Effects of Seasonality on the Large and Medium-Sized Mammal Community in Mountain Dry Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Camera Survey
2.3. Data Handling and Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lisovski, S.; Ramenofsky, M.; Wingfield, J.C. Defining the degree of seasonality and its significance for future research. Integr. Comp. Biol. 2017, 57, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, V.; Colyn, M. Seasonal variations in population and community structure of small rodents in a tropical forest of Gabon. Can. J. Zool. 2003, 81, 1034–1046. [Google Scholar] [CrossRef]
- Ricklefs, R.E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 2004, 7, 1–15. [Google Scholar] [CrossRef]
- Liu, X.; Wu, P.; Songer, M.; Cai, Q.; He, X.; Zhu, Y.; Shao, X. Monitoring wildlife abundance and diversity with infra-red camera traps in Guanyinshan Nature Reserve of Shaanxi Province, China. Ecol. Indic. 2013, 33, 121–128. [Google Scholar] [CrossRef]
- Ofori, B.Y.; Attuquayefio, D.K.; Owusu, E.H.; Musha, R.K.Y.; Quartey, J.K.; Ntiamoa-Baidu, Y. Seasonal changes in small mammal assamblage in Kogyae Strict Nature Reserva, Ghana. Int. J. Biodivers. Conserv. 2015, 7, 238–244. [Google Scholar]
- Andrews, P.; O’Brien, E.M. Climate, vegetation, and predictable gradients in mammal species richness in southern Africa. J. Zool. 2000, 251, 205–231. [Google Scholar] [CrossRef]
- Bogoni, J.A.; Batista, G.O.; Graipel, M.E.; Peroni, N. Good times, bad times: Resource pulses influence mammal diversity in meridional Brazil highlands. Sci. Total Environ. 2020, 734, 139473. [Google Scholar] [CrossRef] [PubMed]
- Butet, A.; Paillat, G.; Delettre, Y. Seasonal changes in small mammal assemblages from field boundaries in an agricultural landscape of western France. Agric. Ecosyst. Environ. 2006, 113, 364–369. [Google Scholar] [CrossRef]
- Duncan, C.; Nilsen, E.; Linell, J.D.C.; Pettorelli, N. Life-history attributes and resource dynamics determine intraspecific home-range sizes in Carnivora. Remote Sens. Ecol. Conserv. 2015, 1, 39–50. [Google Scholar]
- Norbu, L.; Thinley, P.; Phurpa, U.D.; Tshering, P. Diversity and seasonal abundance of small mammals in Bumdeling Ramsar Site, Trashiyangtse, Eastern Bhutan. JBES 2019, 15, 36–45. [Google Scholar]
- Brown, J.H. Mammals on mountainsides: Elevational patterns of diversity. Glob. Ecol. Biogeogr. 2001, 10, 101–109. [Google Scholar] [CrossRef]
- Sperr, E.B.; Caballero-Martínez, L.A.; Medellin, R.A.; Tschapka, M. Seasonal changes in species composition, resource use and reproductive patterns within a guild of nectar-feeding bats in a west Mexican dry forest. J. Trop. Ecol. 2011, 27, 133–145. [Google Scholar] [CrossRef]
- Särkinen, T.; Iganci, J.R.; Linares-Palomino, R.; Simon, M.F.; Prado, D.E. Forgotten forests-issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecol. 2011, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Särkinen, T.; Pennington, R.T.; Lavin, M.; Simon, M.F.; Hughes, C.E. Evolutionary islands in the Andes: Persistence and isolation explain high endemism in Andean dry tropical forests. J. Biogeogr. 2012, 39, 884–900. [Google Scholar] [CrossRef]
- Pennington, R.T.; Lavin, M. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytol. 2016, 210, 25–37. [Google Scholar] [CrossRef]
- Josse, C.; Cuesta, F.; Navarro, G.; Barrena, V.; Cabrera, E.; Chacón Moreno, E.; Ferreira, W.; Peralvo, M.; Tovar, S.J.y.A. Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela, 1st ed.; Nanuk E.I.R.L.: Lima, Perú, 2009; pp. 30–54. [Google Scholar]
- Stan, K.; Sanchez-Azofeifa, A. Tropical dry forest diversity, climatic response, and resilience in a changing climate. Forests 2019, 10, 443. [Google Scholar] [CrossRef]
- Herzog, S.K.; Kessler, M. Biogeography and composition of dry forest bird communities in Bolivia. J. Ornithol. 2002, 143, 171–204. [Google Scholar] [CrossRef]
- Ibish, P.L.; Mérida, G. Biodiversidad: La Riqueza de Bolivia: Estado de Conocimiento y Conservación, 1st ed.; FAN: Santa Cruz, Bolivia, 2003; pp. 47–256. [Google Scholar]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R.; Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conser. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Cusack, J.J.; Dickman, A.J.; Rowcliffe, J.M.; Carbone, C.; Macdonald, D.W.; Coulson, T. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 2015, 10, e0126373. [Google Scholar] [CrossRef]
- Navarro, G.; Maldonado, M. Geografía Ecológica de Bolivia: Vegetación y Ambientes Acuáticos, 1st ed.; Centro de Ecología Simón I. Patiño, Departamento de Difusión: Bolivia, Bolivia, 2002; pp. 349–451. [Google Scholar]
- López, R.P. Diversidad florística y endemismo de los valles secos bolivianos. Ecol. Bol. 2003, 38, 27–60. [Google Scholar]
- Senamhi. Información Nacional de Datos Hidrometeorológicos. 2021. Available online: https://senamhi.gob.bo/index.php/sysparametros (accessed on 19 July 2021).
