Stony Corals and Their Associated Fauna Residing in Marine Lakes under Extreme Environmental Conditions
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schoepf, V.; Baumann, J.H.; Barshis, D.J.; Browne, N.K.; Camp, E.F.; Comeau, S.; Cornwell, C.E.; Guzmán, H.M.; Riegl, B.; Rodolfo-Metalpa, R.; et al. Corals at the edge of environmental limits: A new conceptual framework to re-define marginal and extreme coral communities. Sci. Total Environ. 2023, 884, 163688. [Google Scholar] [CrossRef]
- Cacciapaglia, C.; van Woesik, R. Climate-change refugia: Shading reef corals by turbidity. Glob. Chang. Biol. 2016, 22, 1145–1154. [Google Scholar] [CrossRef]
- Sully, S.; van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Chang. Biol. 2020, 26, 1367–1373. [Google Scholar] [CrossRef]
- Hamner, W.M.; Hamner, P. Stratified marine lakes of Palau (Western Caroline Islands). Phys. Geogr. 1998, 19, 175–220. [Google Scholar] [CrossRef]
- Colin, P.L. Marine Environments of Palau; Coral Reef Research Foundation: Koror, Palau, 2009; pp. ix, 414. [Google Scholar]
- Becking, L.E.; Renema, W.; Santodomingo, N.K.; Hoeksema, B.W.; Tuti, Y.; de Voogd, N.J. Recently discovered landlocked basins in Indonesia reveal high habitat diversity in anchialine systems. Hydrobiologia 2011, 677, 89–105. [Google Scholar] [CrossRef]
- Tomascik, T.; Mah, A.J. The ecology of “Halimeda lagoon”: An achialine lagoon of a raised atoll, Kakaban Island, East Kalimantan, Indonesia. Trop. Biodivers. 1994, 2, 385–399. [Google Scholar]
- Tomascik, T.; Mah, A.J.; Nontji, A.; Moosa, M.K. The Ecology of the Indonesian Seas; Periplus: Singapore, 1997. [Google Scholar]
- Maas, D.L.; Capriati, A.; Ahmad, A.; Erdmann, M.V.; Lamers, M.; de Leeuw, C.A.; Prins, L.; Putri, A.P.; Tapilatu, R.F.; Becking, L.E. Recognizing peripheral ecosystems in marine protected areas: A case study of golden jellyfish lakes in Raja Ampat, Indonesia. Mar. Pollut. Bull. 2020, 151, 110700. [Google Scholar] [CrossRef]
- Holthuis, L.B. Caridean shrimps found in land-locked salt-water pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zool. Verh. 1973, 128, 1–48. [Google Scholar]
- Ng, P.K.L.; Tomascik, T. Orcovita saltatrix, a new genus and species of anchialine varunine crab (Crustacea: Decapoda: Brachyura: Grapsidae) from Kakaban Island, Indonesia. Raffles Bull. Zool. 1994, 42, 937–948. [Google Scholar]
- Fransen, C.H.J.M.; Tomascik, T. Parhippolyte uveae Borradaile, 1899 (Crustacea: Decapoda: Hippolytidae) from Kakaban Island, Indonesia. Zool. Meded. 1996, 70, 227–233. [Google Scholar]
- Massin, C.; Tomascik, T. Two new holothurians (Echinodermata: Holothuroidea) from an anchialine lagoon of an uplifted atoll, Kakaban Island, East Kalimantan, Indonesia. Raffles Bull. Zool. 1996, 44, 157–172. [Google Scholar]
- Setiadi, A. A new genus and two new species of sea stars (Family Asterinidae) from Indonesian marine lakes, with notes on habitat and feeding ecology. Zootaxa 2019, 4712, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Becking, L.E. Revision of the genus Placospongia (Porifera, Demospongiae, Hadromerida, Placospongiidae) in the Indo-West Pacific. ZooKeys 2013, 298, 39–76. [Google Scholar] [CrossRef] [PubMed]
