera, 70 families, and 2 phyla [52]. Among them, 11 families, including Russulaceae, Polyporaceae, Omphalotaceae, and Mycenaceae, were the most species-rich; 18 genera, including Russula, Inocybe, Agaricus, Cortinarius, Lactarius, and Mycena, were the most species-rich. Differences in temperature, humidity, and soil conditions in different regions lead to distinctions in macrofungal species composition. However, the results of present and previous studies show that Russulaceae, Polyporaceae, Mycenaceae, Inocybe, Cortinarius, Mycena, Russula, and Agaricus are consistently dominant groups in the forests of different regions of China.
The most species-rich genus in the Ningxia forests was Inocybe. The Inocybe genus is found to be distributed worldwide and includes diverse species. Additionally, all species of the Inocybe genus are ectomycorrhizal fungi that form ectomycorrhizal relationships with various plants, providing them with stronger environmental adaptability [58]. Generally, in an ecosystem, species of the dominant genera play key functions, such as nutrient circulation and energy flow [59]. Therefore, as the dominant genus, Inocybe probably plays a crucial role in maintaining the ecosystem stability of forests in the Ningxia Autonomous Region.
This study found significant differences in the macrofungal communities among the different forests of Ningxia. Macrofungi are heterotrophic organisms and, therefore, cannot establish self-sustaining communities; they highly depend on their habitat to survive [60]. Previous studies indicated the significant influence of plant composition on the macrofungal diversity of forests [61]. Plant composition is related to litter composition and soil quality, with great impact on the macrofungal diversity of forests [62]. However, more results have shown that ecological factors, such as vegetation, soil, climate, terrain, rainfall, soil moisture, and air temperature, also substantially impact the structure and diversity of macrofungal communities [63,64,65]. In this study, despite divergences in the macrofungal community, the Helan and Liupan Mountains shared the most macrofungal species and had the highest similarity in species, while the Luo and Liupan Mountains shared the least macrofungal species and displayed the lowest similarity in species. The Helan and Luo Mountains have almost the same plant composition but fewer shared macrofungal species. On the other hand, the Helan and Liupan Mountains, with differences in plant composition, exhibited more shared macrofungal species and the highest similarity. These observations confirm the impact of ecological factors on the structure of macrofungal species.
Furthermore, this study defined 206 species of Ningxia macrofungi as edible and/or medicinal, accounting for 44.02% of the macrofungi in the Ningxia forest. Among these, the greatest number of edible species belonged to the Agaricus genus. Additionally, the Agaricus members were identified as saprophytic species with substantial potential to be domesticated. Another 12 edible species were of the Cortinarius genus, which forms ectomycorrhizal relationships with Picea crassifolia. The Cortinarius spp. are famous for their distinct flavor and abundant nutrition [66]. Despite little possibility of being domesticated, the high yield of edible mushrooms of the Cortinarius genus suggests its utilization to improve the incomes of local people. Thus, the present study unveils the considerable potential of the wild edible and medicinal macrofungi of the Ningxia Autonomous Region.
Analyzing the funga of a region helps explore the origin, evolution, and spatiotemporal distribution patterns of fungi [49,67]. A previous study on the funga of the Helan Mountain revealed an obvious north-temperate distribution [68]. The present study found a distinct cosmopolitan distribution (77.78%) for the macrofungi at the family level in the Ningxia forest. In addition, a few macrofungi exhibited north-temperate distribution (15.28%) and tropical–subtropical distribution (5.56%). Meanwhile, the macrofungi at the genus level showed a distinct cosmopolitan distribution (49.4%) and north-temperate distribution (39.76%), with a little pan-tropical (2.41%) and Mediterranean–Western Asian to Central Asian distribution (1.2%). These observations suggest that the macrofungi in the Ningxia forests exhibit distinct cosmopolitan and north-temperate distribution, with a slight transition from pan-tropical to north-temperate. These preliminary data based on regional works provide a solid foundation for detailed research on the funga of the Ningxia forests.
The importance of macrofungal diversity of forests is often undervalued. Forest macrofungi are significant products with immense value for their ecological and economic roles. This study on the diversity of macrofungi provides data for understanding the macrofungal communities of forests [69]. The identification and analysis of the diversity of macrofungi deserve further attention to preserve bioresources and understand the ecological cycle of forests.

Author Contributions

Sampling, X.D., M.L. and X.Y.; Collection, X.D., M.L., Y.D., X.Z. and Y.Y.; Identification, X.D., Y.D. and Y.Y.; Data curation, X.D., M.L. and Y.Y.; Writing original draft, X.D.; Conceptualizing the study, Z.W.; Funding acquisition, X.D., Z.W. and Y.Y.; Visualization, Z.W.; Writing review and editing, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Natural Science Foundation of Ningxia Hui Autonomous Region (2021AAC03202), the Key Research and Development Program Project of Ningxia Hui Autonomous Region (2022BBF03028), National Natural Science Foundation of China (32370013), Major Projects of Science and Technology in Anhui Province (202203a06020009), and Young Elite Scientists Sponsorship Program by CAST (2023QNRC001).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

All collected specimens in this study have been deposited in the herbarium of North Minzu University (NMU), Yinchun, Ningxia.

Acknowledgments

The authors are very grateful to Lihua Sun for offering parts of the macrofungal specimens of Helan Mountain.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Hawksworth, D.L.; Lucking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef] [PubMed]
  2. Mueller, G.M.; Schmit, J.P.; Leacock, P.R.; Buyck, B.; Cifuentes, J.; Desjardin, D.E.; Halling, R.E.; Hjortstam, K.; Iturriaga, T.; Larsson, K.H. Global diversity and distribution of macrofungi. Biodivers. Conserv. 2019, 16, 37–48. [Google Scholar] [CrossRef]
  3. Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
  4. Yakop, F.; Taha, H.; Shivanand, P. Isolation of fungi from various habitats and their possible bioremediation. Curr. Sci. 2019, 116, 733–740. [Google Scholar] [CrossRef]
  5. Dai, Y.C.; Yang, Z.L.; Cui, B.K.; Wu, G.; Yuan, H.S.; Zhou, L.W.; He, S.H.; Ge, Z.W.; Wu, F.; Wei, Y.L.; et al. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 2021, 40, 770–805. [Google Scholar] [CrossRef]
  6. Andlar, M.; Rezic, T.; MarCetko, N.; Kracher, D.; Ludwig, R.; Santek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
  7. Yuan, Y.; Bian, L.S.; Wu, Y.D.; Chen, J.J.; Wu, F.; Liu, H.G.; Zeng, G.Y.; Dai, Y.C. Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycology 2023, 14, 204–226. [Google Scholar] [CrossRef]