- Rovero, F.; Tobler, M.; Sanderson, J. Camera trapping for inventorying terrestrial vertebrates. In Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monitoring. The Belgian National Focal Point to the Global Taxonomy Initiative, 1st ed.; Eymann, J., Degreef, J., Hauser, C., Monje, J.C., Samyn, Y., VandenSpiegel, D., Eds.; ABC Taxa: Devon, UK, 2010; Volume 8, pp. 100–128. [Google Scholar]
- Ministerio de Medio Ambiente y Agua. Plan de Acción Para la Conservación del oso Andino (Tremarctos ornatus) 2020–2025; Ministerio de Medio Ambiente y Agua: La Paz, Bolivia, 2022; 46p. [Google Scholar]
- Paisley, S.L. Andean Bears and People in Apolabamba, Bolivia: Culture, Conflict and Conservation. Ph.D. Thesis, University of Kent, Canterbury, UK, 2001. [Google Scholar]
- Huarcaya, R.P.; Beirne, C.; Rojas, S.J.S.; Whitworth, A. Camera trapping reveals a diverse and unique high-elevation mammal community under threat. Oryx 2020, 54, 901–908. [Google Scholar] [CrossRef]
- Emmons, L.H.; Feer, F. Mamíferos de los Bosques Húmedos de AMÉRICA Tropical: Una Guía de Campo; Editorial FAN: Santa Cruz, Bolivia, 1999; 298p. [Google Scholar]
- Ministerio de Medio Ambiente y Agua. Libro Rojo de la Fauna Silvestre de Vertebrados de Bolivia; Ministerio de Medio Ambiente y Agua: La Paz, Bolivia, 2009; 571p. [Google Scholar]
- Wallace, R.B.; Gómez, H.; Porcel, Z.R.; Rumiz, D.I. Distribucion, Ecologia y Conservacion de los Mamiferos Medianos y Grandes de Bolivia. Centro de Ecología Simón I. Patiño, Departamento de Difusión: Santa Cruz, Bolivia, 2010. [Google Scholar]
- Hidalgo-Cossio, M.; Salazar-Bravo, J.; Tarifa, T. Nuevas localidades en el centro de Bolivia para la especie endémica Abrocoma boliviensis (Rodentia: Abrocomidae). Mastozool. Neotrop. 2016, 23, 165–170. [Google Scholar]
- Quiroga Pacheco, C.J.; Hidalgo-Cossio, M.; Velez-Liendo, X. Contribución de la cámara-trampa al conocimiento de Abrocoma boliviensis. Therya 2020, 11, 432–439. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species 2016. 2016. Available online: http://www.iucnredlist.org (accessed on 13 January 2021).