- Santodomingo, N.; Becking, L.E. Unravelling the moons: Review of the genera Paratetilla and Cinachyrella in the Indo-Pacific (Demospongiae, Tetractinellida, Tetillidae). ZooKeys 2018, 791, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Calcinai, B.; Cerrano, C.; Núñez-Pons, L.; Pansini, M.; Thung, D.C.; Bertolino, M. A new species of Spongilla (Porifera, Demospongiae) from a karst lake in Ha Long Bay (Vietnam). J. Mar. Sci. Eng. 2020, 8, 1008. [Google Scholar] [CrossRef]
- Fautin, D.G.; Fitt, W.K. A jellyfish-eating sea anemone (Cnidaria, Actiniaria) from Palau: Entacmaea medusivora sp. nov. Hydrobiologia 1991, 216, 453–461. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; Tuti, Y.; Becking, L.E. Mixed medusivory by the sea anemone Entacmaea medusivora (Anthozoa: Actiniaria) in Kakaban Lake, Indonesia. Mar. Biodivers. 2015, 45, 141–142. [Google Scholar] [CrossRef]
- Kawagata, S.; Yamasaki, M.; Jordan, R.W. Acarotrochus lobulatus, a new genus and species of shallow-water benthic foraminifer from Mecherchar Jellyfish Lake, Palau, NW equatorial Pacific Ocean. J. Foram. Res. 2005, 35, 44–49. [Google Scholar] [CrossRef]
- de Leeuw, C.A.; Peijnenburg, K.T.C.A.; Gillespie, R.G.; Maas, D.L.; Hanzawa, N.; Tuti, Y.; Toha, A.H.A.; Aji, L.P.; Becking, L.E. First come, first served: Possible role for priority effects in marine populations under different degrees of dispersal potential. J. Biogeogr. 2020, 47, 1649–1662. [Google Scholar] [CrossRef]
- Aji, L.P.; Goud, J.; van der Steeg, S.; Tapilatu, R.; Maas, D.L.; Becking, L.E. The diversity of molluscan faunas in marine lakes of Raja Ampat, West Papua, Indonesia. Contrib. Zool. 2023, 92, 391–430. [Google Scholar] [CrossRef]
- Aji, L.P.; Maas, D.L.; Capriati, A.; Ahmad, A.; de Leeuw, C.; Becking, L.E. Shifts in dominance of benthic communities along a gradient of water temperature and turbidity in tropical coastal ecosystems. PeerJ 2024, 12, e17132. [Google Scholar] [CrossRef]
- Cleary, D.F.R.; Polónia, A.R.M.; Renema, W.; Hoeksema, B.W.; Wolstenholme, J.; Tuti, Y.; de Voogd, N.J. Coral reefs next to a major conurbation: A study of temporal change (1985–2011) in coral cover and composition in the reefs of Jakarta, Indonesia. Mar. Ecol. Prog. Ser. 2014, 501, 89–98. [Google Scholar] [CrossRef]
- Cleary, D.F.R.; Polónia, A.R.M.; Renema, W.; Hoeksema, B.W.; Rachello-Dolmen, P.G.; Moolenbeek, R.G.; Budiyanto, A.; Yahmantoro; Tuti, Y.; Draisma, S.G.A.; et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Mar. Pollut. Bull. 2016, 110, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.M.; Perry, C.T.; Smithers, S.G.; Johnson, J.A.; Daniell, J.J. Evidence of extensive reef development and high coral cover in nearshore environments: Implications for understanding coral adaptation in turbid settings. Sci. Rep. 2016, 6, 29616. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.S. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands. Diversity 2017, 9, 29. [Google Scholar] [CrossRef]
- Rogers, C.S. Immediate effects of hurricanes on a diverse coral/mangrove ecosystem in the US Virgin Islands and the potential for recovery. Diversity 2019, 11, 130. [Google Scholar] [CrossRef]
