The Stoichiometric Characteristics of Liana Leaves in Different Rocky Desertification Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.3. Element Measurements
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sardans, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. Recent advances and future research in ecological stoichiometry. Perspect. Plant Ecol. Evol. Syst. 2021, 50, 125611. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Dibar, D.T.; Zhang, K.; Yuan, S.; Zhang, J.; Zhou, Z.; Ye, X. Ecological stoichiometric characteristics of Carbon (C), Nitrogen (N) and phosphorus (P) in leaf, root, stem, and soil in four wetland plants communities in Shengjin Lake, China. PLoS ONE 2020, 15, e0230089. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Wang, L. Seasonal variations in C/N/P/K stoichiometric characteristics in different plant organs in the various forest types of Sygera Mountain. Front. Plant Sci. 2024, 15, 1293934. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, S.A.; Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef]
- Tang, Y.; Kitching, R.L.; Cao, M. Lianas as structural parasites: A re-evaluation. Chin. Sci. Bull. 2012, 57, 307–312. [Google Scholar] [CrossRef]
- Wang, J.Y.; Lan, J.C.; Long, T.; Xie, Y.J.; Lu, X.M.; Lei, L.Q.; Zhu, H.G.; Wen, Y.G. Ecological stoichiometry characteristics of nitrogen, phosphorus and potassium in liana leaf of evergreen broad-leaf forest. J. South. Agric. 2013, 5, 815–818. [Google Scholar]
- Huang, X.B.; Liu, W.D.; Su, J.R.; Li, S.F.; Lang, X.D. Stoichiometry of leaf C, N and P across152 woody species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan province. Chin. J. Ecol. 2016, 35, 567–575. [Google Scholar]
- Collins, C.G.; Wright, S.J.; Wurzburger, N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 2016, 180, 1037–1047. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer: Singapore, 2023. [Google Scholar]
- Costa, M.G.; dos Santos Sarah, M.M.; de Mello Prado, R.; Palaretti, L.F.; de Cássia Piccolo, M.; de Souza Júnior, J.P. Impact of Si on C, N, and P stoichiometric homeostasis favors nutrition and stem dry mass accumulation in sugarcane cultivated in tropical soils with different water regimes. Front. Plant Sci. 2022, 13, 949909. [Google Scholar] [CrossRef]
- Ågren, G.I. The CN:P stoichiometry of autotrophs–theory and observations. Ecol. Lett. 2004, 7, 185–191. [Google Scholar] [CrossRef]
- McGroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Song, Z.; Zuo, X.; Zhao, X.; Li, X.; Hu, Y.; Qiao, J.; Yue, P.; Chen, M.; Wang, S.; Sardans, J.; et al. Plant functional traits modulate effects of drought on C: N: P stoichiometry of plant, litter, and soil microbe in an arid grassland. J. Soil Sci. Plant Nutr. 2024, 24, 7228–7241. [Google Scholar] [CrossRef]
- Herbert, D.A.; Williams, M.; Rastetter, E.B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 2003, 65, 121–150. [Google Scholar] [CrossRef]
- Minden, V.; Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biol. 2014, 16, 897–907. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Andrés, Z.; Pérez-Hormaeche, J.; Leidi, E.O.; Schlücking, K.; Steinhorst, L.; McLachlan, D.H.; Schumacher, K.; Hetherington, A.M.; Kudla, J.; Cubero, B.; et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc. Natl. Acad. Sci. USA 2014, 111, E1806–E1814. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Laclau, J.P.; Domec, J.C.; Christina, M.; Bouillet, J.P.; de Cassia, P.M.; de Moraes Gonçalves, J.L.; Moreira, R.M.; Krusche, A.V.; Bouvet, J.M.; et al. Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. New Phytol. 2014, 203, 401–413. [Google Scholar] [CrossRef]