  8. Stuart, E.K.; Plett, K.L. Digging deeper: In search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 2020, 10, 1658. [Google Scholar] [CrossRef]
  9. Niego, A.G.T.; Rapior, S.; Thongklang, N.; Raspé, O.; Hyde, K.D.; Mortimer, P. Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biol. Rev. 2023, 44, 100294. [Google Scholar] [CrossRef]
  10. Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, eaba1223. [Google Scholar] [CrossRef]
  11. Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
  12. Adamo, I.; Dashevskaya, S.; Alday, J.G. Fungal perspective of Pine and Oak colonization in Mediterranean degraded ecosystems. Forests 2022, 13, 88. [Google Scholar] [CrossRef]
  13. Li, H.; Tian, Y.; Menolli, N.; Ye, L.; Karunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, M.H.; Phengsintham, P.; Rizal, L.; et al. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
  14. Wu, F.; Zhou, L.W.; Yang, Z.L.; Bau, T.; Li, T.H.; Dai, Y.C. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 2019, 98, 1–76. [Google Scholar] [CrossRef]
  15. Saha, T.K.; Rahman, T.; Moniruzzaman, M.; Min, T.S.; Hossain, Z. Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Sci. Rep. 2023, 13, 14652. [Google Scholar] [CrossRef] [PubMed]
  16. Li, Y. The status, opportunities and challenges of edible fungi industry in China: Develop with Chinese characteristic, realize the dream of powerful mushroom industrial country. J. Fungal Res. 2018, 16, 125–131. [Google Scholar] [CrossRef]
  17. Govigli, V.M.; Gorriz-Mifsud, E.; Varela, E. Zonal travel cost approaches to assess recreational wild mushroom picking value: Trade-offs between online and onsite data collection strategies. For. Policy Econ. 2019, 102, 51–65. [Google Scholar] [CrossRef]
  18. Schulp, C.J.E.; Thuiller, W.; Verburg, P.H. Wild food in Europe: A synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecol. Econ. 2014, 105, 292–305. [Google Scholar] [CrossRef]
  19. Li, C.; Xu, S. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 3949–3955. [Google Scholar] [CrossRef]
  20. Deng, X.J.; Liu, P.G.; Chen, J.; Liu, J.L.; Amat, R.; Yan, X.F. Distribution of Tuber in Liupan Mountain and its ecological significance. J. Biol. 2023, 40, 45–50. [Google Scholar] [CrossRef]
  21. Li, X.W.; Li, T.; Zhu, X.T. Atlas of Bryophytes and Macrofungi in Luoshan, Ningxia; Sun Press: Yinchuan, China, 2019; pp. 267–356. [Google Scholar]
  22. Li, M.Q.; Yan, X.F.; Ren, Y.F.; Zhou, L.B.; Deng, X.J. A study on diversity of macrofungi in Liupanshan National Nature Reserve, Ningxia. Mycosystema 2023, 40, 770–805. [Google Scholar] [CrossRef]
  23. Song, G.; Song, L.H.; Wang, L.Y. Atlas of Macrofungi in Helan Mountain, Ningxia; Ningxia Children’s Publishing House: Yinchuang, China, 2011; pp. 20–233. [Google Scholar]
  24. Li, Y. Study on Picea crassifolia Dynamics and Regeneration in the Eastern Slope of Helan Mountain. Master’s Thesis, Northwest A&F University, Xian, China, 2013; pp. 1–96. [Google Scholar]
  25. Cao, B.; Wang, Z.P. Comprehensive Scientific Investigation of Luoshan National Nature Reserve in Ningxia; Sun Press: Yinchuan, China, 2019; pp. 3–12. [Google Scholar]
  26. Cheng, J.M. Comprehensive Scientific Investigation of Liupanshan National Nature Reserve, Ningxia; Science Press: Beijing, China, 2013; pp. 3–15. [Google Scholar]
  27. Reschke, K.; Morozova, O.V.; Dima, B.; Cooper, J.A.; Corriol, G.; Biketova, A.Y.; Piepenbring, M.; Noordeloos, M.E. Phylogeny, taxonomy, and character evolution in Entoloma subgenus nolanea. Persoonia 2022, 49, 136–170. [Google Scholar] [CrossRef] [PubMed]
  28. Romano, N.; Lignola, G.P.; Brigante, M.; Bosso, L.; Chirico, G.B. Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol. Eng. 2016, 90, 498–509. [Google Scholar] [CrossRef]
  29. Alsohaili, S.A.; Bani-Hasan, B.M. Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Eastern desert of Jordan. Jordan J. Biol. Sci. 2018, 11, 329–337. [Google Scholar]
  30. Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. Atlas of Chinese Macrofungal Resources; Zhongyuan Farmers Press: Zhengzhou, China, 2015; pp. 25–1300. [Google Scholar]
  31. Feng, B.; Yang, Z.L. Studies on diversity of higher fungi in Yunnan, southwestern China: A review. Plant Divers. 2018, 40, 31–37. [Google Scholar] [CrossRef]
  32. Cui, B.K.; Li, H.J.; Ji, X.; Zhou, J.L.; Song, J.; Si, J.; Yang, Z.L.; Dai, Y.C. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 2019, 97, 137–392. [Google Scholar] [CrossRef]
  33. Wu, F.; Yuan, H.S.; Zhou, L.W.; Yuan, Y.; Cui, B.K.; Dai, Y.C. Polypore diversity in south China. Mycosystema 2020, 39, 653–682. [Google Scholar] [CrossRef]
  34. Bau, T.; Na, Q.; Liu, L.Y. A Monogrph of Mycenaceae (Agaricales) in China; Science Press: Beijing, China, 2021; pp. 20–163. [Google Scholar]
  35. Cui, Y.Y.; Ding, X.X.; Kost, G.; Yang, Z.L. Tricholoma sect. Tricholoma (Tricholomataceae) from China: Molecular phylogeny and taxonomy. Mycol. Prog. 2022, 21, 35. [Google Scholar] [CrossRef]
  36. Liimatainen, K.; Kim, J.T.; Pokorny, L.; Kirk, P.M.; Dentinger, B.; Niskanen, T. Taming the beast: A revised classification of Cortinariaceae based on genomic data. Fungal Divers. 2022, 112, 89–170. [Google Scholar] [CrossRef]
  37. Qi, Y.; Xu, A.; Zhou, Y.; Qin, W.Q.; Guo, H.B.; Yu, X.D. Morphological and Phylogenetic Studies of Three New Species of Calocybe (Agaricales, Basidiomycota) from China. Diversity 2022, 14, 643. [Google Scholar] [CrossRef]
  38. Xie, M.L.; Phukhamsakda, C.; Wei, T.Z.; Li, J.P.; Wang, K.; Wang, Y.; Ji, R.Q.; Li, Y. Morphological and phylogenetic evidence reveal five new telamonioid species of Cortinarius (Agaricales) from East Asia. J. Fungi 2022, 8, 257. [Google Scholar] [CrossRef] [PubMed]
  39. Tie, L.; Lang, Z.; Deng, L.; Zhao, J.Q. Studies on macrofungi diversity and discovery of new species of Abortiporus from Baotianman World Biosphere Reserve. Open Life Sci. 2023, 18, 20220614. [Google Scholar] [CrossRef] [PubMed]
  40. Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
  41. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
  42. Liu, S.; Chen, Y.Y.; Sun, Y.F.; He, X.L.; Song, C.G.; Si, J.; Liu, D.M.; Gates, G.; Cui, B.K. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Divers. 2023, 118, 1–94. [Google Scholar] [CrossRef]
  43. Vidal, J.M.; Cseh, P.; Merényi, Z.; Bóna, L.; Rudnóy, S.; Bratek, Z.; Paz, A.; Mleczko, P.; Kozak, M.; Chachula, P.; et al. The genus Gautieria (Gomphales) in Europe and the Mediterranean Basin: A morphological and phylogenetic taxonomic revision. Persoonia 2023, 50, 48–122. [Google Scholar] [CrossRef]
  44. Bau, T.; Li, Y. Study on fungal flora diversity in Daqinggou Nature Reserve. Chin. Biodivers. 2000, 8, 73–80. [Google Scholar] [CrossRef]
  45. Gryta, A.; Frąc, M. Methodological aspects of multiplex terminal restriction fragment length polymorphism-technique to describe the genetic diversity of soil bacteria, archaea and fungi. Sensors 2020, 20, 3292. [Google Scholar] [CrossRef]
  46. Kuhar, F.; Furci, G.; Drechsler-Santos, E.R. Delimitation of Funga as a valid term for the diversity of fungal communities: The Fauna, Flora & Funga proposal (FF&F). IMA Fungus 2018, 9, 71–74. [Google Scholar] [CrossRef]
