Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles?
Abstract
:1. Introduction
- (1)
- What were the factors that determined these prime basking sites and how were they spacially distributed in the hedgerow and how frequently did the lizards at these sites occupy them? This is important because greater movement between basking sites may increase risk of predation and risk levels that may vary for juveniles, males and females.
- (2)
- How frequent was inter and intra-specific communal basking by lizards at such sites and were they used in equal frequencies by adults and juveniles? For example, communal basking may be an adaptive behaviour by increasing detection of approaching predators or, if in physical contact, by reducing heat loss on cooler days. This is important because if prime basking sites are a limited resource many individuals may be constrained to either bask communally with other lizards or operate in less optimal microhabitats.
- (3)
2. Methods
2.1. Study Area
2.2. Lizard Sampling
2.3. Statistical Analysis
2.4. Defining Q10
3. Results
3.1. Properties of the Prime Basking Sites
3.2. Basking by Solitary Lizards
3.3. Basking Site Use by Individual Lizards
3.4. Communal Basking
3.5. Intraspecific Aggression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tinkle, D.W. Population structure and effective size of a lizard population. Evolution 1965, 18, 569–573. [Google Scholar] [CrossRef]
- Turner, F.B. The dynamics of population of squamates; population response to artificial high densities, crocodilians and rhynchocephalians. In Biology of the Reptilia; Cans, C., Tinkle, D.W., Eds.; Academic Press: London, UK, 1977; pp. 157–264. [Google Scholar]
- Huey, R.B.; Slatkin, M. Costs and benefits of lizard thermoregulation. Q. Rev. Biol. 1976, 51, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.B.; Peterson, C.R.; Arnold, S.J.; Porter, W.P. Hot rocks and not so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 1989, 70, 931–944. [Google Scholar] [CrossRef]
- Calsbeek, R.; Sinervo, B. Uncoupling direct and indirect components of female choice in the wild. Proc. Natl. Acad. Sci. USA 2002, 99, 14897–14902. [Google Scholar] [CrossRef] [PubMed]
- Heathcote, R.J.; Bell, E.; d’Ettorre, P.; While, G.M.; Uller, T. The scent of sun worship: Basking experience alters scent mark composition in male lizards. Behav. Ecol. Sociobiol. 2014, 68, 861–870. [Google Scholar] [CrossRef]
- Žagar, A.; Carretero, M.A.; Osojnik, N.; Sillero, N.; Vrezec, A. A place in the sun: Does interspecific interference affect thermoregulation in coexisting lizards. Behav. Ecol. Sociobiol. 2015, 69, 1127–1137. [Google Scholar] [CrossRef]
- Sears, M.W.; Angelletta, M.J., Jr. Costs and benefits of thermoregulation revisited: Both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 2015, 185, E94–E102. [Google Scholar] [CrossRef]
- Boag, D.A. Spatial relationships among members of a population of wall lizards. Oecologia 1973, 12, 1–13. [Google Scholar] [CrossRef]
- Perry, G.; Garland, T.J. Lizard home ranges revisited: Effects of sex, body size, diet, habitat, and phylogeny. Ecology 2002, 83, 1870–1885. [Google Scholar] [CrossRef]
- Galoyan, E. Joint space use in a parthenogenetic Armenian rock lizard Darevskia armeniaca suggests weak competition among monoclonal females. J. Herpetol. 2013, 47, 97–104. [Google Scholar] [CrossRef]
- Marco, A.; Pérez-Mellado, V. Mate guarding, intrasexual competition and mating success in males of the non-territorial lizard Lacerta schreiberi. Ethol. Ecol. Evol. 1999, 11, 279–286. [Google Scholar] [CrossRef]