- Stewart, H.A.; Kline, D.I.; Chapman, L.J.; Altieri, A.H. Caribbean mangrove forests act as coral refugia by reducing light stress and increasing coral richness. Ecosphere 2021, 12, e03413. [Google Scholar] [CrossRef]
- Stewart, H.A.; Wright, J.L.; Carrigan, M.; Altieri, A.H.; Kline, D.I.; Araújo, R.J. Novel coexisting mangrove-coral habitats: Extensive coral communities located deep within mangrove canopies of Panama, a global classification system and predicted distributions. PLoS ONE 2022, 17, e0269181. [Google Scholar] [CrossRef]
- Flowers, K.; Golembeski, P.; Ross, B.; Karp, R.F.; Baker, A.C. Visual surveys reveal coral growth in mangrove fringe in a subtropical metropolis. Bull. Mar. Sci. 2023, 99, 145–146. [Google Scholar] [CrossRef]
- Yates, K.K.; Rogers, C.S.; Herlan, J.J.; Brooks, G.R.; Smiley, N.A.; Larson, R.A. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeosciences 2014, 11, 4321–4337. [Google Scholar] [CrossRef]
- Camp, E.F.; Edmondson, J.; Doheny, A.; Rumney, J.; Grima, A.J.; Huete, A.; Suggett, D.J. Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Mar. Ecol. Prog. Ser. 2019, 625, 1–14. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of the World; Australian Institute of Marine Sciences and CRR Qld Pty Ltd.: Townsville, Australia, 2000.
- Hoeksema, B.W.; Cairns, S. Word List of Scleractinia. Available online: https://www.marinespecies.org/scleractinia/ (accessed on 14 March 2024).
- Zweifler, A.; O’Leary, M.; Morgan, K.; Browne, N.K. Turbid coral reefs: Past, present and future—A review. Diversity 2021, 13, 251. [Google Scholar] [CrossRef]
- Rosedy, A.; Ives, I.; Waheed, Z.; Hussein, M.A.S.; Sosdian, S.; Johnson, K.; Santodomingo, N. Turbid reefs experience lower coral bleaching effects in NE Borneo (Sabah, Malaysia). Reg. Stud. Mar. Sci. 2023, 68, 103268. [Google Scholar] [CrossRef]
- Cerrano, C.; Azzini, F.; Bavestrello, G.; Calcinai, B.; Pansini, M.; Sarti, M.; Thung, D.C. Marine lakes of karst islands in the Ha Long Bay (Vietnam). Chem. Ecol. 2006, 22, 489–500. [Google Scholar] [CrossRef]
- Ngai, N.D.; Thao, D.V.; Thung, D.C.; Thuy, L.T.; Tien, D.D.; Quan, N.V.; Chien, P.V. Biological community in submerged caves and marine lakes in ha Long-Cat Ba Area, Vietnam. J. Life Sci. 2015, 9, 541–548. [Google Scholar] [CrossRef]
- Tomascik, T.; Mah, A.J. Presence of Alveopora tizardi (Scleractinia: Acroporidae) as an epibiont on molluscan shells in an anchialine lake of a raised atoll, Kakaban Island, East Kalimantan, Indonesia: An opportunist or a survivor? Galaxea J. Coral Reef Stud. 2023, 25, 9–10. [Google Scholar] [CrossRef]
- Risk, M.J.; Heikoop, J.M.; Edinger, E.N.; Erdmann, M.V. The assessment ‘toolbox’: Community-based reef evaluation methods coupled with geochemical techniques to identify sources of stress. Bull. Mar. Sci. 2001, 69, 443–458. [Google Scholar]
- Fonseca, E.A.C.; Dean, H.K.; Cortés, J. Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Rev. Biol. Trop. 2006, 54, 101–115. [Google Scholar] [CrossRef]