  47. Sun, B.Y.; Wu, Y.D.; Yuan, Y. Species diversity and floral characteristics of wood-inhabiting macrofungi growing on Quercus mongolica in Northeast China. Mycosystema 2022, 42, 278–289. [Google Scholar] [CrossRef]
  48. Yang, Y.; Zhao, L.; Chen, Y.L.; Lin, Y.L.; Zhang, L.P.; Luan, F.G.; Wu, P.; Huo, G.H.; Yan, J.Q. Diversity and flora of macrofungi in the Fuheyuan Nature Reserve in Jiangxi Province. J. Northwest For. Univ. 2022, 37, 164–169. [Google Scholar] [CrossRef]
  49. Zhao, H.; Wu, Y.D.; Yang, Z.R.; Liu, H.G.; Wu, F.; Dai, Y.C.; Yuan, Y. Polypore funga and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. For. Ecosyst. 2024, 11, 100200. [Google Scholar] [CrossRef]
  50. Izati, N.; Sugiyarto; Purwoko, T. Diversity and distribution of macrofungi in pine forest and mixed forest in Mount Merbabu National Park. In Proceedings of the International Conference on Forest Products (ICFP) 2020: 12th International Symposium of IWORS, Bogor, Indonesia, 1 September 2020; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 935, p. 012030. [Google Scholar] [CrossRef]
  51. Wang, K.; Du, Z.; Guo, Y.B.; Liu, T.Z.; Xie, M.L.; Zhao, M.J.; Liu, D.M.; Li, G.J.; Wei, T.Z. Diversity of macrofungi in Taihang Mountains of Beijing and Hebei, North China. Mycosystema 2024, 43, 230311. [Google Scholar] [CrossRef]
  52. Yang, Y.S.; Wang, W.K.; Deng, C.Y.; Han, Y.F. Diversity of Macrofungi in Guizhou Fuyan Nature Reserve. Mycosystema 2024. [Google Scholar] [CrossRef]
  53. Zheng, H.F.; Shao, Y.Y.; Huang, H.S.; Wei, Q.L.; Huang, F.C.; Liu, B. Macrofungal diversity of White-headed Langurs Nature Reserve in Chongzuo, Guangxi, South China. Mycosystema 2024, 43, 240043. [Google Scholar] [CrossRef]
  54. Zhang, M.X.; Wang, Z.B.; Zhang, X.; Xi, Y.Q. Macrofungi resources and ecological distribution in Baishuijiang National Nature Reserve in Gansu province. J. Arid Land Res. Environ. 2019, 33, 152–156. [Google Scholar] [CrossRef]
  55. Hu, Y.Q.; Li, L.Y.; Liu, X.Z.; Lang, N.; Qi, L.L.; Li, Y. Diversity of macrofungi in the karst area of Sino-Vietnam border in Guangxi, South China. Mycosystema 2024, 43, 240106. [Google Scholar] [CrossRef]
  56. Wang, J.; Liu, D.M.; Zhang, J.; Wang, M.; Deng, C.Y.; Wen, T.C. 2024. Macrofungal diversity and its characteristics in the western priority area of Wuling Mountains. Mycosystema 2024, 43, 230262. [Google Scholar] [CrossRef]
  57. Guo, T.; Yang, R.H.; Tang, M.X.; Hou, D.; Sun, X.L.; Wang, L.; Li, Y.; Bao, D.P.; Zhou, X.W. Species diversity of macrofungi in the Mount Huangshan, East China. Mycosystema 2022, 41, 1398–1415. [Google Scholar] [CrossRef]
  58. Fan, Y.G. Taxonomy and Molecular Phylogeny of Inocybe; Jilin Agricultural University: Changchun, China, 2014; pp. 2–3. [Google Scholar]
  59. Jia, Y.Y.; Qin, W.H.; Zhang, T. Progress on mechanisms underlying arbuscular mycorrhizal fungi maintaining desert ecosystem stability under climate change. Sci. Bull. 2023, 68, 3172–3184. [Google Scholar] [CrossRef]
  60. Bahram, M.; Põlme, S.; Kõljalg, U.; Zarre, S.; Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 2012, 193, 465–473. [Google Scholar] [CrossRef]
  61. Copot, O.; Tănase, C. Substrate properties, forest structure and climate influences wood-inhabiting fungal diversity in broadleaved and mixed forests from Northeastern Romania. For. Syst. 2020, 29, 3. [Google Scholar] [CrossRef]
  62. Kooch, Y.; Sanji, R.; Tabari, M. The effect of vegetation change in C and N contents in litter and soil organic fractions of a northern Iran temperate forest. Catena 2019, 178, 32–39. [Google Scholar] [CrossRef]
  63. Tuo, Y.L.; Rong, N.; Hu, J.J.; Zhao, G.P.; Wang, Y.; Zhang, Z.H.; Qi, Z.X.; Li, Y.; Zhang, B. Exploring the relationships between macrofungi diversity and major environmental factors in Wunvfeng National Forest Park in northeast China. J. Fungi 2022, 8, 98. [Google Scholar] [CrossRef] [PubMed]
  64. Hu, J.J.; Zhao, G.P.; Tuo, Y.L.; Qi, Z.X.; Yue, L.; Zhang, B.; Li, Y. Ecological factors influencing the occurrence of macrofungi from eastern mountainous areas to the central plains of Jilin province, China. J. Fungi 2022, 8, 871. [Google Scholar] [CrossRef]
  65. Rakić, M.; Marković, M.; Galić, Z.; Galovic, V.; Karaman, M. Diversity and distribution of macrofungi in protected mountain forest habitats in Serbia and its relation to abiotic factors. J. Fungi 2022, 8, 1074. [Google Scholar] [CrossRef]
  66. Liu, Z.J.; Ma, Q. Effect of Cortinarius rufoolivaceus polysaccharide combined with 5-fu on antioxidase system in H22 tumor bearing mouse. Ningxia Med. J. 2015, 37, 193–196. [Google Scholar] [CrossRef]
  67. Kujawska, M.B.; Rudawska, M.; Wilgan, R.; Leski, T. Similarities and differences among soil fungal assemblages in managed forests and formerly managed forest reserves. Forests 2021, 12, 353. [Google Scholar] [CrossRef]
  68. Sun, L.H.; Song, G.; Wang, L.Y.; Yun, X.F. Geographical components of macrofungal flora in Helan Mountain, Ningxia. J. Arid Land Resour. Environ. 2013, 27, 186–190. [Google Scholar] [CrossRef]
  69. Bazzicalupo, A.; Goncalves, S.C.; Hebert, R.; Jakob, S.; Justo, A.; Kernaghan, G.; Lebeuf, R.; Malloch, B.; Thorn, R.G.; Walker, A.K. Macrofungal conservation in Canada and target species for assessment: A starting point. Facets 2022, 7, 448–463. [Google Scholar] [CrossRef]
Figure 1. The location of the Ningxia Province in China (a) and forest distribution in Ningxia Province (d). (b) Colors indicate the altitude of different sites in the Ningxia Province. (c) Geographic scale.
Figure 1. The location of the Ningxia Province in China (a) and forest distribution in Ningxia Province (d). (b) Colors indicate the altitude of different sites in the Ningxia Province. (c) Geographic scale.
Diversity 16 00725 g001
Figure 2. An example of the field records of a collected specimen.
Figure 2. An example of the field records of a collected specimen.
Diversity 16 00725 g002
Figure 3. Dominant macrofungal families (≥10 species) in the forests of the Ningxia Autonomous Region.
Figure 3. Dominant macrofungal families (≥10 species) in the forests of the Ningxia Autonomous Region.
Diversity 16 00725 g003
Figure 4. Dominant macrofungal genera (≥5 species) in the forests of the Ningxia Autonomous Region. The ordinate shows the dominant genera, and the abscissa indicates the number of species in each genus.
Figure 4. Dominant macrofungal genera (≥5 species) in the forests of the Ningxia Autonomous Region. The ordinate shows the dominant genera, and the abscissa indicates the number of species in each genus.
Diversity 16 00725 g004
Figure 5. Proportion of geographical distribution patterns of macrofungal families in the forests of the Ningxia Autonomous Region.
Figure 5. Proportion of geographical distribution patterns of macrofungal families in the forests of the Ningxia Autonomous Region.
Diversity 16 00725 g005
Figure 6. Proportion of geographical distribution patterns of macrofungal genera in the forests of the Ningxia Autonomous Region.
Figure 6. Proportion of geographical distribution patterns of macrofungal genera in the forests of the Ningxia Autonomous Region.
Diversity 16 00725 g006
Table 1. Information of sample plots.
Table 1. Information of sample plots.