- Langkilde, T.; Lance, V.A.; Shine, R. Ecological consequences of agonistic interactions in lizards. Ecology 2005, 86, 1650–1659. [Google Scholar] [CrossRef]
- Marler, C.; Walsberg, G.; White, M.; Moore, M.; Marler, C.A. Increased energy expenditure due to increased territorial defence in male lizards after phenotypic manipulation. Behav. Ecol. Sociobiol. 1995, 37, 225–231. [Google Scholar] [CrossRef]
- Basson, C.H.; Levy, O.; Angilletta, M.J., Jr.; Clusella-Trullas, S. Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct. Ecol. 2016, 31, 856–865. [Google Scholar] [CrossRef]
- Sears, M.W.; Angilletta, M.J.; Schuler, M.S.; Borchert, J.; Dilliplane, K.F.; Stegman, M.; Mitchell, W.A. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc. Natl. Acad. Sci. USA 2016, 113, 10595–10600. [Google Scholar] [CrossRef]
- Bauwens, D.; Claus, K. Basking aggregations in the adder (Vipera berus): Attraction to conspecific cues or to scarce suitable microhabitats? J. Ethol. 2021, 39, 249–257. [Google Scholar] [CrossRef]
- Brewster, C.L.; Sikes, R.S.; Gifford, M.E. Quantifying the cost of thermoregulation: Thermal and energetic constraints on growth rates in hatchling lizards. Funct. Ecol. 2013, 27, 490–497. [Google Scholar] [CrossRef]
- Roughgarden, J. Competition and theory in community ecology. Am. Nat. 1983, 122, 583–601. [Google Scholar] [CrossRef]
- Burghardt, G.M.; Rand, A.S. Group size and growth rate in hatchling green iguanas (Iguana iguana). Behav. Ecol. Sociobiol. 1985, 18, 101–104. [Google Scholar] [CrossRef]
- Street, D. The Reptiles of Northern and Central Europe; Blanford Press: London, UK, 1979; p. 268. [Google Scholar]
- Rismiller, P.D.; Heldmaier, G. How photoperiod influences body temperature selection in Lacerta viridis. Oecologia 1988, 75, 125–131. [Google Scholar] [CrossRef]
- Meek, R. Temporal distributions, habitat associations and behaviour of the green lizard (Lacerta bilineata) and wall lizard (Podarcis muralis) on roads in a fragmented landscape in Western France. Acta Herpetol. 2014, 9, 179–186. [Google Scholar]
- Meek, R. Temporal trends in Podarcis muralis and Lacerta bilineata populations in a fragmented landscape in western France: Results from a 14-year time series. Herpetol. J. 2020, 30, 19–25. [Google Scholar] [CrossRef]
- Rugiero, L.; Capula, M.; Di Vittorio, M.; Dendi, D.; Meek, R.; Luiselli, L. Ontogenetic habitat use and density of the green lizard (Lacerta bilineata) in contrasted landscapes in France and Italy. Conservation 2021, 1, 1–16. [Google Scholar] [CrossRef]
- Meek, R.; Luiselli, L. Living in patchy habitats: Substrate selection by basking sympatric lizards in contrasted anthropogenic habitats in western France. Russ. J. Herpetol. 2020, 29, 227–236. [Google Scholar] [CrossRef]
- Meek, R.; Luiselli, L. Juveniles are different: Substrate selection in juvenile green lizards Lacerta bilineata. Ethol. Ecol. Evol. 2022, 35, 687–697. [Google Scholar] [CrossRef]
- Mehrabi, Z.; Slade, E.M.; Solis, A.; Mann, D.J. The importance of microhabitat for biodiversity sampling. PLoS ONE 2014, 9, e114015. [Google Scholar] [CrossRef] [PubMed]
- Meek, R.; Luiselli, L. Application of univariate diversity metrics to the study of the population ecology of the lizard Lacerta bilineata in an ecotonal habitat. Diversity 2024, 16, 169. [Google Scholar] [CrossRef]
- Mitchell, J.C. Cannibalism in reptiles: A worldview review. Soc. Stud. Amph. Rept. 1986, 15, 1–23. [Google Scholar]