- Scaps, P.; Denis, V. Can organisms associated with live scleractinian corals be used as indicators of coral reef status? Atoll Res. Bull. 2008, 566, 1–21. [Google Scholar] [CrossRef]
- Lymperaki, M.M.; Hill, C.E.; Hoeksema, B.W. The effects of wave exposure and host cover on coral-associated fauna of a centuries-old artificial reef in the Caribbean. Ecol. Eng. 2022, 176, 106536. [Google Scholar] [CrossRef]
- van der Schoot, R.J.; Hoeksema, B.W. Abundance of coral-associated fauna in relation to depth and eutrophication along the leeward side of Curaçao, southern Caribbean. Mar. Environ. Res. 2022, 181, 105738. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, K.H. Boring bivalves and their host corals from the Great Barrier Reef. J. Molluscan Stud. 1980, 46, 13–54. [Google Scholar] [CrossRef]
- Wong, K.T.; Tsang, R.H.L.; Ang, P. Did borers make corals more susceptible to a catastrophic disease outbreak in Hong Kong? Mar. Biodivers. 2016, 46, 325–326. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; Smith-Moorhouse, A.; Harper, C.E.; van der Schoot, R.J.; Timmerman, R.F.; Spaargaren, R.; Langdon-Down, S.J. Black mantle tissue of endolithic mussels (Leiosolenus spp.) is cloaking borehole orifices in Caribbean reef corals. Diversity 2022, 14, 401. [Google Scholar] [CrossRef]
- van der Schoot, R.J.; Hoeksema, B.W. Host specificity of coral-associated fauna and its relevance for coral reef biodiversity. Int. J. Parasitol. 2024, 54, 65–88. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, P.M.; Thomassin, B.A. Habits and morphological adaptations of mytilids (Mollusca: Bivalvia) from coastal and reefal environments in southwest Malagasia (Indian Ocean). In The Bivalvia—Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh, 1986; Morton, B., Ed.; Hong Kong University Press: Hong Kong, China, 1990; pp. 333–344. [Google Scholar]
- Kleemann, K. The pectinid bivalve Pedum spondyloideum (Gmelin 1791): Amount of surface and volume occupied in host corals from the Red Sea. Mar. Ecol. 2001, 22, 111–133. [Google Scholar] [CrossRef]
- Chan, B.K.; Tan, J.C.; Ganmanee, M. Living in a growing host: Growth pattern and dwelling formation of the scallop Pedum spondyloideum in massive Porites spp. corals. Mar. Biol. 2020, 167, 95. [Google Scholar] [CrossRef]
- Scaps, P. Association between the scallop Pedum spondyloideum (Bivalvia: Pteriomorphia: Pectinidae) and scleractinian corals from Nosy Be, Madagascar. Cah. Biol. Mar. 2020, 61, 73–80. [Google Scholar] [CrossRef]
- Scaps, P.; Denis, V.; Berhimpon, S.; Kaligis, F. Coral associations and space competitors of Pedum spondyloideum (Gmelin, 1791) (Bivalvia, Pteriomorphia: Pectiniidae) from the northeast coast of Sulawesi. Basteria 2005, 69, 157–166. [Google Scholar]
- Scaps, P.; Denis, V. Association between the scallop, Pedum spondyloideum, (Bivalvia: Pteriomorphia: Pectinidae) and scleractinian corals from the Wakatobi Marine National Park (Southeastern Sulawesi, Indonesia). Raffles Bull. Zool. 2007, 55, 371–380. [Google Scholar]
- Tovar-Hernández, M.A.A.; García-Garza, M.E.; de León-González, J.A. Sclerozoan and fouling sabellid worms (Annelida: Sabellidae) from Mexico with the establishment of two new species. Biodivers. Data J. 2020, 8, e57471. [Google Scholar] [CrossRef] [PubMed]