ForestSample PlotLocationElevation (m)Size (m2)Vegetation
Helan MountainYingtao valleyE 105°54′37″
N 38°44′7″
22105.6 × 104Mixed forest of Picea crassifolia and Pinus tabuliformis
Tu Er KengE 105°54′32″
N 38°44′08″
22103.2 × 104Mixed forest of Picea crassifolia and Populus davidiana
Tou Dao SongE 105°54′33″
N 38°43′39″
26306.5 × 104Mixed forest of Picea crassifolia and Populus davidiana
Da Shui GouE 105°54′28″
N 38°43′26″
26604.1 × 104Forest of Picea crassifolia
Luo MountainDa Luo ShanE 106°15′21″
N 37°16′39″
18683.8 × 104Forest of Picea crassifolia
Xiao Luo ShanE 106°20′28″
N 37°10′08″
21002.3 × 104Mixed forest of Picea crassifolia and Populus davidiana
Lu Hua Tai GouE 10616′05″
N 37°16′57″
20123.2 × 104Mixed forest of Picea crassifolia and Populus davidiana
Hao Han FengE 106°20′45″
N 3712′35″
24082.7 × 104Mixed forest of Picea crassifolia and Pinus tabuliformis
Liupan MountainWang Hua Nan forestE 106°20′33″
N 35°22′12″
21727.5 × 104Forest of Larix principis-rupprechtii
Da Dao GouE 106°20′22″
N 35°23′22″
19143.3 × 104Forest of Pinus sylvestris var. mongolica
Xiao Dao GouE 106°21′39″
N 35°23′36″
19143.8 × 104Forest of Larix principis-rupprechtii
Xiao Nan ChuanE 106°18′41″
N 35°20′49″
20267.2 × 104Forest of Larix principis-rupprechtii
Ye He GuE 106°13′28″
N 35°30′56″
22766.6 × 104Forest of Larix principis-rupprechtii
Botanical GardenE 106°18′27″
N 35°21′53″
20268.8 × 104Mixed forest of broadleaf trees
Table 2. Composition of macrofungi in the forests of the Ningxia Autonomous Region.
Table 2. Composition of macrofungi in the forests of the Ningxia Autonomous Region.
PhylumClassOrderFamilyGenusSpecies
Ascomycota4611731
Basidiomycota71261150437
Total111872157468
Table 3. Differences in the dominant macrofungal families (≥10 species) among the forests of the Ningxia Autonomous Region.
Table 3. Differences in the dominant macrofungal families (≥10 species) among the forests of the Ningxia Autonomous Region.
Liupan MountainHelan MountainLuo Mountain
GenusSpeciesProportion (%)GenusSpeciesProportion (%)GenusSpeciesProportion (%)
Tricholomataceae102911.46165523.31%61214.63
Strophariaceae5228.70------
Psathyrellaceae5187.11------
Polyporaceae9166.3214187.63---
Agaricaceae5145.538229.32---
Mycenaceae1135.14------
Russulaceae2124.74------
Inocybaceae1114.35---11214.63
Hymenochaetaceae5103.95893.81---
Cortinariaceae---42711.44---
- non-dominant family.
Table 4. Dominant macrofungal genera (≥5 species) among the forests of the Ningxia Autonomous Region.
Table 4. Dominant macrofungal genera (≥5 species) among the forests of the Ningxia Autonomous Region.
GenusLiupan MountainHelan MountainLuo Mountain
SpeciesProportion (%)SpeciesProportion (%)SpeciesProportion (%)
Mycena135.14----
Inocybe114.3562.541214.63
Helvella83.16----
Lactarius72.77----
Lepista72.77----
Hebeloma72.7752.12--
Psathyrella72.77----
Gomphidius62.37----
Russula62.37----
Cortinarius62.37166.78--
Polyporus62.3752.12--
Gymnopus51.98----
Agaricus51.98125.08--
Infundibulicybe51.98----
Hymenogaster51.98----
Hypholoma51.98----
Stropharia51.98----
Entoloma51.98----
Suillus--52.12--
Coprinus--72.97--
Clitocybe--145.93--
Marasmius--62.54--
Tricholoma--125.08--
Geastrum--62.54--
Lycoperdon--62.54--
- non-dominant genus.
Table 5. Species similarity among the forests of Ningxia Autonomous Region (%).
Table 5. Species similarity among the forests of Ningxia Autonomous Region (%).
Liupan MountainHelan MountainLuo Mountain
Liupan Mountain10016.157.72
Helan Mountain16.151008.9
Luo Mountain7.728.9100
Table 6. Macrofungal functions and trophic types in the forests of Ningxia Autonomous Region.
Table 6. Macrofungal functions and trophic types in the forests of Ningxia Autonomous Region.
NumberScientific NameFunctionsTrophic TypesLocalityGenbankHerbarium
EdibleMedicinalPoisonousSaprotrophicSymbioticParasiticLiupan MountainHelan MountainLuo MountainNumberVoucher Number
1Agaricus arvensis Schaeff.** * ** NMU44146
2A. auqustus Fr.* * * NMU43935
3A. bisporus (Large) Sing.** * * PQ613501NMU44147
4A. bitorquis (Quél.) Sacc.* * ** NMU44148
5A. campestris Scop.** * *** NMU44149
6A. comtulus Fr.* * ** NMU44150
7A. devoniensis P.D. Orton* * * NMU44101
8A. fissuratus F.H. Møller* * * NMU43936
9A. griseicephalus Kerrigan-* * PQ613502NMU44151
10A. praerimosus Peck* * * NMU43937
11A. pratensis Pers.* * ** NMU44152
12A. rubellus (Gillet) Sacc.* * ** NMU44153
13A. silvaticus Schaeff.* * *** NMU44154
14A. silvicola (Vitt.) Sacc.* * ** NMU44155
15A. villaticus Brond.* * ** NMU44156
16A. xanthodermus Quèl. ** * PQ613503NMU44157
17Agrocybe dura (Bolt.:Fr.) Sing** * * PQ613504NMU44158
18Ag. erebia (Fr.) Kühner ex Singer** * * PQ613505NMU44159
19Ag. farinacea Hongo* * * NMU43938
20Ag. pediades (Fr.) Fayod** * ** PQ613443NMU44160
21Ag. praecox Pers.** * ***PQ613444NMU44161
22Amanita sinensis Zhu L. Yang** * * NMU44162
23Am. cf. crocea (Quél.) Singer* * * PQ613506NMU44163
24Amylostereum areolatum (Chaillet ex Fr.) Boidin- * ** NMU43939
25Amyloporia xantha (Fr.) Bondartsev and Singer-* * NMU43940
26Amaropostia stiptica (Pers.) B.K. Cui, L.L. Shen and Y.C. Dai-* * NMU43941
27Anellaria sp.-* * NMU44164
28Antrodia aridula Y.C. Dai, H.M. Zhou, Y.D. Wu and Shun Liu-* * NMU43942
29An. subheteromorpha B.K. Cui, Yuan Y. Chen and Shun Liu-* * NMU43943
30Auricularia heimuer F. Wu, B.K. Cui and Y.C. Dai * * * NMU44165
31Armillaria ostoyae (Romagn.) Herink * * NMU44102
32Ar. sp. * * NMU44166
33Arm.albolanaripes G.F. Atk.* * ** NMU44167
34Arm. cepistipes Velen.-* *** NMU44168
35Arm. luteovirens (Alb. and Schwein.) Sacc.* * ** NMU44169
36Arm. mellea (Vahl) P. Kumm.** * ** NMU44170
37Bjerkandera adusta (Willd.) P. Karst. * * * NMU43944
38Bolbitius vitellinus (Pers.) Fr. ** * NMU43945
39Boletinus cavipes (Opat.) Kalchbr.* * * NMU43946
40Byssomerulius corium (Fr.) Parmasto -* * NMU44171