- Angelici, F.M.; Luiselli, L.; Rugiero, L. Food habits of the green lizard, Lacerta bilineata, in central Italy and a reliability test of faecal pellet analysis. Ital. J. Zool. 1997, 64, 267–272. [Google Scholar] [CrossRef]
- Choo, Y.R.; Kudavidanage, E.P.; Amarasinghe, T.R.; Nimalrathna, T.; Chua, M.A.; Webb, E.L. Best practices for reporting individual identification using camera trap photographs. Global Ecol. Conserv. 2020, 24, e01294. [Google Scholar] [CrossRef]
- Welbourne, D.J.; Claridge, A.W.; Paull, D.J.; Ford, F. Camera-traps are a cost effective method for surveying terrestrial squamates: A comparison with artificial refuges and pitfall traps. PLoS ONE 2020, 15, e0226913. [Google Scholar] [CrossRef] [PubMed]
- Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associates: Sunderland, MA, USA, 2004; p. 510. [Google Scholar]
- Bennett, A.F. Thermal dependence of locomotor capacity. Am. J. Physiol. 1990, 250, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Spears, S.; Pettit, C.; Berkowitz, S.; Collier, S.; Colwell, C.; Livingston, E.H.; McQueen, W.; Princeton, V.; Bodensteiner, B.L.; Leos-Barajas, V.; et al. Lizards in the wind: The impact of wind on the thermoregulation of the common wall lizard. J. Therm. Biol. 2024, 121, 103855. [Google Scholar] [CrossRef] [PubMed]
- Sannolo, M.; Carretero, M.A. Dehydration constrains thermoregulation and space use in lizards. PLoS ONE 2019, 14, e0220384. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.E.; Vitt, L.J. Increased predation risk while mate guarding as a cost of reproduction for male broad-headed skinks (Eumeces laticeps). Acta Ethol. 2002, 5, 19–23. [Google Scholar] [CrossRef]
- Baird, T.A.; Timanus, D.K.; Sloan, C.L. Intra- and intersexual variation in Social behaviour. In Lizard Social Behaviour; John Hopkins University Press: Baltimore, MD, USA, 2003; pp. 7–46. [Google Scholar]
- Beauchamp, G. Animal Vigilance: Monitoring Predators and Competitors; Academic Press: Cambridge, MA, USA, 2015; p. 272. [Google Scholar]
- Schwarzkopf, L.; Shine, R. Costs of reproduction in lizards: Escape tactics and susceptibility to predation. Behav. Ecol. Sociobiol. 1992, 31, 17–25. [Google Scholar] [CrossRef]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef]
- Bajer, K.; Horvath, G.; Molnar, O.; Toeroek, J.; Zsolt Garamszegi, L.; Herczeg, G. European green lizard (Lacerta viridis) personalities: Linking behavioural types to ecologically relevant traits at different ontogenetic stages. Behav. Proc. 2015, 111, 67–74. [Google Scholar] [CrossRef]
- Braun, C.A.; Baird, T.A.; York, J.R. Behavioural plasticity in physically variable microhabitats: A field test of potential adaptive consequences in male collared lizards (Crotaphytus collaris). Biol. J. Linn. Soc. 2018, 125, 37–49. [Google Scholar] [CrossRef]
- Downes, S.; Bauwens, D. Associations between first encounters and ensuing social relations within dyads of two species of lacertid lizards. Behav. Ecol. 2004, 15, 938–945. [Google Scholar] [CrossRef]
- Keren-Rotem, T.; Bouskila, A.; Geffen, E. Ontogenetic habitat shift and risk of cannibalism in the common chameleon (Chamaeleo chamaeleon). Behav. Ecol. Sociobiol. 2006, 59, 723–731. [Google Scholar] [CrossRef]
- Delaney, D.M.; Warner, D.A. Adult male density influences juvenile microhabitat use in a territorial lizard. Ethology 2017, 123, 157–167. [Google Scholar] [CrossRef]
- Jenssen, T.A.; Marcellini, D.L.; Buhlmann, K.A.; Goforth, P.H. Differential infanticide by adult curly-tailed lizards, Leiocephalus schreibersi. Anim. Behav. 1989, 38, 1054–1061. [Google Scholar] [CrossRef]