- Hoeksema, B.W.; Timmerman, R.F.; Spaargaren, R.; Smith-Moorhouse, A.; van der Schoot, R.J.; Langdon-Down, S.J.; Harper, C. Morphological modifications and injuries of corals caused by feather duster worms (Sabellidae: Anamobaea sp.) in the Caribbean. Diversity 2022, 14, 332. [Google Scholar] [CrossRef]
- Capa, M.; López, E. Sabellidae (Annelida: Polychaeta) living in blocks of dead coral in the Coiba National Park, Panamá. J. Mar. Biol. Assoc. UK 2004, 84, 63–72. [Google Scholar] [CrossRef]
- Capa, M.; Murray, A. A taxonomic guide to the fanworms (Sabellidae, Annelida) of Lizard Island, Great Barrier Reef, Australia, including new species and new records. Zootaxa 2015, 4019, 98–167. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Hernández, M.A.; ten Hove, H.A.; Vinn, O.; Zatoń, M.; de León-González, J.A.; García-Garza, M.E. Fan worms (Annelida: Sabellidae) from Indonesia collected by the Snellius II Expedition (1984) with descriptions of three new species and tube microstructure. PeerJ 2020, 8, e9692. [Google Scholar] [CrossRef] [PubMed]
- Capa, M.; Kupriyanova, E.; Nogueira, J.M.d.M.; Bick, A.; Tovar-Hernández, M.A. Fanworms: Yesterday, today and tomorrow. Diversity 2021, 13, 130. [Google Scholar] [CrossRef]
- Veeraiyan, B.; Tovar-Hernández, M.A.; Palanivel, P.S.; Palanisamy, S.; Perumal, M. New records of sclerozoan fan worms in Acropora sp. from the Gulf of Mannar, south-eastern coast of India (Annelida: Sabellidae). J. Nat. Hist. 2022, 56, 1365–1381. [Google Scholar] [CrossRef]
- Nishi, E. Serpulid polychaetes associated with living and dead corals at Okinawa Island, Southwest Japan. Publ. Seto Mar. Biol. Lab. 1996, 36, 305–318. [Google Scholar] [CrossRef]
- ten Hove, H.A.; Kupriyanova, E.K. Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa 2009, 2036, 1–126. [Google Scholar] [CrossRef]
- Kupriyanova, E.; ten Hove, H.A.; Rouse, G.W. Phylogeny of Serpulidae (Annelida, Polychaeta) inferred from morphology and DNA sequences, with a new classification. Diversity 2023, 15, 398. [Google Scholar] [CrossRef]
- Humann, P.; Deloach, N. Reef Creature Identification: Tropical Pacific, 1st ed.; New World Publications: Jacksonville, FL, USA, 2017; pp. 1–497. [Google Scholar]
- Perry, O.; Bronstein, O.; Simon-Blecher, N.; Atkins, A.; Kupriyanova, E.; ten Hove, H.; Levy, O.; Fine, M. On the genus Spirobranchus (Annelida, Serpulidae) from the northern Red Sea, and a description of a new species. Invertebr. Syst. 2018, 32, 605–626. [Google Scholar] [CrossRef]
- Kupriyanova, E.K.; Flaxman, B.; Burghardt, I. A puzzle no more: The identity of Spirobranchus tetraceros (Schmarda, 1861) (Annelida, Serpulidae) is revealed. Rec. Aust. Mus. 2022, 74, 201–214. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; Wels, D.; van der Schoot, R.J.; ten Hove, H.A. Coral injuries caused by Spirobranchus opercula with and without epibiotic turf algae at Curaçao. Mar. Biol. 2019, 166, 60. [Google Scholar] [CrossRef]