41Calocybe pseudoflammula (J.E. Lange) M. Lange ex Singer -* * PQ613507NMU44172
42Calodon suaveolens (Scop.) P. Karst.-* * NMU43947
43Calvatia candida (Rostk.) Hollos** * ** PQ613445NMU44173
44C. craniiformis (Schwein.) Fr. ex De Toni** * ** NMU44174
45C. gigantea (Batsch) Lloyd* * * NMU44175
46Catathelasma imperiale (P. Karst.) Singer* * * NMU44103
47Ca. ventricosum (Peck) Singer* * * NMU43948
48Cerioporus oblongisporus (Robledo and Rajchenb.) Zmitr.-* * NMU44176
49Ceriporia bresadolae (Bourdot and Galzin) Donk-* * NMU43949
50Ceriporiopsis sp.-* * NMU44177
51Choiromyces helanshanensis Juan Chen and P.G. Liu* * * NMU43950
52Chroogomphus roseolus Yan C. Li and Zhu L. Yang* * * PQ613446NMU44178
53Clavariadelphus pistillaris (Fr.) Donk.* * * PQ613508NMU44179
54Clavicorona pyxidata (Pers.) Doty* * * NMU43951
55Clavulina cinerea (Bull.: Fr.) Schrot.* * * PQ613509NMU44180
56Cl. coralloides (L.) J. Schröt.* * * PQ613510NMU44181
57Cl. rugosa (Bull.: Fr.) Schroet.* * * PQ613447NMU44182
58Clitocybe candicans (Pers.) P. Kumm.* * ** NMU44183
59Cli. catina (Fr.) Quél.* * ** NMU44184
60Cli. cerussata (Fr.) Kummer ** * NMU43952
61Cli. cf. nuda (Bull.) H.E. Bigelow and A.H. Sm.-* * NMU44185
62Cli. dealbata (Sowerby) P. Kumm. ** ** NMU43953
63Cli. expallens (Pers.) P. Kumm.* * * NMU43954
64Cli. fragrans (With.) P. Kumm.-* * NMU44104
65Cli. infundibuliformis (Schaeff.) Quél. * * ** NMU44186
66Cli. irina (Fr.) H.E. Bigelow and A.H. Sm. * * ** NMU44187
67Cli. nebularis (Batsch) P.Kumm. ** ** PQ613511NMU44188
68Cli. odora (Bull.ex Fr.) Kummer-* * NMU44105
69Cli. phyllophila (Pers.: Fr.) Kummer ** ** PQ613448NMU44189
70Cli. robusta Peck* * ** NMU44190
71Cli. splendens (Pers.) Gillet* * ** NMU44191
72Cli. tabescens (Scop.) Bres.** * *** NMU44192
73Clitopaxillus dabazi L. Fan and H. Liu* * * NMU44193
74Clitopilus prunulus (Scop.) P. Kumm.* * * NMU44106
75Collybia acervata (Fr.) P. Kumm.* * * NMU43955
76Co. velutipes (Curtis) P. Kumm.** * * NMU43956
77Coniophora arida (Fr.) P. Karst.-* * NMU43957
78Con. olivacea (Fr.) P. Karst.-* * NMU43958
79Conocybe siliginea (Fr.) Kühner-* * NMU44107
80Coprinellus xanthothrix (Romagn.) Vilgalys Hopple and Jacq. Joh ** * PQ613449NMU44194
81Coprinopsis lagopus (Fr.) Redhead.-* * NMU44195
82Cop. atramentaria Vilgalys and Moncalvo* * ***PQ613451NMU44196
83Coprinus clauatus Fr.* * * NMU44108
84Copr. comatus (Muell.:Fr.) Gray* * *** NMU44197
85Copr. domesticus (Bolton) Vilgalys, Hopple and Jacq.* * ** NMU44198
86Copr. lagopus (Fr.) Fr. * * ** PQ613450NMU44199
87Copr. micaceus (Bull.) Fr.** * ***PQ613452NMU44200
88Copr. sterquilinus Fr.* * * NMU43959
89Cordyceps sp.- ** NMU44201
90Cor. ningxiaensis T.Bau and J.Q.Yan- ** NMU44202
91Corticium sp.-* * NMU44203
92Cortinarius albovilaceus Fr. (Pers.: Fr.)* * * NMU43960
93Cort. armeniacus (Schaeff.) Zawadzki* * * NMU43961
94Cort. bivelus (Fr.) Fr.- * * PQ613512NMU44204
95Cort. bovinus Fr.* * * PQ613453NMU44205
96Cort. caerulescens (Schaeff.) Fr.* * * NMU43962
97Cort. claricolor (Fr.) Fr.* * * NMU43963
98Cort. collinitus (Sowerby) Gray** * * NMU43964
99Cort. cupreorufus Brandrud- * * NMU43965
100Cort. cylindripes Kauffman- * * NMU43966
101Cort. decoloratus (Fr.) Fr.- * * NMU43967
102Cort. diasemospermus Lamoure- * * PQ613513NMU44206
103Cort. Hemitrichus (Pers.) Fr.* * * NMU44109
104Cort. imbutus Fr.- * * PQ613514NMU44207
105Cort. Infractus (Pers.) Fr.- * * NMU43968
106Cort. largus Fr.* * * NMU43969
107Cort. lilacinus Sacc.* * * NMU43970
108Cort. multiformis Fr.* * * NMU43971
109Cort. neoarmillatus Hongo- * * NMU43972
110Cort. pseudopurpurascens Hongo - * * NMU43973
111Cort. rufo-olivaceus (Pers.) Zawadzki* * * NMU43974
112Cort. salor Fr.** * * NMU43975
113Cort. subalboviolaceus Hongo- * * NMU44110
114Cort. subpaleaceus Kytöv., Niskanen and Liimat.- * * PQ613515NMU44208
115Crepidotus applanatus (Pers.) P.Kumm* * ** NMU44209
116Cr. badiofloccosus S. Imai-* ** NMU44210
117Cr. fulvotomentosus (Peck) Peck* * ** NMU44211
118Cr. mollis (Schaeff.) Staude* * * NMU43976
119Cr. subverrucisporus Pilát-* * PQ613454NMU44212
120Crucibulum vulgare Tul.-* * NMU43977
121Cru. laeve (Huds.) Kambly-* * NMU43978
122Cudonia confusa Bres.-* * PQ613455NMU44213
123Cu. lutea (Peck) Sacc. -* * NMU43979
124Cyathus colensoi Berk.-* * NMU43980
125Cy. confusus F.L. Tai and C.S. Hung -* * NMU43981
126Cyanosporus caesiosimulans (G.F. Atk.) B.K. Cui and Shun Liu-* * NMU43982
127Cya. subcaesius (A. David) B.K. Cui, L.L. Shen and Y.C. Dai-* * NMU43983
128Cystoderma cinnabarinum (Alb. and Schwein.) Fayod* * * NMU43984
129Cys. fallax A.H. Sm. and Singer* * * PQ613456NMU44214
130Cystolepiota rosea Singer-* * PQ613516NMU44215
131Cyst. hetieri Breitenbach and Kränzlin-* * PQ613457NMU44216
132Dacrymyces chrysospermus Berk. and M.A. Curtis* * * NMU43985
133Daedalea dickinsii Yasuda * * * NMU44111
134Daedaleopsis cf. confragosa (Bolton) J. Schröt.-* * NMU44217
135D. tricolor (Bull.) Bondartsev and Singer * * * NMU44112
136Daldinia concentrica (Bolton) Ces. and De Not.-* * NMU44218
137Diplomitoporus flavescens (Bort.: Fr.) Schroet.-* ** PQ613458NMU44219
138Discina ancilis (Pers.) Sacc. ** * NMU44113
139Echinoderma asperum (Pers.) Bon-* * NMU43986
140Entoloma hainanense T.H. Li and Xiao L. He-* * PQ613459NMU44220
141E. cf. lepidissimum (Svrcek) Noord-* * PQ613517NMU44221
142E. holmvassdalenense Eidissen, Lorås and Weholt-* * PQ613460NMU44222
143E. pallidocarpum Noordel. and O.V. Morozova-* * PQ613518NMU44223
144E. rhodopolium (Fr.) P. Kumm. ** * NMU44114
145Exidia glandulosa (Bull.) Fr.-* ** NMU44224
146Ex. hinnulea Seavey and J. Seavey * * * NMU43987
147Ex. ningxiaensis Q.M. Wang, F.Y. Bai and A.H. Li-* * NMU44225
148Ex. nivea Lév.-* * NMU43988
149Ex. uvapassa Lloyd-* * NMU44226
150Favolus squamosus (Huds.) A. Ames * * * NMU43989
151F. acervatus (Lloyd) Sotome and T. Hatt.-* * NMU44227