- Rovero, F.; Martin, E.; Rosa, M.; Ahumada, J.A.; Spitale, D. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data. PLoS ONE 2014, 9, e103300. [Google Scholar] [CrossRef] [PubMed]
- Jenks, K.E.; Chanteap, P.; Kanda, D.; Cutter, P.; Redford, T.; Antony, J.L.; Howard, J.G.; Leimgruber, P. Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses–an example from Khao Yai National Park, Thailand. Trop. Conserv. Sci. 2011, 4, 113–131. [Google Scholar] [CrossRef]
- Debata, S.; Swain, K.K. Estimating mammalian diversity and relative abundance using camera traps in a tropical deciduous forest of Kuldiha Wildlife Sanctuary, eastern India. Mammal Study 2018, 43, 45–53. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.H. Species richness: Estimation and comparison. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014; pp. 1–26. [Google Scholar]
- Chao, A. Species richness estimation. In Encyclopedia of Statistical Sciences; Read, C.B., Vidakovic, B., Eds.; Wiley: New York, NY, USA, 2004; pp. 7909–7916. [Google Scholar]
- Chao, A.; Chiu, C.H. Nonparametric estimation and comparison of species richness. eLS 2016, 1–11. [Google Scholar]
- Chao, A.; Ma, K.H.; Hsieh, T.C.; Chiu, C.H. Online Program SpadeR (Species-richness Prediction and Diversity Estimation in R). 2015. Available online: http://chao.stat.nthu.edu.tw/wordpress/software_download/ (accessed on 25 September 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 29 June 2021).
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Navarro, G.; Ferreira, W. Mapa de Vegetación de Bolivia, Escala 1: 250 000. 2007. Available online: http://conserveonline.org (accessed on 20 May 2021).
- FIRMS. Fire Information for Resource Management System. 2021. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 21 May 2021).
- Google Earth Pro 7.3.6.9796. San Lorenzo, Tarija, −21.19° S −64.46° W. Available online: https://earth.google.com/web/ (accessed on 21 May 2021).
- Rowclife, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P. Quatifying levels of animal activity using camera-trap data. Methods Ecol. Evol. 2014, 5, 1170–1179. [Google Scholar] [CrossRef]
- Ikeda, T.; Uchida, K.; Matasuura, Y.; Takahashi, H.; Yoshida, T.; Koizumi, I. Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camea-trap survey. PLoS ONE 2016, 11, e0163602. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.S.; Swanson, A.; Kosmala, M.; Arnold, T.; Packer, C. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr. J. Ecol. 2018, 56, 791–803. [Google Scholar] [CrossRef]
- Carmignotto, A.P.; Bezerra, A.M.; Rodrigues, F.H. Nonvolant small mammals from a southwestern area of Brazilian Cerrado: Diversity, habitat use, seasonality, and biogeography. Therya 2014, 5, 535–558. [Google Scholar] [CrossRef]
- Feng, J.; Sun, Y.; Li, H.; Xiao, Y.; Zhang, D.; Smith, J.L.; Ge, J.; Wang, T. Assessing mammal species richness and occupancy in a Northeast Asian temperate forest shared by cattle. Divers. Distrib. 2021, 27, 857–872. [Google Scholar] [CrossRef]
- Caravaggi, A.; Gatta, M.; Vallely, M.C.; Hogg, K.; Freeman, M.; Fadaei, E.; Dick, J.T.A.; Tosh, D.G. Seasonal and predator-prey effects on circadian activity of free-ranging mammals revealed by camera traps. PeerJ 2018, 6, e5827. [Google Scholar] [CrossRef] [PubMed]
- Banjade, M.; Han, S.H.; Jeong, Y.H.; Oh, H.S. Diel and seasonal activity pattern of alien sika deer with sympatric mammalian species from Muljangori-oreum wetland of Hallasan National Park, South Korea. J. Ecol. Environ. 2021, 45, 10. [Google Scholar] [CrossRef]