- Siqueira, C.C.; Rocha, C.F.D. Predation by lizards as a mortality source for juvenile lizards in Brazil. S. Am. J. Herpetol. 2008, 3, 82–87. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Turner, A.K. Animal Conflict; London Chapman Hall: London, UK, 1987; p. 460. [Google Scholar]
- Christian, K.A.; Tracy, C.R. The effect of thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 1981, 49, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Massot, M.; Clobert, J.; Pilorge, T.; LeComte, J.; Barbault, R. Density dependence in the common lizard: Demographic consequences of a density manipulation. Ecology 1992, 73, 1742–1756. [Google Scholar] [CrossRef]
- Martin, J.; Lopez, P. Influence of habitat structure on the escape tactics of the lizard Psammodromus algirus. Can. J. Zool. 1995, 73, 129–132. [Google Scholar] [CrossRef]
- Martin, J.; Lopez, P. Fleeing to unsafe refuges: Effects of conspicuousness and refuge safety on the escape decisions of the lizard Psammodromus algirus. Can. J. Zool. 2000, 78, 265–270. [Google Scholar] [CrossRef]
- Przemysław, Z.; Jarmoliński, M. Microhabitat sharing for basking between squamat species in Poland. Herpetozoa 2003, 36, 65–71. [Google Scholar] [CrossRef]
- Hodges, R.J.; Seabrook, C.; Michaels, C.J. Patterns of spatial and temporal association between Zootoca vivipara, Anguis fragilis, Vipera berus and Natrix helvetica at artificial refuges. Herpetol. J. 2024, 34, 145–151. [Google Scholar] [CrossRef]
A | B | C | D | E | F | G | H | Dmax | p | |
---|---|---|---|---|---|---|---|---|---|---|
Adult Lb vs. equal site Presence | −2.07 | 1.64 | 1.64 | 1.16 | −2.59 | 1.35 | 1.16 | −5.18 | 0.12 | >0.05 |
Juvenile Lb vs. equal site presence | −1.95 | 1.41 | −3.89 | 1.97 | 1.93 | 1.11 | −2.34 | −2.59 | 0.15 | <0.01 |
Adult Lb vs. juvenile Lb basking site use (adults as Null model) | 1.06 | −1.16 | −6.38 | 1.7 | 4.99 | −1.21 | −2.7 | 1.99 | 0.19 | <0.01 |
Adult Lb/juvenile Lb comparison of communal basking; using adults as null model | −1.68 | −1.98 | 1.21 | 3.34 | −1.64 | 5.0 | 3.0 | −9.81 | 0.32 | =0.01 |
Lizard | A | B | C | D | E | F | G | H | Basking Sites |
---|---|---|---|---|---|---|---|---|---|
M1 | x | X | X | x | x | X | x | x | 8 |
M2 | x | X | x | x | x | 5 | |||
M3 | x | x | x | x | 4 | ||||
M4 | X | x | x | x | x | 5 | |||
M5 | X | x | 2 | ||||||
M6 | x | X | 2 | ||||||
F1 | X | X | X | X | 4 | ||||
F2 | x | x | x | X | X | 5 | |||
F3 | X | x | 2 | ||||||
F4 | x | X | X | 3 | |||||
F5 | X | x | 2 | ||||||
F6 | x | X | x | 3 | |||||
J1 | X | X | 2 | ||||||
J2 | x | X | X | 3 | |||||
J3 | x | X | X | x | 4 | ||||
J4 | x | X | x | x | x | 5 | |||
J5 | x | X | x | 3 | |||||
J6 | X | x | 2 | ||||||
J7 | x | 1 | |||||||
J8 | x | 1 | |||||||
J9 | x | 1 | |||||||
J10 | x | 1 | |||||||
J11 | x | x | 2 | ||||||
J12 | x | 1 | |||||||
J13 | x | x | x | 3 | |||||
J14 | x | 1 | |||||||
J15 | x | 1 | |||||||
J16 | x | 1 | |||||||
J17 | x | x | 2 | ||||||
J18 | x | x | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meek, R.; Luiselli, L. Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles? Diversity 2024, 16, 728. https://doi.org/10.3390/d16120728
Meek R, Luiselli L. Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles? Diversity. 2024; 16(12):728. https://doi.org/10.3390/d16120728
Chicago/Turabian StyleMeek, Roger, and Luca Luiselli. 2024. "Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles?" Diversity 16, no. 12: 728. https://doi.org/10.3390/d16120728
APA StyleMeek, R., & Luiselli, L. (2024). Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles? Diversity, 16(12), 728. https://doi.org/10.3390/d16120728