152Fistulina hepatica (Schaeff.) With.* * * NMU43990
153Fomes fomentarius (L.) Fr. * * * NMU44115
154Fomitopsis incarnatus K.M. Kim, J.S. Lee and H.S. Jung-* * NMU44228
155Flammulina sp.-* * NMU44229
156Fomitiporella chinensis (Pilát) Y.C. Dai, X.H. Ji and Vlasák -* * NMU44116
157Fomitiporia norbulingka B.K. Cui and Hong Chen-* * NMU44230
158F. punctata (P. Karst.) Murrill-* * NMU44231
159Fuscoporia sp.-* ** NMU44232
160Fu. ferrea (Pers.) G. Cunn.-* * NMU44233
161Fu. sinica Y.C. Dai, Q. Chen and J. Vlasák-* ** NMU44234
162Galerina marginata (Fr.) kühner ** * PQ613461NMU44235
163Ganoderma applanatum (Pers.) Pat. * * * NMU44117
164Geastrum fimbriatum Fr. * * ** NMU43991
165G. minus (Pers.) G. Cunn. * * * NMU43992
166G. saccatum Fr. * * ** NMU44236
167G. sessile Pouzar * * * NMU43993
168G. triplex Jungh.** * * NMU43994
169G. velutinum Morgan * * * NMU43995
170Geopora arenosa (Fuckel) S. Ahmad-* * NMU44118
171Gloeophyllum sepiarium (Wulfen) P. Karst. * * * NMU44119
172Gloeoporus dichrous (Fr.) Bres.-* ** NMU43996
173Gl. taxicola (Pers.) Gilb. and Ryvarden-* * NMU43997
174Gomphidius glutinosus (Schaeff.) Fr.* * * NMU44120
175Go. maculatus (Scop.) Fr.* * * PQ613462NMU44237
176Guepinia helvelloides (DC.) Fr.** * * NMU44238
177Gymnopilus spectabilis (Weinm.) A.H. Sm. ** * NMU44121
178Gymnopus biformis (Peck) Halling-* * PQ613519NMU44239
179Gy. brassicolens (Romagn.) Antonin and Noordel-* * PQ613463NMU44240
180Gy. confluens (Pers.) Antonín, Halling and Noordel.** * * PQ613464NMU44241
181Gy. dryophilus (Bull.) Murrill ** * PQ613465NMU44242
182Gy. foetidus (Sowerby) J.L. Mata and R.H. Petersen-* * PQ613520NMU4423
183Gy. sp.-* * NMU44244
184Hapalopilus sp.-* * NMU43998
185H. rutilans (Pers.) Murrill-* * NMU43999
186Hebeloma alpinum (J. Favre) Bruchet- * * PQ613521NMU44245
187He. crustuliniforme (Bull.) Quél. * * * NMU44122
188He. dunense L. Corb. and R. Heim- * * PQ613522NMU44246
189He. Mesophaeum (Fries) Quélet- * * NMU44123
190He. nudipes (Fr.) Sacc.- * * NMU44000
191He. pseudofragilipes Beker, Vesterh. and U. Eberh.- * * PQ613466NMU44247
192He. pubescens Beker and U. Eberh.- * * PQ613523NMU44248
193He. quercetorum Quadr.- * * PQ613524NMU44249
194He. sacchariolens Quél. * * * NMU44001
195He. sinapizans (Paulet) Gillet * * * NMU44002
196He. sinuosum (Fr.) Quél.* * ** NMU44250
197He. versipelle (Fr.) Gillet- * ** NMU44251
198Helvella albella Quél.-* * PQ613525NMU44252
199Hel. costifera Nannf.-* * PQ613526NMU44253
200Hel. crispa (scop.) Fr* * * *PQ613467NMU44254
201Hel. elastica Bull.: Fr.* * * PQ613527NMU44255
202Hel. ephippium Lév.* * ** PQ613528NMU44256
203Hel. sp.-* * NMU44257
204Heterobasidion australe Y.C. Dai and Korhonen-* * NMU44258
205Het. insulare (Murrill) Ryvarden-* * NMU44259
206Hirschioporus abietinus (Pers. ex J.F. Gmel.) Donk-* * NMU44003
207Hygrophorus sp.* * * NMU44004
208Hy. flavescens (Kauffman) A.H. Sm. and Hesler ** * NMU44005
209Hy. niveus (Scop.) Fr. * * * NMU44006
210Hydnum repandum (L.: Fr.) S. F. Gray-* * PQ613468NMU44260
211Hydnellum atrospinosum Y.H. Mu and H.S. Yuan-* * NMU44007
212Hymenochaete corrugata (Fr.) Lév.-* * NMU44261
213Hym. senatoumbrina Parmasto-* * NMU44262
214Hyphodontia juniperi (Bourdot and Galzin) J. Erikss. and Hjortstam-* ** NMU44263
215Hygrocybe conica (Schaeff.) P. Kumm. ** ** NMU44264
216Hygrophorus eburneus (Bull.) Fr.- * * NMU44265
217Hyg. camarophyllus (Alb. and Schwein.) Dumée* * * NMU44266
218Hyg. pacificus A.H. Sm. Hesler* * * NMU44008
219Hymenogaster hessei Soehner-* * PQ613531NMU44267
220Hyme. cf. rehsteineri Bucholtz-* * PQ613532NMU44268
221Hyme. albus (Bull.) Berk.-* * NMU44269
222Hypholoma capnoides (Fr.) P. Kumm. ** * *PQ613533NMU44270
223Hyp. dispersum Quél. ** * NMU44271
224Hyp. fasciculare (Huds.) P. Kumm. * * * PQ613534NMU44272
225Hyp. lateritium (Schaeff.) P. Kumm. ** * PQ613535NMU44273
226Hyp. sp.-* * NMU44274
227Humaria hemisphaerica (Wigg. ex Fr.) Fuck.- * * PQ613469NMU44275
228Infundibulicybe alkaliviolascens (Bellù) Bellù- * * PQ613470NMU44276
229Inocybe auricoma (Batsch) Sacc. * * * NMU44009
230I. cf. nitidiuscula (Britzelm.) Lapl.- * * *PQ613471NMU44277
231I. cincinnata (Fr.) Quél. * * * NMU44278
232I. cookei Bres. * * * NMU44010
233I. curvipes P. Karst.- * * NMU44279
234I. dulcamara (Pers.) P. Kumm.- * * *PQ613537NMU44280
235I. fastigiata (Schaeff.) Kalchbr. * * * NMU44011
236I. flavobrunnea Y.C. Wang * * * NMU44012
237I. fuscidula Velen.- * * NMU44124
238I. geophylla var. lilacina (Peck) Gillet- * * PQ613536NMU44281
239I. griseolilacina J.E. Lange- * * NMU44125
240I. leucoloma Kühner- * * NMU44126
241I. lilacina (Peck) Kauffman * * * PQ613538NMU44282
242I. maculata Boud. * * * PQ613539NMU44283
243I. obsoleta Romagn.- * * PQ613472NMU44284
244I. pallidicremea Grund and D.E. Stuntz * * * NMU44127
245I. posterula (Britzelm.) Sacc.- * * PQ613540NMU44285
246I. radiata Peck * * * NMU44128
247I. rimosa (Bull.) Kalchbr. * * ***PQ613473NMU44286
248I. scolopacis Bandini and B. Oertel- * * PQ613474NMU44287
249I. tigrina R. Heim- * * NMU44129
250I. umbrinella Bres. * * ** NMU44013
251I. vulpinella Bruyl.- * * NMU44288
252Inocutis levis (P. Karst.) Y.C. Dai-* * NMU44014
253Inonotus compositus Han C. Wang-* * NMU44130
254In. hispidus (Bull.) P. Karst. * * * NMU44015
255In. sinensis Teng-* * NMU44016
256Laccaria laccata (Scop.) Cooke** * * NMU44017
257Lactarius controversus Pers.- * * NMU44131
258L. deliciosus (L.) Gray* * *** NMU44289
259L. deterrimus Gröger* * * * NMU44290
260L. fennoscandicus Verbeken and Vesterh.* * * NMU44291
261L. flavidulus S. Imai- * * NMU44018
262L. musteus Fr.- * * NMU44019
263L. pallidus Pers.- * * NMU44020
264L. piperatus (Scop.) Fr.* * * * NMU44292
265L. pubescens Fr.- * * PQ613475NMU44293
266Leccinum griseum (Quél.) Singer* * ** NMU44294
267Le. scabrum (Bull.) Gray* * *** NMU44295
268Lenzites albidus (Fr.) Fr.-* * NMU44021