- Marques, R.V.; Fábian, M.E. Daily activity patterns of medium and large neotropical mammals during different seasons in an area of high altitude Atlantic rain forest in the South of Brazil. Rev. Bras. Zoociências 2018, 19, 38–64. [Google Scholar] [CrossRef]
- Blake, J.G.; Mosquera, D.; Loiselle, B.A.; Swing, K.; Guerra, J.; Romo, D. Temporal activity patterns of terrestrial mammals in lowland rainforest of eastern Ecuador. Ecotropica 2012, 18, 137–146. [Google Scholar]
- Neiswenter, S.A.; Dowler, R.C.; Young, J.H. Activity patterns of two sympatric species of skunks (Mephitis mephitis and Spilogale gracilis) in Texas. Southwest. Nat. 2010, 55, 16–21. [Google Scholar] [CrossRef]
- Di Bitetti, M.S.; Di Blanco, Y.E.; Pereira, J.A.; Paviolo, A.; Pírez, I.J. Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and pampas foxes (Lycalopex gymnocercus). J. Mammal. 2009, 90, 479–490. [Google Scholar] [CrossRef]
Dry Season | Wet Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Taxonomic Family | Scientific Name | Common Name | Independent Records ** | Stations with Records *** | RAI | Naïve Occupancy | Independent Records ** | Stations with Records *** | RAI | Naïve Occupancy | IUCN Category |
Didelphidae | Didelphis albiventris ± | White-eared opossum | 22 (3.16%) | 5 (3.16%) | 0.32 | 0.89 | 13 (2.50%) | 5 (8.93%) | 0.19 | 0.89 | LC |
Lutreolina massoia * ± | Massoia’s lutrine opossum | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | LC | |
Dasypodidae | Dasypus novemcintus | Nine-banded armadillo | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | LC |
Myrmecophagidae | Tamandua tetradactyla ± | Lesser tamandua | 27 (3.87%) | 6 (10.71%) | 0.40 | 0.11 | 14 (2.70%) | 5 (8.93%) | 0.21 | 0.09 | LC |
Canidae | Cerdocyon thous ± | Crab-eating fox | 1 (0.14%) | 1 (1.78%) | 0.01 | 0.02 | 12 (2.31%) | 4 (7.14%) | 0.18 | 0.07 | LC |
Lycalopex gymnocercus ± | Pampas fox | 98 (14.06%) | 6 (10.71%) | 1.43 | 0.11 | 9 (1.73%) | 3 (5.36%) | 0.13 | 0.05 | LC | |
Felidae | Puma concolor ± | Puma | 20 (2.87%) | 12 (21.43%) | 0.29 | 0.21 | 18 (3.46%) | 10 (17.86%) | 0.27 | 0.18 | LC |
Herpailurus yagouaroundi ± | Jaguarundi | 1 (0.4%) | 1 (1.78%) | 0.01 | 0.02 | 0 (0%) | 0 (0%) | 0 | 0 | LC | |
Leopardus garleppi * | Pampas cat | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | NT | |
Leopardus pardalis | Ocelot | 0 (0%) | 0 (0%) | 0 | 0 | 1 (0.19%) | 1 (1.78%) | 0.01 | 0.018 | LC | |
Leopardus wiedii ± | Margay | 2 (0.29%) | 2 (3.57%) | 0.03 | 0.03 | 2 (0.38%) | 1 (1.78%) | 0.03 | 0.02 | NT | |
Leopardus geoffroyi | Geoffroy’s cat | 186 (36.68%) | 24 (42.86%) | 2.72 | 0.43 | 127 (24.47%) | 22 (39.28%) | 1.87 | 0.40 | LC | |
Leopardus tigrinus | Northern tiger cat | 8 (1.15%) | 2 (3.57%) | 0.12 | 0.04 | 0 (0%) | 0 (0%) | 0 | 0 | VU | |
Mustelidae | Eira barbara | Tayra | 52 (7.46%) | 20 (35.71%) | 0.76 | 0.11 | 47 (9.05%) | 13 (23.21%) | 0.69 | 0.23 | LC |
Galictis cuja | Lesser grison | 8 (1.15%) | 7 (12.5%) | 0.12 | 0.12 | 16 (3.08%) | 3 (5.36%) | 0.24 | 0.05 | LC | |
Mephitidae | Conepatus chinga | Molina’s hog-nosed skunk | 99 (14.20%) | 15 (26.78%) | 1.45 | 0.27 | 64 (12.33%) | 12 (21.43%) | 0.94 | 0.21 | LC |
Procyonidae | Nasua nasua ± | Coati | 1 (0.14%) | 1 (1.78%) | 0.01 | 0.02 | 4 (0.77%) | 3 (5.36%) | 0.06 | 0.05 | LC |
Procyon cancrivorus ± | Crab-eating racoon | 3 (0.43%) | 2 (3.57%) | 0.04 | 0.03 | 1 (0.19%) | 1 (1.78%) | 0.01 | 0.02 | LC | |