- Azzini, F.; Calcinai, B.; Cerrano, C.; Bavestrello, G.; Pansini, M. Sponges of the marine karst lakes and of the coast of the islands of Ha Long Bay (North Vietnam). In Porifera Research: Biodiversity, Innovation and Sustainability; Série Livros 28; Custodia, M.R., Lobo-Hajdu, G., Hajdu, E., Muricy, G., Eds.; Museu Nacional: Rio de Janeiro, Brazil, 2007; pp. 157–164. [Google Scholar]
- Becking, L.E.; Cleary, D.F.R.; de Voogd, N.J. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia. Mar. Ecol. Prog. Ser. 2013, 481, 105–120. [Google Scholar] [CrossRef]
- Ward, P.; Risk, M.J. Boring pattern of the sponge Cliona vermifera in the coral Montastrea annularis. J. Paleontol. 1977, 51, 520–526. [Google Scholar]
- Schönberg, C.H.L.; Wilkinson, C.R. Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 2001, 20, 69–76. [Google Scholar] [CrossRef]
- de Bakker, D.M.; Webb, A.E.; van den Bogaart, L.A.; van Heuven, S.M.A.C.; Meesters, E.H.; van Duyl, F.C. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao. PLoS ONE 2018, 13, e0197824. [Google Scholar] [CrossRef] [PubMed]
- Adhavan, D.; Prakash, S.; Kumar, A. Tube dwelling gastropod an indicator of coral reef status at the tropical reef of Palk Bay region, southeast coast of India. Ind. J. Geo Mar. Sci. 2021, 50, 585–587. [Google Scholar]
- Hoeksema, B.W.; Harper, C.E.; Langdon-Down, S.J.; van der Schoot, R.J.; Smith-Moorhouse, A.; Spaargaren, R.; Timmerman, R.F. Host range of the coral-associated worm snail Petaloconchus sp. (Gastropoda: Vermetidae), a newly discovered cryptogenic pest species in the southern Caribbean. Diversity 2022, 14, 196. [Google Scholar] [CrossRef]
- Bieler, R.; Collins, T.M.; Golding, R.; Granados-Cifuentes, C.; Healy, J.M.; Rawlings, T.A.; Sierwald, P. Replacing mechanical protection with colorful faces twice: Parallel evolution of the non-operculate marine worm-snail genera Thylacodes (Guettard, 1770) and Cayo n. gen. (Gastropoda: Vermetidae). PeerJ 2023, 11, e15854. [Google Scholar] [CrossRef]
- Chan, B.K.K.; Wong, K.J.H.; Cheng, Y.R. Biogeography and host usage of coral-associated crustaceans: Barnacles, copepods, and gall crabs as model organisms. In The Natural History of the Crustacea: Evolution and Biogeography of the Crustacea; Thiel, M., Poore, G.C., Eds.; Oxford University Press: Oxford, UK, 2020; Volume 8, pp. 183–215. [Google Scholar]
- Vimercati, S.; Terraneo, T.I.; Marchese, F.; Eweida, A.A.; Rodrigue, M.; Pieribone, V.; Benzoni, F. Diversity and distribution of coral gall crabs associated with Red Sea mesophotic corals. Front. Mar. Sci. 2024, 11, 1305396. [Google Scholar] [CrossRef]
- Purwanto, M.; Wilson, J.; Ardiwijaya, R.; Mangubhai, S. Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua, 2009–2011; Report 6/12; The Nature Conservancy, Indo-Pacific Division: Jakarta, Indonesia, 2012; pp. xiii, 43. [Google Scholar]
- Nugraha, A.P.; Purba, N.P.; Sunarto, J. Ocean currents, temperature, and salinity at Raja Ampat islands and the boundaries seas. World Sci. News 2018, 110, 197–209. [Google Scholar]
- Patty, S.I.; Rizqi, M.P.; Huwae, R.; Kainama, F. Water quality status of Raja Ampat Island Natural Marine Reserve based on the seawater physical parameters. Jurnal Ilmiah PLATAX 2020, 8, 95–101. [Google Scholar] [CrossRef]