269Leotia cristata (Bolton) P. Kumm. ** * * NMU44296
270Leo. lubrica (Scop.) Pers. ** * PQ613476NMU44297
271Lepiota alba (Bres.) Sacc.* * * NMU44022
272Lep. clypeolaria (Bull.) P. Kumm.-* * NMU44132
273Lep. gracilenta (Krombh.) Quél.* * * NMU44023
274Lep. prominens Sacc. * * * NMU44023
275Lep. subincarnata J.E. Lange ** * NMU44025
276Lepista irina (Fr.) Bigelow* * * PQ613541NMU44298
277Lepi. nuda (Bull.) Cooke** * * *PQ613542NMU44299
278Lepi. sordida (Schumach.) Singer** * ***PQ613543NMU44300
279Lepi. glaucocana (Bres.) Singer * * * NMU44026
280Leptoporus mollis (Pers.) Quél.-* * NMU44301
281Leucoagaricus rubrotinctus (Peck) Singer-* * PQ613544NMU44302
282Leu. subcrystallifer Z.W. Ge and Zhu L. Yang-* * PQ613477NMU44303
283Leu. vassiljevae E.F. Malysheva, Svetash. and Bulakh-* * PQ613478NMU44304
284Leucocoprinus birnbaumii (Corda) Singer ** * NMU44027
285Leucocybe houghtonii (W. Phillips) Halama and Pencak.-* * NMU44133
286Leucogyrophana mollusca (Fr.) Pouzar-* * NMU44028
287Leucopaxillus albissimus (Peck) Singer * * * NMU44029
288Leuc. candidus (Bres.) Singer** * * NMU44030
289Leuc. giganteus (Sowerby) Singer** * * NMU44031
290Limacella glioderma (Fr.) Maire-* * PQ613479NMU44305
291Lopharia cinerascens (Schwein.) G. Cunn.-* * NMU44306
292Lo. mirabilis (Berk. and Broome) Pat.-* * NMU44307
293Lycoperdon fuscum Huds.* * ** NMU44308
294Ly. molle Pers. * * ** NMU44309
295Ly. perlatum Pers.** * *** NMU44310
296Ly. umbrinum Pers.** * ** PQ613480NMU44311
297Ly. excipuliforme (Scop.) Pers.** * ** PQ613545NMU44312
298Ly. pyriforme Schaeff.** * ** NMU44032
299Lyophyllum cinerescens (Bull.) Konrad and Maubl. ** * * NMU44033
300Lyo. decastes (Fr.) Singer* * * NMU44034
301Lyo. fumosum (Pers.) P.D. Orton* * * NMU44313
302Lyo. leucophaeatum (P. Karst.) P. Karst.* * * NMU44314
303Macrocystidia cucumis (Pers.) Joss. -* * NMU44035
304Marasmius androsaceus (L.) Fr.-* * NMU44315
305M. chordalis Fr. * * * NMU44036
306M. cohaerens (Pers.) Cooke and Quél. ** * PQ613546NMU44037
307M. dryophilus (Bull.) P. Karst. ** * NMU44038
308M. maximus Hongo* * * NMU44039
309M. oreades (Bolton) Fr.** * ** NMU44316
310M. siccus (Schwein.) Fr.-* ** NMU44317
311Macrolepiota mastoidea (Fr.) Singer* * * NMU44040
312Melanoleuca arcuata (Bull.) Singer-* * NMU44318
313Me. cognata (Fr.) Konrad and Maubl. * * ** NMU44041
314Me. exscissa (Fr.) Singer * * * NMU44042
315Me. grammopodia (Bull.) Murrill* * * PQ613481NMU44319
316Me. paedida (Fr.) Kühner and Mair* * * PQ613547NMU44320
317Me. verrucipes (Fr.) Singer * * * NMU44043
318Morchella conica Pers.* * * NMU44044
319Mo. purpurascens (Krombh. ex Boud.) Jacquet.* * * NMU44134
320Mo. deliciosa Fr.* * * NMU44045
321Mycena pearsoniana Dennis -* * NMU44321
322My. rosella (Bull.) Gramberg-* * PQ613548NMU44322
323My. acicula (Schaeff.) P. Kumm. ** * NMU44135
324My. crocata (Schrad.) P. Kumm.* * * NMU44046
325My. caeruleogrisea Q. Na, Y.P. Ge and H. Zeng-* * NMU44323
326My. pura (Pers.) P. Kumm. ** ***PQ613482NMU44324
327My. viridimarginata P. Karst. ** * NMU44136
328Myxomphalia maura (Fr.) H.E.-* * NMU44137
329Naematoloma squamosum (Pers.) Singer *** * NMU44048
330Nigroboletus roseonigrescens Gelardi, Vizzini, E. Horak, T.H. Li and Ming Zhang- * * PQ613549NMU44325
331Otidea alutacea (Pers.) Massee- * * PQ613483NMU44326
332O. leporina (Batsch) Fuckel* * * NMU44327
333O. nannfeldtii Harmaja-* * PQ613550NMU44328
334Oudemansiella platyphylla (Pers.) M.M. Moser** * * NMU44049
335Oxyporus populinus (Schum.: Fr.) Donk-* * PQ613551NMU44329
336Parasola sp.-* * NMU44330
337P. leiocephala (P.D. Orton) Redhead, Vilgalys and Hopple-* * NMU44331
338Peniophora cf. polygonia (Pers.) Bourdot and Galzin -* * NMU44332
339Pe. cinerea (Pers.) Cooke-* * NMU44333
340Pe. junipericola J. Erikss.-* * NMU44050
341Peziza silvestris (Boud.) Sacc. and Traverso* * * NMU44051
342Phaeotremella foliacea (Pers.) Wedin, J.C. Zamora and Millanes-* * NMU44334
343Phanerochaete livescens (P. Karst.) Volobuev and Spirin-* * NMU44335
344Phellinopsis conchata (Pers.) Y.C. Dai-* * NMU44336
345Ph. helwingiae L.W. Zhou and W.M. Qin-* * NMU44337
346Phellinus conchatus (Pers.) Quél.-* * NMU44138
347Phe. igniarius (L.) Quél. * * ** NMU44338
348Phe. tremulae (Bondartsev) Bondartsev and P.N. Borisov -* * NMU44052
349Phe. tuberculosus Niemelä-* * NMU44339
350Phe. pomaceus (Pers.) Maire-* * NMU44053
351Phe. rimosus (Berk.) Pilát * * * NMU44054
352Phe. robustus (P. Karst.) Bourdot and Galzin * * * NMU44055
353Phlebia sp.-* * NMU44340
354Phl. rufa (Pers.) M.P. Christ. -* * NMU44341
355Phellodon melaleucus (Sw. ex Fr.) P. Karst.-* * NMU44139
356Pholiota adiposa (Batsch) P. Kumm. ** * ** NMU44342
357Pho. highlandensis (Peck) Singer* * ** NMU44056
358Pho. squarrosa (Vahl) P. Kumm. ** * NMU44057
359Pho. terrigena (Fr.) P. Karst.* * ** NMU44058
360Plectania melastoma (Sowerby) Fuckel-* * NMU44059
361Pleurotus cystidiosus O.K. Mill.* * * NMU44060
362Pl. ostreatus (Jacq.) P. Kumm. * * * NMU44061
363Pluteus brunneidiscus Murrill-* * PQ613484NMU44343
364Plu. multiformis Justo, A. Caball. and G. Muñoz-* * NMU44344
365Plu. murinus Bres.-* * NMU44140
366Polyporellus elegans (Bull.) P. Karst. * * * NMU44062
367Po. melanopus (Pers.) P. Karst. * * * NMU44063
368Po. varius (Pers.) P. Karst. * * * NMU44064
369Po. virgatus Berk. and M.A. Curtis-* * NMU44065
370Polyporus arcularius (Batsch) Fr. * * * NMU44345
371Pol. brumalis (Pers.) Fr.-* * PQ613485NMU44346
372Pol. cf. tuberaster (Jacq. ex Pers.) Fr.-* * NMU44347
373Pol. ellisii Berk. ex Cooke and Ellis* * * NMU44348
374Pol. mikawai Lloyd-* * NMU44349
375Pol. picipes Fr.-* * NMU44066
376Pol. submelanopus H.J. Xue and L.W. Zhou-* * PQ613486NMU44350
377Poria corticola (Fr.) Sacc. * * * NMU44067
378Porodaedalea sp.-* * NMU44068
379Postia fragilis (Fr.) Jülich-* * PQ613552NMU44351