Ursidae | Tremarctos ornatus ± | Andean bear | 34 (4.88%) | 10 (17.86%) | 0.50 | 0.18 | 32 (6.16%) | 6 (10.71%) | 0.47 | 0.11 | VU |
Tayassuide | Pecari tajacu ± | Collared peccary | 19 (2.72%) | 5 (8.93%) | 0.28 | 0.09 | 43 (8.28%) | 8 (14.28%) | 0.63 | 0.14 | LC |
Cervidae | Mazama sarae ± | Red brocket | 53 (7.60%) | 19 (33.93%) | 0.77 | 0.34 | 75 (14.45%) | 14 (28%) | 1.11 | 0.25 | DD |
Mazama gouazoibira ± | Grey brocket | 47 (6.74%) | 8 (14.28%) | 0.69 | 0.14 | 30 (5.78%) | 7 (12.5%) | 0.44 | 0.12 | LC | |
Sciuridae | Notosciurus pucheranii * | Squirrel | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | LC |
Erethizontidae | Coendou prehensilis * ± | Brazilian porcupine | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | LC |
Dasyproctidae | Dasyprocta azarae * ± | Agouti | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | DD |
Caviidae | Hydrochoerus hidrochaeris * | Capybara | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | LC |
Galea sp. ** | Cavy | 0 (0%) | 0 (0%) | - | - | 0 (0%) | 0 (0%) | - | - | - | |
Leporidae | Lepus europeaus ± | European hare | 1 (0.14%) | 1 (1.78%) | 0.01 | 0.02 | 0 (0%) | 0 (0%) | 0 | 0 | LC |
Abrocomidae | Abrocoma boliviensis ± | Bolivian chinchilla rat | 15 (2.15%) | 8 (14.28%) | 0.16 | 0.14 | 11 (2.12%) | 5 (8.93%) | 0.22 | 0.09 | CR |
Estimator | Dry Season | Wet Season | ||
---|---|---|---|---|
Estimate | SE | Estimate | SE | |
Homogeneous Model | 21.52 | 1.77 | 18.67 | 1.09 |
Homogeneous (MLE) | 20.00 | 1.044 | 18.00 | 0.77 |
Chao1 | 27.99 | 11.65 | 19.99 | 3.74 |
Chao1-bc | 22.99 | 4.18 | 20.46 | 3.49 |
iChao1 | 28.86 | 11.65 | 21.74 | 6.18 |
ACE | 25.83 | 6.30 | 20.26 | 3.49 |
ACE-1 | 29.93 | 12.92 | 21.75 | 6.18 |
1st order Jackknife | 23.99 * | 2.82 | 19.99 * | 1.99 |
2nd order Jackknife | 26.99 | 4.89 | 20.99 | 3.45 |
Estimator | Estimate | S.E. |
---|---|---|
Homogenous | 22.25 | 2.46 |
Heterogenous (ace-shared) | 25.80 * | 5.36 |
Chaoi1-shared | 19.50 | 4.36 |
Chaoi2-shared | 17.50 | 1.30 |
Index | Estimate | S.E. |
---|---|---|
Classic Sørensen | 0.89 | 0.05 |
Classic Jaccard | 0.81 | 0.07 |
Horn | 0.92 * | 0.01 |
Morisita-Horn | 0.90 * | 0.02 |
Regional overlap | 0.95 * | 0.01 |
Chao-Sørensen | 0.99 | 0.01 |
Chao-Jaccard | 0.98 | 0.01 |
Horn size-weighted | 0.92 | 0.01 |
Variable | Estimate | S.E. | z | p |
---|---|---|---|---|
Season (dry) | 0 | 0 | 0 | |
Season (wet) | −0.2906 | 0.058 | −5.007 | <0.005 |
Habitat 0 | 0 | 0 | 0 | |
Habitat 1 | 0.618 | 0.164 | 5.304 | <0.005 |
Habitat 2 | 1.413 | 0.138 | 10.250 | <0.005 |
Habitat 3 | 2.155 | 0.136 | 15.797 | <0.005 |
Habitat 4 | 0.535 | 0.094 | 5.648 | <0.005 |
Habitat 5 | 0.838 | 0.156 | 5.374 | <0.005 |
Altitude | 0.0005 | 0.0001 | 3.353 | <0.005 |
Distance to main road | −0.00003 | 0.00001 | −2.515 | 0.011 |
Distance to hiking trail | 0.0001 | 0.00006 | 2.115 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroga-Pacheco, C.J.; Velez-Liendo, X.; Zedrosser, A. Effects of Seasonality on the Large and Medium-Sized Mammal Community in Mountain Dry Forests. Diversity 2024, 16, 409. https://doi.org/10.3390/d16070409
Quiroga-Pacheco CJ, Velez-Liendo X, Zedrosser A. Effects of Seasonality on the Large and Medium-Sized Mammal Community in Mountain Dry Forests. Diversity. 2024; 16(7):409. https://doi.org/10.3390/d16070409
Chicago/Turabian StyleQuiroga-Pacheco, Carmen Julia, Ximena Velez-Liendo, and Andreas Zedrosser. 2024. "Effects of Seasonality on the Large and Medium-Sized Mammal Community in Mountain Dry Forests" Diversity 16, no. 7: 409. https://doi.org/10.3390/d16070409