- Chen, B.; Fang, J.; Piao, S.; Ciais, P.; Black, T.A.; Wang, F.; Niu, S.; Zeng, Z.; Luo, Y. A meta-analysis highlights globally widespread potassium limitation in terrestrial ecosystems. New Phytol. 2024, 241, 154–165. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar] [CrossRef]
- Pandi, V. Ecology of lianas: Diversity and distribution. In Taxonomy and Ecology of Climbers: Climbing Plants of India; Springer Nature Singapore: Singapore, 2023; pp. 57–70. [Google Scholar]
- Schnitzer, S.A.; Mangan, S.A.; Dalling, J.W.; Baldeck, C.A.; Hubbell, S.P.; Ledo, A.; Muller-Landau, H.; Tobin, M.F.; Aguilar, S.; Brassfield, D.; et al. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 2012, 7, e52114. [Google Scholar] [CrossRef]
- Dossa, G.G.; Li, H.L.; Pan, B.; Ling, T.C.; Schaefer, D.A.; Roeder, M.; Njoroge, D.M.; Zuo, J.; Song, L.; Ofosu-Bamfo, B.; et al. Effects of lianas on forest biogeochemistry during their lives and afterlives. Glob. Chang. Biol. 2024, 30, e17274. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, B.; Enoki, T. Contribution of a liana species, Mucuna macrocarpa Wall., to litterfall production and nitrogen input in a subtropical evergreen broad-leaved forest. J. For. Res. 2008, 13, 35–42. [Google Scholar] [CrossRef]
- van der Heijden, G.M.; Schnitzer, S.A.; Powers, J.S.; Phillips, O.L. Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica 2013, 45, 682–692. [Google Scholar] [CrossRef]
- Meunier, F.; Visser, M.D.; Shiklomanov, A.; Dietze, M.C.; Guzmán Q., J.A.; Sanchez-Azofeifa, G.A.; De Deurwaerder, H.P.T.; Moorthy, S.M.K.; Schnitzer, S.A.; Marvin, D.C.; et al. Liana optical traits increase tropical forest albedo and reduce ecosystem productivity. Glob. Chang. Biol. 2022, 28, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Kilgore, A.; Lambert, T.D.; Adler, G.H. Lianas influence fruit and seed use by rodents in a tropical forest. Trop. Ecol. 2010, 51, 265. [Google Scholar]
- Michel, N.L.; Douglas Robinson, W.; Sherry, T.W. Liana–bird relationships: A review. Ecol. Lianas 2015, 362–397. [Google Scholar]
- Schnitzer, S.A.; Michel, N.L.; Powers, J.S.; Robinson, W.D. Lianas maintain insectivorous bird abundance and diversity in a neotropical forest. Ecology 2020, 101, e03176. [Google Scholar] [CrossRef]
- Su, W.; Zhu, W.; Xiong, K. Stone desertification and eco-economics improving model in Guizhou karst mountain. Carsol. Sin. 2002, 21, 21–26. [Google Scholar]
- Li, Y.; Tan, Q.; Wang, S. Current status, problems analysis and basic framework of karst rocky desertification research. Sci. Soil Water Conserv. 2005, 3, 27–34. [Google Scholar]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Xiong, K.; Chi, Y. The problems in southern China karst ecosystem in southern of China and its countermeasures. Ecol. Econ. 2015, 31, 23–30. [Google Scholar]
- Cai, G.J.; Suo, P.C.; Zhang, L.M.; Fu, Y.H.; Li, A.D. C, N, P stoichiometric characteristics in different organs of three constructive plants in Karst peak-cluster depressions in southern Guizhou, Southwest China. J. Guizhou Norm. Univ. Nat. Sci. 2021, 39, 36–44. [Google Scholar]
- Du, J.; Cai, G.; Zhang, H.; Li, A. Response of plant Leaf C, N, P stoichiometry characteristics to climatic environment and soil nutrients in karst areas of Guizhou. Ecol. Environ. Sci. 2023, 32, 2154–2165. [Google Scholar]
- Liu, Q.; Long, C.; He, Q.; Yuan, R.; Li, J. Nitrogen and phosphorous stoichiometry of leaves of Cyclobalanopsis glauca forest in Maolan National Nature Reserve. J. Guizhou Norm. Univ. Nat. Sci. 2024, 1–8. [Google Scholar]
- Yu, Y.F.; Wei, J.H.; Hu, J.M.; Zhang, J.H.; Li, T.T.; Zheng, F.H.; Zhang, Y.; Su, L.R.; He, T.G. Nitrogen and phosphorus stoichiometric homoeostasis in different organs of shrubs and herbs in degraded vegetation communities in the karst area of northwestern Guangxi. Acta Ecol. Sin. 2024, 44, 5367–5376. [Google Scholar]
- Liu, Q.; Wang, Z. Nutrient characteristics of typical plant leaves in karst and non-karst regions of southwest China. Hunan Shengtai Kexue Xuebao 2024, 11, 10–17. [Google Scholar]
- Pi, F.; Yuan, C.; Yu, L.; Yan, L.; Wu, L.; Yang, R. Ecological stoichiometry characteristics of plant leaves from the main dominant species of natural secondary forest in the central of Guizhou. Ecol. Environ. Sci. 2016, 25, 801–807. [Google Scholar]
- Yu, Y.H.; Zhong, X.P.; Zheng, W.; Chen, Z.X.; Wang, J.X. Species diversity, functional traits, stoichiometry and correlation of plant community in different succession stages of karst forest. Acta Ecol. Sin. 2021, 41, 2408–2417. [Google Scholar]
- Lu, X.; Yang, W.; Ding, F.; Ding, H.; Wu, J.; Cao, M.; Cui, P.; Xu, H. Dynamics of litterfall and nutrient recycling in virgin forest in Maolan karst region. J. Ecol. Rural Environ. 2014, 30, 614–619. [Google Scholar]
- Wu, P.; Zhou, H.; Cui, Y.C.; Zhao, W.J.; Hou, Y.J.; Zhu, J.; Ding, F.J. Stoichiometric characteristics of leaf nutrients in Karst plant species during natural restoration in Maolan national nature reserve, Guizhou, China. J. Sustain. Forest. 2023, 42, 95–119. [Google Scholar] [CrossRef]
- Lu, F.; Li, X.K.; Wang, B.; Li, D.X.; Huang, F.Z.; Li, J.X.; Chen, T.; Lu, S.H.; Guo, Y.L.; Wen, S.J.; et al. Spatial pattern of lianas of Litsea dilleniifolia community and its relationship with main tree species in Nonggang, Guangxi. Acta Ecol. Sin. 2021, 41, 6191–6202. [Google Scholar]
- Wang, Y.S.; Chen, L.J.; Li, Y.H.; He, L.X.; Li, Z.Z.; Qing, R.B.; Yang, X.J. Analysis of species composition and attribute characteristics of related traits of lianas growing in the karst areas of south China. Pratacult. Sci. 2020, 37, 126–138. [Google Scholar]
- Bai, X.L.; Yang, D.; Sher, J.; Zhang, Y.B.; Zhang, K.Y.; Liu, Q.; Wen, H.D.; Zhang, J.L.; Slot, M. Divergences in stem and leaf traits between lianas and coexisting trees in a subtropical montane forest. J. Plant Ecol. 2024, 17, rtad037. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Zhou, X.; Lv, S.; Bai, K. Leaf ecological stoichiometry in understory plants with different life forms in a subtropical evergreen broad-leaved forest. J. Trop. Subtrop. Bot. 2024, 32, 725–736. [Google Scholar]
- Luo, X.; Zhang, G.; Du, X.; Wang, S.; Yang, H.; Huang, T. Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan karst forest. Ecol. Environ. Sci. 2014, 23, 1121–1129. [Google Scholar]
- Pi, F.; Shu, L.; Yu, L.; Zhou, C.; Wu, Z.; Yuan, C. Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in karst region of central Guizhou. Environ. Sci. 2017, 26, 628–634. [Google Scholar]
- Hu, Q.J.; Sheng, M.Y.; Yin, J.; Bai, Y.X. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China. Chin. J. Plant Ecol. 2020, 44, 962–972. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, M.; Bai, Y.; Huang, X.; Zhang, Y.; Zhang, W.; Jiang, T. Analysis of soil nutrient conditions under different rocky desertification grades in Guizhou karst region by the bibliometrics method. Soil Fert. Sci. China 2019, 171–180. [Google Scholar]
- Li, R.L.; Wang, S.J.; Xiong, K.N.; Li, F.Q. A study on rocky desertification evaluation index system-a case study of Guizhou Province. Trop. Geogr. 2004, 24, 145–149. [Google Scholar]
- Li, S.; Dong, Y.; Wang, J. Re-discussion on the concept and classification of rocky desertification. Carsol. Sin. 2007, 26, 179–284. [Google Scholar]
- Yang, S.; An, Y.; Wang, P.; Ma, L.; Hu, F.; Sun, Q. Study of ecological red-line zones in Guizhou Chishui River Basin. Resour. Environ. Yangtze Basin 2015, 24, 1405–1411. [Google Scholar]
- Xiao, Y.; Huang, Z.; Li, Y.; Zhang, Y.; Wang, M. Soil microbial community structure and diversity of typical vegetation types in Chishui River Basin. Sci. Soil Water Conserv. 2022, 29, 275–283. [Google Scholar]
- Wu, P. Study on Ecological Stoichiometric Characteristics of Plant Leaf-Litter-Soil in the Process of Natural Restoration in Maolan Karst Forest; Chinese Academy of Forestry: Beijing, China, 2017. [Google Scholar]
- Yu, J.; An, M.; Zhang, Y.; Tian, L.; Wang, K. Vertical distribution characteristics and environmental interpretation of plant species richness in Maolan karst forest. Acta Bot. Boreal.-Occident. Sin. 2023, 43, 326–334. [Google Scholar]
- Koerselman, W.; Meuleman, A.F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Bai, K.; Lv, S.; Ning, S.; Zeng, D.; Guo, Y.; Wang, B. Leaf nutrient concentrations associated with phylogeny, leaf habit and soil chemistry in tropical karst seasonal rainforest tree species. Plant Soil 2019, 434, 305–326. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Wu, J.; Zhao, P.; Chen, T.; Zhu, L.; Ouyang, L.; Hölscher, D. Leaf stoichiometry is synergistically-driven by climate, site, soil characteristics and phylogeny in karst areas, Southwest China. Biogeochemistry 2021, 155, 283–301. [Google Scholar] [CrossRef]
- Onoda, Y.; Hikosaka, K.; Hirose, T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol. 2004, 18, 419–425. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinellj, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cui, Y.C.; Zhao, W.J.; Hou, Y.J.; Zhu, J.; Ding, F.J.; Yang, W.B. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China. Acta Ecol. Sin. 2020, 40, 5063–5080. [Google Scholar]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Wen, P.; Wang, L.; Sheng, M. Research progress in ecological stoichiometry of karst forest ecosystem in Southwest China. Word For. Res. 2018, 31, 66–71. [Google Scholar]
- Egilla, J.N.; Davies, J.F.T.; Boutton, T.W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 2005, 43, 135–140. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Tränker, M.; Tavakol, A.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Shankar, A.; CHandran, A.K.N.; Sharma, M.; Jung, K.H.; Suprasanna, P.; Pandey, G.K. Emerging concepts of potassium homeostasis in plants. J. Exp. Bot. 2019, 71, 608–619. [Google Scholar] [CrossRef]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef]
- Oddo, E.; Inzerillo, S.; La Bella, F.; Grisafi, F.; Salleo, S.; Nardini, A.; Goldstein, G. Short-term effectsof potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol. 2011, 31, 131–138. [Google Scholar] [CrossRef]
- Ji, F.T.; Li, N.; Deng, X. Calcium contents and high calcium adaptation of plants in karst areas of China. Chin. J. Plant Ecol. 2009, 33, 926–935. [Google Scholar]
- White, P.J.; Broadley, M.R.; El-Serehy, H.A.; George, T.S.; Neugebauer, K. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry. Ann. Bot. 2018, 122, 221–226. [Google Scholar] [CrossRef]
- Müller, M.; Oelmann, Y.; Schickhoff, U.; Böhner, J.; Scholten, T. Himalayan treeline soil and foliar C: N: P stoichiometry indicate nutrient shortage with elevation. Geoderma 2017, 291, 21–32. [Google Scholar] [CrossRef]
- Chen, K.; Du, H.; Liu, C. Characteristics of leaf ecological stoichiometry in typical plant communities in karst fault-depression basins of Yunnan Province. Carsol. Sin. 2020, 39, 883–893. [Google Scholar]
- Wang, J.; Liang, Y.; Wang, G.; Lin, X.; Liu, J.; Wang, H.; Chen, Z.; Wu, B. Leaf nitrogen and phosphorus stoichiometry and its response to geographical and climatic factors in a tropical region: Evidence from Hainan Island. Agronomy 2023, 13, 411. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef]
- Zhen, L.; Yu, L.; Dai, P.; Xue, Y.; Long, P. Nutrient characteristics and adaptability of plant leaves in Tiankeng Complex of Dashiwei, Guangxi, China. Chin. J. Plant Ecol. 2024, 48, 872–887. [Google Scholar]
Sampling Site | Species | Family | Leaf Habit |
---|---|---|---|
Moderate rocky desertification | Berchemia sinica | Rhamnaceae | Evergreen |
Callerya nitida | Leguminosae | Evergreen | |
Derris taiwaniana | Leguminosae | Evergreen | |
Holboellia latifolia | Lardizabalaceae | Evergreen | |
Rosa cymosa | Rosaceae | Evergreen | |
Mallotus repandus | Euphorbiaceae | Evergreen | |
Ticanto crista | Leguminosae | Evergreen | |
Pueraria montana | Leguminosae | Deciduous | |
Rubus alceifolius | Rosaceae | Deciduous | |
Vitis heyneana | Vitaceae | Deciduous | |
Rubus paniculatus | Rosaceae | Deciduous | |
Schisandra chinensis | Schisandraceae | Deciduous | |
Severe rocky desertification | Smilax china | Liliaceae | Evergreen |
Berchemia sinica | Rhamnaceae | Evergreen | |
Callerya cinerea | Leguminosae | Evergreen | |
Bauhinia curtisii | Leguminosae | Evergreen | |
Rosa laevigata | Rosaceae | Evergreen | |
Elaeagnus bockii | Elaeagnaceae | Evergreen | |
Rubus alceaefolius | Rosaceae | Deciduous | |
Parthenocissus semicordata | Vitaceae | Deciduous |
Index | Moderate Rocky Desertification | Severe Rocky Desertification |
---|---|---|
Carbon concentration (C, mg g−1) | 449.45 ± 5.29 | 455.96 ± 6.48 |
Nitrogen concentration (N, mg g−1) | 22.75 ± 1.43 | 22.96 ± 2.49 |
Phosphorus concentration (P, mg g−1) | 1.58 ± 0.08 | 1.36 ± 0.17 |
Potassium concentration (K, mg g−1) | 2.38 ± 0.21 | 12.71 ± 2.13 |
Calcium concentration (Ca, mg g−1) | 20.02 ± 2.64 | 14.58 ± 0.39 |
Magnesium concentration (Mg, mg g−1) | 2.37 ± 1.62 | 1.64 ± 0.19 |
Carbon/nitrogen ratio (C:N ratio) | 20.74 ± 1.35 | 21.76 ± 2.38 |
Carbon/phosphorus ratio (C:P ratio) | 293.78 ± 16.08 | 376.56 ± 46.62 |
Nitrogen/phosphorus ratio (N:P ratio) | 14.72 ± 1.03 | 17.38 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Feng, T.; Zou, S.; He, B.; Chen, Y.; Li, W. The Stoichiometric Characteristics of Liana Leaves in Different Rocky Desertification Habitats. Diversity 2025, 17, 193. https://doi.org/10.3390/d17030193
Bai X, Feng T, Zou S, He B, Chen Y, Li W. The Stoichiometric Characteristics of Liana Leaves in Different Rocky Desertification Habitats. Diversity. 2025; 17(3):193. https://doi.org/10.3390/d17030193
Chicago/Turabian StyleBai, Xiaolong, Tu Feng, Shun Zou, Bin He, Yang Chen, and Wangjun Li. 2025. "The Stoichiometric Characteristics of Liana Leaves in Different Rocky Desertification Habitats" Diversity 17, no. 3: 193. https://doi.org/10.3390/d17030193
APA StyleBai, X., Feng, T., Zou, S., He, B., Chen, Y., & Li, W. (2025). The Stoichiometric Characteristics of Liana Leaves in Different Rocky Desertification Habitats. Diversity, 17(3), 193. https://doi.org/10.3390/d17030193