Marine Lake Code | Temperature (°C) | Salinity (ppt) | pH | Surface Area (m2) | Maximum Depth (m) | Mangrove Presence |
---|---|---|---|---|---|---|
Papua06 | 31.9 (30.8–32.5) | 28.3 (26.7–29.1) | 7.9 (7.9–8.0) | 2950 | 12 | No |
Papua11 | 30.7 (30.1–31.0) | 27.6 (26.4–29) | 8.1 (8.0–8.1) | 27,300 | 9 | Yes |
Papua12 | 31.2 (30.2–31.8) | 32.7 (32.6–32.8) | n.a. | 7160 | 12 | Yes |
Papua13 | 30.6 (29.0–31.3) | 32.8 (32.7–32.9) | n.a. | 2100 | 3.5 | Yes |
Papua15 | 30.6 (30.3–31.2) | 30.1 (29.1–30.4) | 8.1 (8.0–8.1) | 10,300 | 34 | Yes |
Papua16 | 31.2 (31.1–31.6) | 30.0 (29.5–30.1) | 8.1 (8.0–8.1) | 21,100 | 19 | No |
Papua17 | 31.7 (31.1–32.0) | n.a. | n.a. | 6500 | n.a. | Yes |
Papua18 | 31.5 (29.9–32.6) | 28.4 (27.2–29.1) | 7.7 (7.6–7.8) | 7000 | 4.5 | Yes |
Papua24 | 30.3 (30.0–31.1) | 30.7 (30–31.1) | 7.9 (7.8–7.9) | 4200 | 6 | No |
Papua25 | 31.7 (31.1–32.1) | 29.6 (27.2–30) | 7.8 (7.7–7.8) | 21,500 | 8.5 | Yes |
Papua26 | 30.6 (30.0–31.5) | 29.7 (29.1–30.2) | 8.1 (8.0–8.1) | 16700 | 4.5 | Yes |
Papua33 | 30.4 (30.0–30.6) | 33.0 (32.8–33.2) | n.a. | 11,700 | 27 | No |
Family | Species |
---|---|
Acroporidae | Acropora cf. rudis, Montipora spp. (2×) |
Agariciidae | Gardineroseris planulata, Pavona cactus, P. decussata |
Euphylliidae | Coeloseris mayeri, Euphyllia glabrescens, Galexea astreata |
Fungiidae | Danafungia scruposa, Fungia fungites, Heliofungia actiniformis, Lithophyllon repanda |
Leptastreidae | Leptastrea sp. |
Lobophylliidae | Lobophyllia sp. |
Merulinidae | Cyphastrea sp., Dipsastraea spp. (2×), D. rotumana, D. speciosa, Echinopora sp., Favites spp. (2×), Goniastrea sp., Hydnophora rigida, Leptoria phrygia, Oulophyllia crispa, Pectinia paeonia |
Milleporidae | Millepora tenera |
Pachyseridae | Pachyseris speciosa |
Plerogyridae | Plerogyra sinuosa |
Pocilloporidae | Pocillopora damicornis, Seriatopora hystrix, Stylophora pistillata |
Poritidae | Porites sp., P. cylindrica, P. rus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becking, L.E.; Martinez, S.J.; Aji, L.P.; Ahmad, A.; Alzate, A.; Folkers, M.; Lestari, D.F.; Subhan, B.; Hoeksema, B.W. Stony Corals and Their Associated Fauna Residing in Marine Lakes under Extreme Environmental Conditions. Diversity 2024, 16, 295. https://doi.org/10.3390/d16050295
Becking LE, Martinez SJ, Aji LP, Ahmad A, Alzate A, Folkers M, Lestari DF, Subhan B, Hoeksema BW. Stony Corals and Their Associated Fauna Residing in Marine Lakes under Extreme Environmental Conditions. Diversity. 2024; 16(5):295. https://doi.org/10.3390/d16050295
Chicago/Turabian StyleBecking, Leontine E., Stephanie J. Martinez, Ludi Parwadani Aji, Awaludinnoer Ahmad, Adriana Alzate, Mainah Folkers, Dea Fauzia Lestari, Beginer Subhan, and Bert W. Hoeksema. 2024. "Stony Corals and Their Associated Fauna Residing in Marine Lakes under Extreme Environmental Conditions" Diversity 16, no. 5: 295. https://doi.org/10.3390/d16050295
APA StyleBecking, L. E., Martinez, S. J., Aji, L. P., Ahmad, A., Alzate, A., Folkers, M., Lestari, D. F., Subhan, B., & Hoeksema, B. W. (2024). Stony Corals and Their Associated Fauna Residing in Marine Lakes under Extreme Environmental Conditions. Diversity, 16(5), 295. https://doi.org/10.3390/d16050295