380Pos. subcaesia (A. David) Jülich-* * NMU44141
381Psathyrella campestrtris (Earl.) Smith.* * * NMU44352
382Ps. candolleana (Fr.) Maire ** ** NMU44353
383Ps. hydrophila (Bull.: Fr.) A. S. Smith-* * PQ613553NMU44354
384Ps. longicauda P. Karst.-* * NMU44355
385Ps. steroraria Kühner and Joss.-* * NMU44356
386Pseudoclitocybe cyathiformis (Bull.) Singer** * ** PQ613487NMU44357
387Pse. sp.-* * NMU44358
388Pseudoclitopilus rhodoleucus (Sacc.) Vizzini and Contu-* * PQ613554NMU44359
389Psilocybe coprophila (Bull.) P. Kumm. ** * NMU44069
390Radulomyces confluens (Fr.) M.P. Christ.-* * NMU44360
391R. copelandii (Pat.) Hjortstam and Spooner-* * NMU44361
392Ramaria abietina (Pers.: Fr.) Quél.* * ** PQ613488NMU44362
393Ra. apiculata (Fr.) Donk* * * NMU44363
394Ra. distinctissima R.H. Petersen and M. Zang* * * PQ613489NMU44364
395Ra. flava (Schaeff.) Quél. * * * NMU44070
396Ra. flavobrunnescens (G.F. Atk.) Corner* * * NMU44071
397Rhizopogon roseolus (Cda.) Th.* * * NMU44365
398Rhodophyllus rhodopolius (Fr.) Quél. * * * NMU44072
399Rigidoporus philadelphi (Parmasto) Pouzar -* * NMU44073
400Rugosomyces pseudoflammulus (J.E. Lange) Bon-* * NMU44366
401Russula atroaeruginea G.J. Li, Q. Zhao and H.A. Wen* * * NMU44367
402Ru. atropurpurea Peck* * * NMU44142
403Ru. emetica (Schaeff.) Pers. * * * NMU44368
404Ru. foetens Pers. * * * PQ613490NMU44369
405Ru. fragilis (Pers.: Fr.) Fr. * * * NMU44370
406Ru. nigricans Fr.* * * NMU44074
407Ru. sanguinea (Bull.) Fr.* * * PQ613491NMU44371
408Sarcodon imbricatus (L.) P. Karst.* * * NMU44075
409Sarcosphaera coronaria (Jacq.) J. Schröt.* * * NMU44076
410Schizophyllum commune Fr.** * ** NMU44077
411Skeletocutis nivea (Jungh.) Jean Keller-* * PQ613492NMU44372
412S. percandida (Malençon and Bertault) Jean Keller-* * NMU44078
413Skvortzovia pinicola (J. Erikss.) G. Gruhn and Hallenb.-* * NMU44079
414Spathularia flavida Pers.: Fr.* * * NMU44080
415Sp. sp.-* * NMU44373
416Spodocybe sp.-* * NMU44374
417Steccherinum sp.-* * NMU44375
418Stereopsis humphreyi (Burt) Redhead and D.A. Reid-* * PQ613493NMU44376
419Stereum sanguinolentum (Alb. and Schwein.) Fr.-* * PQ613494NMU44377
420St. hirsutum (Willd.) Pers.-* * NMU44378
421Strobilurus stephanocystis (Kühner and Romagn. ex Hora) Singer* * * NMU44081
422Stropharia aeruginosa (Curtis) Quél. ** * NMU44082
423Str. ambigua (Peck) Zeller-* * PQ613495NMU44379
424Str. rugosoannulata Farl. ex Murrill* * * PQ613496NMU44380
425Str. semiglobata (Batsch) Quél. ** * NMU44083
426Suillellus luridus (Schaeff.) Murrill- * * PQ613555NMU44381
427Suillus aeruginascens Secr. ex Snell* * ** NMU44382
428Su. granulatus (L.) Roussel* * *** NMU44383
429Su. grevillei (Klotzsch) Singer* * ** NMU44384
430Su. luteus (L.) Roussel* * ** PQ613497NMU44385
431Su. plorans (Rolland) Kuntze* * * NMU44084
432Tectella calyptrata (Lindblad ex Fr.) Singer* * * NMU44085
433Tephrocybe sp.-* * NMU44386
434Tomentella sp.-* * NMU44387
435Trametes pubescens (Schumach.) Pilát * * * NMU44086
436T. versicolor (L.) Lloyd * * * *PQ613498NMU44388
438Trechispora nivea (Pers.) K.H. Larss.-* * NMU44087
437Tremella pulvinalis Kobayasi* * * NMU44389
439Tr. cerebriformis Chee J. Chen-* * NMU44390
440Tr. mesenterica Retz.-* * NMU44391
441Tricholoma fulvocastaneum Hongo* * * NMU44088
442Tri. japonicum Kawam.* * * NMU44089
443Tri. pardinum (Pers.) Quél. * * * NMU44090
444Tri. acerbum (Bull. ex Pers.) Quél. ** * * NMU44091
445Tri. argyraceum (Bull.) Gillet* * * PQ613499NMU44392
446Tri. cingulatum (Almfelt ex Fr.) Jacobasch* * * NMU44143
447Tri. imbricatum (Fr.) P. Kumm.* * ** PQ613556NMU44393
448Tri. lascivum (Fr.) Gillet- * * NMU44144
449Tri. luridum (Schaeff.) P. Kumm. * * * NMU44092
450Tri. matsutake (S. Ito and S. Imai) Singer* * * NMU44093
451Tri. mongolicum S. Imai** * * NMU44094
452Tri. pessundatum (Fr.) Quél. * * * NMU44095
453Tri. populinum J.E. Lange* * * NMU44096
454Tri. scalpturatum (Fr.) Quél. * * * NMU44097
455Tri. terreum (Schaeff.) P. Kumm.* * ***PQ613500NMU44394
456Tri. vaccinum (Schaeff.) P. Kumm.* * * NMU44145
457Tricholomopsis rutilans (Schaeff.) Singer-* * PQ613557NMU44395
458Tuber lishanense L.Fan and X.Y.Yan* * * PQ613558NMU44396
459Tu. pseudohimalayense G. Moreno, Manjón, Díez and García* * * PQ613559NMU44397
460Tu. umbilicatum Juan Chen and P. G. Liu* * * PQ613560NMU44398
461Tubulicrinis glebulosus (Fr.) Donk-* * NMU44098
462Tyromyces cf. sibiricus Penzina and Ryvarden-* * NMU44399
463Ty. lacteus (Fr.) Murrill * * * NMU44099
464Vuilleminia sp.-* * NMU44400
465Xerocomus chrysenteron (Bull.) Quél.- * * NMU44401
466Xeromphalina campanella (Batsch) Kühner and Maire** * * NMU44100
467Xylaria grammica (Mont.) Fr.-* * PQ613561NMU44402
468Xylodon bugellensis (Ces.) Hjortstam and Ryvarden-* * NMU44403
Total 1727054333133225323682119
- The species are unknown as edible, medicinal, or poisonous. * Represents the corresponding header information.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Deng, X.; Li, M.; Dai, Y.; Zhu, X.; Yan, X.; Wei, Z.; Yuan, Y. The Diversity of Macrofungi in the Forests of Ningxia, Western China. Diversity 2024, 16, 725. https://doi.org/10.3390/d16120725

AMA Style

Deng X, Li M, Dai Y, Zhu X, Yan X, Wei Z, Yuan Y. The Diversity of Macrofungi in the Forests of Ningxia, Western China. Diversity. 2024; 16(12):725. https://doi.org/10.3390/d16120725

Chicago/Turabian Style

Deng, Xiaojuan, Minqi Li, Yucheng Dai, Xuetai Zhu, Xingfu Yan, Zhaojun Wei, and Yuan Yuan. 2024. "The Diversity of Macrofungi in the Forests of Ningxia, Western China" Diversity 16, no. 12: 725. https://doi.org/10.3390/d16120725

APA Style

Deng, X., Li, M., Dai, Y., Zhu, X., Yan, X., Wei, Z., & Yuan, Y. (2024). The Diversity of Macrofungi in the Forests of Ningxia, Western China. Diversity, 16(12), 725. https://doi.org/10.3390/d16120725

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop